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CHAPTER 0

Background material and notation

1. Notation

Number Theory Functions

• τ(n) is the number of positive divisors of n
• ω(n) is the number of distinct prime factors of n
• ω(n, t) is the number of distinct prime factors of n which are 6 t
• ω(n;S) is the number of distinct prime factors of n that lie in the set S
• Ω(n) is the number of prime factors of n counted with multiplicity
• µ(n) is the Möbius’s function; µ(n) = (−1)ω(n) if n is squarefree and µ(n) = 0 otherwise.
• P+(n) is the largest prime factor of n; P+(1) = 0 by convention
• P−(n) is the smallest prime factor of n; P−(1) =∞ by convention

Permutation notation

• Sn is the permutation group on a set of n objects (we don’t care what the objects are)
• Cj(σ) is the number of cycles of length j in the permutation σ
• C(σ) is the total number of cycles in the permutation σ
• CI(σ) is the number of cycles of length j ∈ I in the permutation σ
• β|σ means that β is a divisor of the permutation σ, i.e. a product of some subset of the cycles of σ
• A fixed set I of σ is a subset of [n] which is itself permuted by σ. Equivalently, I is the set of

indices permuted by a divisor of σ.
• |β| is the size of β; β is a divisor of a permutation.

Order of magnitude notation (Bachman-Landau, Hardy, Vinogradov)

• The notations f = O(g), f � g and g � f mean that there is a positive constant C so that
|f | 6 Cg throughout the domain of f . The constant C is independent of any parameters, unless
specified by subscripts, e.g. f(x) = Oε(x

ε).
• f � g means that both f � g and g � f hold. Generally makes sense only if f, g are both positive.

Equivalently, there are positive constants C < C ′ such that Cg 6 f 6 C ′g throughout the domain
of f .

• f ∼ g as x→ a means limx→a f(x)/g(x) = 1. Here a can be finite, ∞ or −∞.
• f = o(g) as x→ a means limx→a f(x)/g(x) = 0. Here a can be finite, ∞ or −∞.

Probability

• P(X) is the probability of the event X
• E (X) is the expectation of the event X
• X d

= Y means that X has the same distribution as Y
• Pois(λ) is a Poisson random variable with parameter λ

1



2 0. BACKGROUND MATERIAL AND NOTATION

General notational conventions

• N = {1, 2, 3, . . .}, the set of positive integers (“natural numbers”)
• N0 = {0, 1, 2, 3, . . .} = N ∪ {0}
• e = 2.71828182 . . . is the base of the natural logarithm
• γ = 0.57721566 . . . is Euler’s constant
• log is the natural logarithm
• logk x is the k−th iterate of the natural logarithm of x
• bxc is the greatest integer which is 6 x.
• dxe is the least integer which is > x.
• 1(S) is the indicator function of statement S; 1(S) = 1 if S is true, and 1(S) = 0 if S is false.
• Hn = 1 + 1/2 + · · ·+ 1/n is the n-th harmonic sum
• H(I) =

∑
i∈I 1/i is a general harmonic sum, where I ⊂ N

• Variables in boldface type, e.g. h, usually denote vector quantities.
• A statement for “almost all integers” means that the number of exceptions below x is o(x) as
x→∞.
• The symbols p, q denote primes unless otherwise noted
• The symbols k, l,m, n denote integers unless otherwise noted

2. Basic summation estimates

Harmonic sums. The harmonic sums Hn satisfy
(i) log n 6 Hn 6 1 + log n;
(ii) Hn = log n+ γ +O(1/n), where γ = 0.57721566 . . . is Euler’s constant.

Stirling’s formula. We have the asymptotic (Stirling’s formula)

n! =
√

2πn(n/e)n(1 +O(1/n))

and the strict inequalities

(0.1) 1 6
n!√

2πn(n/e)n
6 e1/(12n) 6 1 +

1

10n
(n ∈ N).

Euler’s summation. Let f ∈ C1(y, x). Then∑
y<n6x

f(n) =

∫ x

y

f(t) dt+

∫ x

y

{t}f ′(t) dt+ {y}f(y)− {x}f(x),

where {t} = t− btc is the fractional part of t.

Roughly speaking, the sum of f(n) is approximated by the corresponding integral of f(t).

Abel summation, also called partial summation. Let an be any sequence of complex
numbers with counting function A(t) =

∑
16n6t an. Let 0 < y 6 x and suppose f ∈ C1(y, x]. Then∑

y<n6x

anf(n) = A(x)f(x)−A(y)f(y)−
∫ x

y

A(t)f ′(t) dt.

3. Arithmetic functions

A function f : N → C is called an arithmetic function. An arithmetic function f is multiplicative if
it is not identically zero, and if f(mn) = f(m)f(n) whenever (m,n) = 1. Equivalently, if n has prime
factorization n = pe11 · · · p

ek
k , then

f(n) = f(pe11 ) · · · f(pekk ).

In particular (the empty product) f(1) = 1. A function is completely multiplicative if f(mn) = f(m)f(n)
for all m,n ∈ N. Important examples include powers nc (c fixed), τ(n), the number of positive divisors
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of n, Euler’s totient function φ(n), and the Möbius function µ(n). Clearly, the product and quotient of
multiplicative functions is also multiplicative, as is any fixed power of a multiplicative function.

A sum over divisors of n of a multiplicative function f may be written as a product:

(0.2)
∑
d|n

f(d) =
∏
pa‖n

(
1 + f(p) + f(p2) + · · ·+ f(pa)

)
,

and an “infinite version”

(0.3)
∑

d:p|d =⇒ p∈T

f(d) =
∏
p∈T

(
1 + f(p) + f(p2) + · · ·

)
,

provided each infinite sum converges, and the product also converges. An important special case is f(n) =
1/n, which yields the formula

(0.4)
∑

d:p|d =⇒ p∈T

1

d
=
∏
p∈T

(
1− 1

p

)−1

.

Möbius inversion and the Legendre sieve. The Möbius function encodes a number-theoretic version
of inclusion-exclusion. For any finite set of primes with product P , and any set A of positive integers

#{n ∈ A : (n, P ) = 1} =
∑
d|P

µ(d)#{n ∈ A : d|n}.

An arithmetic function f is additive if f(ab) = f(a)+f(b) whenever (a, b) = 1. A function is completely
additive if f(ab) = f(a) + f(b) for all a, b,∈ N.

Examples include
(1) f(n) = ω(n;S), the number of distinct prime factors of n lying in a set S;
(2) f(n) = Ω(n), the number of prime power divisors of n; this is completely additive.
(3) f(n) = log n. completely additive;
(4) f(n) = log g(n), where g(n) is a positive, multiplicative function.

4. Prime number estimates

Throughout, p denotes a prime number.

Prime Number Theorem (PNT).

π(x) := #{p 6 x} =

∫ x

2

dt

log t
+O

(
xe−

√
log x

)
.

Also, ∑
p6x

log p = x+O
(
xe−

√
log x

)
.

We also have the asymptotic ∫ x

2

dt

log t
=

x

log x
+O

(
x

log x

)
.

Two consequences are:

Mertens’ estimates with strong error terms. For some constants c1, c2 we have

(0.5)
∑
p6x

1

p
= log log x+ c1 +O

(
e−
√

log x
)
,

(0.6)
∑
p6x

log p

p
= log x+ c2 +O

(
e−
√

log x
)
,
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and

(0.7)
∏
p6x

(
1− 1

p

)
=

e−γ

log x

(
1 +O

(
e−
√

log x
))

.

The original Mertens’ estimates had error terms O(1/ log x), and this weak form is sufficient in most of
our applications. The best-known form of the error terms above take the form exp{−c(log x)3/5(log2 x)−1/5}
for some constant c > 0.

Oftentimes the more crude bounds of Chebyshev suffice: for positive constants c, c′ we have

cx

log x
6 #{p 6 x} 6 c′x

log x
(x > 2).

The Prime Number Theorem also implies that

pn ∼ n log n (n→∞),

where pn is the n-th smallest prime.
There are similar bounds for primes in a fixed arithmetic progression. Here we fix 1 6 a 6 b with

(a, b) = 1.

Prime number theorem for arithmetic progressions. We have

#{p 6 x : p ≡ a (mod b)} ∼ x

φ(b) log x
(x→∞)

There are results which are uniform in b, but they are more complicated to state. We refer the reader
to [10] for specifics.

Mertens’ estimates for primes in arithmetic progressions. For some constants c1(a, b)
and c2(a, b) > 0 we have

(0.8)
∑
p6x

p≡a (mod b)

1

p
=

log log x

φ(b)
+ c1(a, b) +Ob(1/ log x)

and

(0.9)
∏
p6x

p≡a (mod b)

(
1− 1

p

)
=

c2(a, b)

(log x)1/φ(b)
(1 +Ob (1/ log x)) .

5. Inclusion-Exclusion

We need a simple version of the inclusion-exclusion principle, with truncation.

Inclusion-exclusion. Let a be a non-negative integer. Then, for any k ∈ N,

1(a = 0) =

∞∑
r=0

(−1)r
(
a

r

)
=

k∑
r=0

(−1)r
(
a

r

)
+ (−1)k+1

(
a− 1

k

)
.

Proof. The first equality is trivial from the binomial theorem. For the second, we have
∞∑

r=k+1

(−1)r
(
a

r

)
=

∞∑
r=k+1

(−1)r
[(
a− 1

r − 1

)
+

(
a− 1

r

)]
= (−1)k+1

(
a− 1

k

)
. �

Often, we need to count a reciprocal weighted sum over integers with a given number of prime factors
from a given set.
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Proposition 0.1. Let T be a finite set of positive real numbers, and k ∈ N. Then

1

k!

(
H(T )k −

(
k

2

)
H(T )k−2

∑
n∈T

1

n2

)
6

∑
n1,...,nk∈T
n1<···<nk

1

n1 · · ·nk
6
H(T )k

k!
.

Proof. Evidently,

H(T )k =
∑

n1,...,nk∈T

1

n1 · · ·nk
.

The summands on the right corresponding to distinct, unordered k-tuples (n1, . . . , nk) equals

k!
∑

n1,...,nk∈T
n1<···<nk

1

n1 · · ·nk
,

while the summands corresponding to non-distinct k-tuples (n1, . . . , nk) have a total sum of at most(
k

2

)∑
n∈T

1

n2
H(T )k−2. �

6. Probability estimates: general

All random variables lie in R, most are non-negative.

Markov’s inequality. We have P(X > w) 6
µ

w
, µ = EX > 0, w > 0.

Two easy consequences are Chebyshev’s inequality for variances and Chernoff’s inequality.

Chebyshev’s inequality. If w > 0, µ = EX and E |X − µ|2 > 0, then

P
(
|X − µ| > w

√
E |X − µ|2

)
6

1

w2
.

Chernoff’s inequality. We have

P (X > w) 6 inf
b>0

E ebX

ebw
.

and

P (X 6 w) 6 inf
b60

E ebX

ebw
.

7. Probability estimates: Poisson random variables

The first Proposition lists basic properties of the Poisson distribution, which are readily verified from
the definition.

Proposition 0.2. Suppose X d
= Pois(λ). Then

EX = λ,(0.10)

E cX = e(c−1)λ (c > 0),(0.11)

E
(
X

m

)
=
λm

m!
(m > 0).(0.12)

If Xj
d
= Pois(λj), 1 6 j 6 k, and X1, . . . , Xk are independent, then

(0.13) X1 + · · ·+Xk
d
= Pois(λ1 + · · ·+ λk).

We also record very useful tail bounds on the Poisson distribution, due to Norton [56].
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Proposition 0.3 (Poisson tails). Let X d
= Pois(λ) where λ > 0. Then

P(X 6 αλ) 6 min

(
1,

1

(1− α)
√
αλ

)
e−Q(α)λ (0 6 α 6 1),

P(X > αλ) 6 min

(
1,

1

(1− 1/α)
√

2πλα

)
e−Q(α)λ (α > 1),

where

(0.14) Q(x) = x log x− x+ 1.

Proof. First, using Chernoff’s inequality (with b = logα, 0 < α 6 1) together with (0.11), we have

P(X 6 αλ) = P
(
ebX > ebαλ

)
6

E ebX

ebαλ
=

e(eb−1)λ

ebαλ
= e−Q(α)λ.

When α is bounded away from 1 we can do better. Suppose α < 1 and let k0 = bαλc. Then

P(X 6 αλ) = e−λ
∑
k6k0

λk

k!
.

If k0 = 0 then Q(α) 6 Q(0) = 1 and αλ < 1, hence
1

(1− α)
√
αλ

e−Q(α)λ > e−λ = P(X 6 αλ).

Now suppose k0 > 1. Consecutive summands have ratio > 1/α, and thus by (0.1) and the fact that λx/(x/e)x

is increasing for x 6 λ, we have

P(X 6 αλ) 6
e−λ

1− α
· λ

k0

k0!
6

e−λ

1− α
· λk0

(k0/e)k0
√

2πk0

6
e−λ

1− α
· λαλ

(αλ/e)αλ
√

2πk0

=
e−Q(α)λ

1− α
· 1√

2πk0

6
e−Q(α)λ

1− α
· 1√

παλ
,

which concludes the proof of the first inequality.
A second application of Chernoff’s inequality (again with b = logα, α > 1) and (0.11) yields

P(X > αλ) = P
(
ebX > ebαλ

)
6

E ebX

ebαλ
=

e(eb−1)λ

ebαλ
= e−Q(α)λ.

Now assume α > 1 and write k1 = dαλe. We have

P(X > αλ) = e−λ
∑
k>k1

λk

k!
.

Consecutive summands have ratio 6 1/α. By (0.1) and the fact that λx/(x/e)x is decreasing for x > λ,

P(X > αλ) 6
1

1− 1/α
· λ

k1

k1!
6

1

1− 1/α
· λk1

(k1/e)k1
√

2πk1

6
e−Q(α)λ

1− 1/α
· 1√

2πk1

6
e−Q(α)λ

1− 1/α
· 1√

2παλ
.

This concludes the proof of the 2nd inequality. �

Proposition 0.4 (Q bounds). We have

(0.15) Q(x) =

∫ x

1

log t dt (all x) =

∞∑
k=2

(−1)k

k(k − 1)
(x− 1)k (|x− 1| < 1),



7. Probability estimates: Poisson random variables 7

and

(0.16)
x2

3
6 Q(1 + x) 6 x2 (|x| 6 1).

Proposition 0.5 (Binomial tails). Let X have binomial distribution according to n trials and
parameter p ∈ [0, 1]; that is, P(X = k) =

(
n
k

)
pk(1− p)n−k. If β 6 p then we have

(0.17) P(X 6 βn) 6 exp

{
−n
(
β log

β

p
+ (1− β) log

1− β
1− p

)}
.

Proof. For a proof, see [3, Lemma 4.7.2]. The right side is also an upper bound for P(X > βn) for
β > p by symmetry. �



CHAPTER 1

The sequence of prime factors of an integer and cycles of a
permutation, I

Positive integers factor uniquely into a product of prime numbers, and permutations factor uniquely into
a product of cycles. Despite this similarity, the two objects, integers and permutations, look very different
on the surface. Deeper inspection, however, reveals that the distribution of the two factorizations have many
common features, and for much the same underlying reasons.

1. Prime factors and divisors

Given a random number n 6 x and a prime p, the probability that p|n is very close to 1/p, and moreover
these events are close to independent for different p (as long as p is “small”, in a sense that will be made
precise later). In particular, this heuristic suggests that the number of distinct prime factors ω(n) should be
about ∑

p6x

1

p
= log2 x+O(1)

on average, using Mertens’ sum estimate (0.5). In fact, an easy calculation gives

(1.1)
1

x

∑
n6x

ω(n) =
1

x

∑
p6x

bx/pc =
∑
p6x

1/p+O(π(x)/x) = log2 x+O(1).

What is the distribution of ω(n) for n 6 x? One can model the event p|n, for a random n 6 x, by a Bernouilli
random variable Xp, which equals 1 with probability 1/p and 0 with probability 1 − 1/p. This in turn is
very close to a Poisson random variable Zp with parameter 1/p when p is large. Thus, ω(n) can be modeled
by the random variable

∑
p6x Zp, which is a Poisson variable with parameter

∑
p6x 1/p = log2 x+O(1).

The first result in this direction is a classic theorem of Landau from 1900.

Theorem (Landau, 1900). For every fixed k,

#{n 6 x : ω(n) = k} ∼ x

log x

(log2 x)k−1

(k − 1)!
.

This already suggests that ω(n) has an approximate Poisson distribution, although Landau never wrote
this explicitly. It was Hardy and Ramanujan in 1917 who analyzed the behavior of #{n 6 x : ω(n) = k}
uniformly in k, showing

Theorem (Hardy-Ramanujan, 1917). Uniformly for x > 2 and k > 1,

#{n 6 x : ω(n) = k} 6 C1
x

log x

(log2 x+ C2)k−1

(k − 1)!
,

where C1, C2 are certain absolute constants.
Summing the upper bound for k > (1 + ε) log2 x and k 6 (1 − ε) log2 x, with ε > 0 fixed, and using

standard bounds on the tail of the Poisson distribution (see (0.3) below), one obtains a sum of o(x). Conse-
quently, most n 6 x have close to log2 x distinct prime factors. This result is sometimes referred to as the
birth of probabilistic number theory.

Motivated by the fact that the Poisson distribution Pois(λ) tends to the Gaussian with mean and variance
λ as λ tends to infinity, Erdős and Kac proved their celebrated “Central Limit Theorem” for ω(n) in 1939:

8



2. Permutations, cycles and fixed sets 9

Theorem (Erdős-Kac, 1939 [28]). For any real z,

1

x
#

{
n 6 x :

ω(n)− log2 x√
log2 x

6 z

}
→ Φ(z) :=

1√
2π

∫ z

−∞
e−

1
2 t

2

dt (x→∞).

Much further work was done starting in the 1940s, examining the distribution of the entire sequence of
prime factors of integers (equivalently, studying the distribution of arbitrary additive functions). Perhaps
the most notable was the work of Kubilius, who developed a probabilistic model of integers which provides
a kind of meta-tool for studying al kinds of statistical questions about the distribution of prime factors. A
key concept in the theory is independence, the idea that if p and q are small primes, then the “events” p|n
and q|n are nearly independent, from a probabilistic viewpoint; this idea also played a prominent role in
the development of sieve methods. The theory leads to a “Poisson model” of prime factors; namely that the
number of prime factors in an interval (eea , eeb ] has roughly Pois(b− a) distribution, with disjoint intervals
having independent distributions.

The distribution of divisors of integers has also received much attention, beginning in the 1930s. Much
of the study was motivated by two fundamental problems:

(a) (Besicovitch, 1934). Given a quantity y, what is the density of integers that have a divisor in
(y, 2y]?

(b) (Erdős, 1948). Do almost all integers (that is, a set of density 1) have two divisors in some dyadic
interval (z, 2z]?

Estimates for the density in Problem (a) were given by Erdős and Tenenbaum, with Ford giving the order
of magnitude of the order in 2008 [29]. The solution of Problem (b), in the positive, was given by Maier
and Tenenbaum in 1984 [52]. Problem (a) is closely related to the Erdős multiplication table problem: How
many distinct products are there ab with 1 6 a 6 N and 1 6 b 6 N ?

2. Permutations, cycles and fixed sets

The classical derangement problem was posed in 1708 by Pierre Raymond de Montmort. The problem
asks how many permutations in Sn have no fixed points, that is no 1-cycles. Five years later, he found
an exact formula, which is approximately 1

en! for large n. In the early 1800s, Cauchy introduced the cycle
notation and showed that permutations factor uniquely into a product of cycles. He also developed an exact
formula for the number of permutations with a given cycle type; that is, the number of cycles of each length.
If σ ∈ Sn has Cj cycles of length j for each j, with

∑
j Cj = n, then the number of such permutations equals

n!
∏
j6n

(
1

j

)Cj 1

Cj !
.

This formula suggests that, for random σ ∈ Sn, the quantities C1(σ), C2(σ), . . . behave like independent
Poisson random variables, where Cj(σ) has distribution Pois(1/j). This is not precisely true, because of the
condition that

∑
j jCj = n. Goncharov was the first to make such statements rigorous, and in 1944 proved

(among other things) the following:

Theorem (Goncharov, 1944 [39]). We have

• For any fixed j and m,
1

n!
# {σ ∈ Sn : Cj(σ) = m}} → e−1/j (1/j)m

m!
(n→∞);

• For any real z,
1

n!
#

{
σ ∈ Sn :

C(σ)− log n√
log n

6 z

}
→ Φ(z) :=

1√
2π

∫ z

−∞
e−

1
2 t

2

dt (n→∞).

The (unsigned) Stirling number of the first kind, S1(n,m), counts the number of permutations σ ∈ Sn
with exactly m total cycles; that is, C(σ) = m. Goncharov used careful asymptotic analysis of Stirling
numbers to obtain the second part of the theorem above. The first part was deduced from an exact formula
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which he proved for #{σ ∈ Sn : Cj(σ) = m} (see Exercise 1.1 below). More recently, the Poisson model has
been established in great uniformity: Namely,

(1.2) (C1(σ), C2(σ), . . . , Ck(σ)) ≈ (Z1, Z2, . . . , Zk)

(meaning the two vectors have distributions which are very close), where Z1, . . . , Zk are independent and
Zj

d
= Pois(1/j), provided that k = o(n) as n→∞.
A fixed set of a permutation σ is a subset I ⊂ [n] which is itself permuted (i.e., left invariant) by σ. A

fixed set corresponds to a divisor of σ, that is, a product of some subset of the cycles in σ (we include both
the empty set and the whole set [n] as fixed sets). For example, if σ ∈ S6 has cycle form

σ = (1)(24)(356)

then, e.g., (1)(356) is a divisor with corresponding fixed set {1, 3, 5, 6}. There play the same role for permu-
tations as divisors do for integers. The existence of fixed sets of a particular size has applications to various
questions in statistical group theory, such as generation of Sn by random permutations, the distribution
of transitive subgroups of Sn, and the order of permutations. These in turn have further applications to
irreducibility of polynomials over finite fields (with applications to Galois theory) and over global fields.

Since ∑
ek<p6ek+1

1

p
≈ log(1 + 1/k) ≈ 1/k

when k is large, we can form an approximate dictionary between statements about random permutations
and the analogous statement about random integers.

Random permutation Random integer
cycle of length k prime factor in (ek, ek+1]

divisor of size k divisor in (ek, ek+1]

3. Cycles and prime factors from intervals: first nibbles

With n ∈ N fixed, we consider a random permutation σ ∈ Sn, each permutation occurring with proba-
bility 1/n!. Probability and Expectation with respect to this probability space will be denoted Pσ∈Sn and
E σ∈Sn . If the value of n is understood, then often these are abbreviated as Pσ and E σ.

Recall that Cj(σ) is the number of cycles of size j in the permutation σ.

The following lemma appears in Watterson [69, Theorem 7].

Lemma 1.1 (Cycle length lemma). Let m1, . . . ,mn be non-negative integers with

m1 + 2m2 + · · ·+ nmn 6 n.

Then

E σ∈Sn

n∏
j=1

(
Cj(σ)

mj

)
=

n∏
j=1

(1/j)mj

mj !
.

If m1 + 2m2 + · · ·+ nmn > n, then the left side is zero.

Proof. The second assertion is obvious, since the product on the left side is positive if and only if
Cj(σ) > mj for all j, and since

∑
j jCj(σ) = n this implies that

∑
jmj 6 n. Now assume that m1 + 2m2 +

· · · + nmn 6 n. The product on the left side in the lemma equals the number of ways to choose from [n] a
disjoint collection of m1 1-cycles, m2 2-cycles, . . ., mn n-cycles. The number of ways of choosing from [n] a
disjoint collection of m1 1−element sets, m2 2−element sets, . . ., mn n−element sets is equal to(

n

1 · · · 1︸ ︷︷ ︸
m1

2 · · · 2︸ ︷︷ ︸
m2

· · ·n · · ·n︸ ︷︷ ︸
mn

t

)
1

m1! · · ·mn!
=

n!/t!∏n
j=1(j!)mjmj !

,
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where t = n − (m1 + 2m2 + · · · + nmn). The elements of a k-element set may be arranged into a cycle in
(k − 1)! ways. Thus, the number of ways to arrange the elements of these sets into cycles is

n∏
j=1

(j − 1)!mj .

Finally, the t elements not used in any of these cycles may be permuted in t! ways. Multiplying these
quantities together completes the proof. �

We remark that the RHS in Lemma 1.1 equals
n∏
j=1

(1/j)mj

mj !
= E

n∏
j=1

(
Zj
mj

)
,

where Zj
d
= Pois(1/j) and Z1, . . . , Zn are independent. This already suggests that the quantities Cj(σ)

behave like independent Poisson random variables.
A special case is the well-known formula of Cauchy for the number of permutations with a given cycle

type.

Lemma 1.2 (Cauchy’s formula). If m1 + 2m2 + · · ·+ nmn = n, then

Pσ
{
Cj(σ) = mj (1 6 j 6 n)

}
=

n∏
j=1

(1/j)mj

mj !
.

Proof. Apply Lemma 1.1, noting that
(
Cj(σ)
mj

)
6= 0 for all j if and only if Cj(σ) = mj for every j. This

implies that

Pσ
{
Cj(σ) = mj (1 6 j 6 n)

}
= E σ

n∏
j=1

(
Cj(σ)

mj

)
. �

Corollary 1.3 (Derangements). We have the exact formula for derangements

Pσ(C1(σ) = 0) =

n∑
j=0

(−1)j

j!
.

Proof. Apply Inclusion-Exclusion with u = C1(σ), followed by the Lemma 1.1. We get

#{σ ∈ Sn : C1(σ) = 0} =
∑
σ∈Sn

∞∑
j=0

(−1)j
(
C1(σ)

j

)

= n!

n∑
j=0

(−1)jE σ

(
C1(σ)

j

)
= n!

n∑
j=0

(−1)j

j!
. �

Recall that for a set T os positive integers,

CT (σ) =
∑
j∈T

Cj(σ)

is the number of cycles in σ with length in T .

Corollary 1.4. For any nonempty set T ⊆ [n], E σCT (σ) = H(T ). In particular,

E σC(σ) = Hn = log n+ γ +O(1/n).

Proof. By Lemma 1.1, E σCj(σ) = 1/j for every j, and the result follows by linearity of expectation
and bounds on harmonic sums. �
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Corollary 1.5. For any nonempty set T ⊆ [n],

E σ(CT (σ)−H(T ))2 6 H(T )

with equality in the case maxT 6 n/2.

Proof. We have

CT (σ)2 =
∑
i,j∈T
i 6=j

Ci(σ)Cj(σ) + 2
∑
i∈T

(
Ci(σ)

2

)
+
∑
i∈T

Ci(σ).

In the double sum over i, j, the summands with i+ j > n are zero. Applying Lemma 1.1, we get

E σCT (σ)2 6
∑
i,j∈T
i6=j

1

ij
+
∑
i∈T

(
1

i2
+

1

i

)
= H(T )2 +H(T ),

with equality if maxT 6 n/2. Using Corollary 1.4, we conclude that

E σ(CT (σ)−H(T ))2 = E σCT (σ)2 − 2H(T )E σCT (σ) +H(T )2 6 H(T ). �

Taking T = [n], so that H(T ) = Hn = log n+O(1), and applying Chebyshev’s inequality we find that

Pσ
(
|C(σ)−Hn| > ξ

√
log n

)
6

E σ|C(σ)−Hn|2

ξ2 log n
� 1

ξ2
(ξ > 1).

That is, C(σ) is very close to Hn for most σ.

The situation with primes is more complicated (see the lower bound in Proposition 0.1), but we so have
a clean upper bound of the same type. In what follows, we denote Px and E x the probability and
expectation with respect to a random integer in [1, x]. Here x may be any real number.

Lemma 1.6. Let T1, . . . , Tk be nonempty, disjoint subsets of the primes in [2, x], and letm1, . . . ,mk > 0.
Then

E x

k∏
j=1

(
ω(n;Tj)

mj

)
6

k∏
j=1

H(Tj)
mj

mj !
.

Proof. We first write∑
n6x

(
ω(n;Tj)

mj

)
=

∑
pj,1,...,pj,mj∈Tj
pj,1<···<pj,mj

(16j6k)

#{n 6 x : p1,1 · · · pk,mk |n} =
∑

pj,1,...,pj,mj∈Tj
pj,1<···<pj,mj

(16j6k)

⌊
x

p1,1 · · · pk,mk

⌋
.

Using by/nc 6 byc/n for real y and n ∈ N, Proposition 0.1 then gives

E x

k∏
j=1

(
ω(n;Tj)

mj

)
6

k∏
j=1

∑
pj,1,...,pj,mj∈Tj
pj,1<···<pj,mj

1

pj,1 · · · pj,mj
6

k∏
j=1

H(Tj)
mj

mj !
. �

A corollary is a theorem of Turán from 1934 [68]:

Corollary 1.7 (Turán’s variance theorem). We have

E x

(
ω(n)− log2 x

)2 � log2 x.
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Proof. We directly compute

E x

(
ω(n)− log2 x

)2
= E x

(
2

(
ω(n)

2

)
+ ω(n)(1− 2 log2 x) + (log2 x)2

)
.

Let T = T1 be the set of all primes in [2, x], so that H(T ) = log2 x+O(1) by Mertens’ theorem (0.5). Using
Lemma 1.6 with k = 1 and m1 = 2, together with (1.1), we obtain

E x

(
ω(n)− log2 x

)2
6 H(T )2 + (1− 2 log2 x)E x ω(n) + (log2 x)2

= O(log2 x). �

We can interpret Corollary 1.7 probabilistically. If n 6 x is chosen at random, then Corollary 1.7 gives
an upper bound on the variance of ω(n), telling us that ω(n) is concentrated near log2 x. In fact, it follows
immediately from Chebyshev’s inequality that uniformly for ξ > 1,

Px
(
|ω(n)− log2 x| > ξ

√
log2 x

)
� 1

ξ2
.

An immediate corollary is the following famous result of Hardy and Ramanujan [46] from 1917. We note
that for

√
x < n 6 x, log2 x = log2 n+O(1). That is, we can say that for most n, ω(n) is close to log2 n.

Theorem 1.8 (Hardy-Ramanujan). The function ω(n) has normal order log log n, meaning
that for any ε > 0 we have

(1− ε) log log n 6 ω(n) 6 (1 + ε) log log n

for almost all integers n.

4. Cycles and prime factors from sets: general upper bounds

Theorem 1.9 (Cycles in sets theorem). Let T1, . . . , Tr be arbitray disjoint, nonempty subsets
of [n] and k1, . . . , kr > 0. Then

Pσ (CT1
(σ) = k1, . . . , CTr (σ) = kr) 6 e

r∏
j=1

(
H(Tj)

kj

kj !
e−H(Tj)

)
·
(

1 +
k1

H(T1)
+ · · ·+ kr

H(Tr)

)
.

Proof. Evidently

n#{σ ∈ Sn : CT1
(σ) = k1, . . . , CTr (σ) = kr} =

∑
σ∈Sn

CTj (σ)=kj (16j6r)

∑
α|σ

α a cycle

|α|.

Write σ = αβ and let h = |α|. Either h ∈ Tj for some unique j, or h 6∈ T1 ∪ · · · ∪ Tr. Thus, for some t,
0 6 t 6 r, we have

(CT1(β), . . . , CTr (β)) = (mt,1, . . . ,mt,r),

where

(1.3) mt,i = ki − 1(i = t > 1).

It is permissible to think of β ∈ Sn−h and thus

n#{σ ∈ Sn : CT1
(σ) = k1, . . . , CTr (σ) = kr} =

r∑
t=0

n∑
h=1

∑
α∈Sn,|α|=h
α a cycle

h
∑

β∈Sn−h
CTi (β)=mt,i (16i6r)

1

=

r∑
t=0

n∑
h=1

n!

(n− h)!

∑
β∈Sn−h

CTi (β)=mt,i (16i6r)

1.
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Note that if ki = 0 for some i, then mi,i = −1 and the corresponding summand above is ommitted. Now
subdivide the sum according the cycle type (b1, . . . , bn) of the permutation β, using Cauchy’s formula (Lemma
1.2) to count such permutations for each type. It follows that

n#{σ ∈ Sn : CTj (σ) = kj (1 6 j 6 r)} = n!

r∑
t=0

n∑
h=1

∑
b1,dots,bn>0

b1+2b2+···+nbn=n−h∑
i∈Tj

bi=mt,j (16j6r)

1∏
i bi!i

bi

6 n!

r∑
t=0
kt 6=0

∑
b1,...,bn>0∑

i∈Tj
bi=mt,j (16j6r)

1∏
i bi!i

bi
:= Y,

say. Let T = T1 ∪ · · · ∪ Tr and T0 = [n] \ T , and separately consider the summation over i ∈ T and i ∈ T0.
By the multinomial theorem,

Y = n!

r∑
t=0
kt 6=0

∑
bi>0 (i∈T )∑

i∈Tj
bi=mt,j (16j6r)

1∏
i∈T bi!i

bi

∑
bi>0 (i∈T0)

1∏
i∈T0

bi!ibi

= n!

r∑
t=0
kt 6=0

r∏
j=1

H(Tj)
mt,j

mt,j !

∏
i∈T0

e1/i

= n!

r∏
j=1

H(Tj)
kj

kj !

(
1 +

r∑
j=1

kj
H(Tj)

)
eH(T0).

The claimed bound now follows using harmonic sum bounds in the form

H(T0) = Hn −
r∑
j=1

H(Tj) 6 log n+ 1−
r∑
j=1

H(Tj). �

Remark 1.10. Whenever r is bounded, and kj = O(H(Tj)) for each j, the right side is

� P(Z1 = k1, . . . , Zr = kr).

where Zj
d
= Pois(H(Tj)) for each j, and Z1, . . . , Zr are independent. Thus, Theorem 1.9 gives an upper

bound for counts of cycle lengths in sets T1, . . . , Tr of the expected order (up to a constant factor) according
to the Poisson model. This is a useful tool for showing that the actual cycle counts cannot vary too much
from the expected means.

In the special case r = 1, Theorem 1.9 implies that for any T ⊂ [n] and k > 0,

(1.4) Pσ (CT (σ) = k) 6 e1−H(T )

(
H(T )k−1

(k − 1)!
+
H(T )k

k!

)
.

Specializing to the case of cycle lengths in a single interval [m], we obtain the following very useful
corollary:

Corollary 1.11 (Cycles in intervals). Uniformly for 1 6 m 6 n and 0 6 λ 6 1, we have

Pσ∈Sn
(
C[m](σ) 6 λ logm

)
6 em−Q(λ).

Uniformly for 1 6 m 6 n and 1 6 λ, we have

Pσ∈Sn
(
C[m](σ) > λ logm

)
6 eλ1+λm−Q(λ).

In particular, uniformly for 1 6 m 6 n and 0 6 ψ 6
√

logm, we have

Pσ∈Sn
(
|C[m](σ)− logm| > ψ

√
logm

)
� e−

1
3ψ

2

.
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Proof. Let T = T1 = [m], and recall that H(T ) = Hm > logm. Applying Theorem 1.9 (see (1.4)),
together with Proposition 0.3 and the fact that Q(u) is decreasing on [0, 1], we get that

Pσ∈Sn
(
C[m](σ) 6 λ logm

)
6 e1−Hm

∑
k6λ logm

Hk
m

k!
6 e1−Hm

∑
k6λHm

Hk
m

k!
6 e1−HmQ(λ) 6 em−Q(λ).

The proof of the second bound is similar. First we note that the statement is trivial if m = 1. Suppose
that m > 2. Let λ∗ = λ− λ+1

Hm
. If λ∗ < 1 then the probability in question in 6 1 trivially, λ = 1 +O(1/Hm)

and
m−Q(λ) = m−O(1/H2

m) � 1,

so the desired bound holds. Now suppose that λ∗ > 1. We have λ logm 6 λ(Hm − 1)− 1 = λ∗Hm and thus
by Theorem 1.9, together with Proposition 0.3, we get that

Pσ∈Sn
(
C[m](σ) > λ logm

)
6 e1−Hm

∑
k>λ logm−1

Hk
m

k!

6 e1−Hm
∑

k>λ∗Hm

Hk
m

k!

6 e1−HmQ(λ∗).

Now 1 6 λ∗ 6 λ, and Q′(u) = log u implies that

Q(λ∗) > Q(λ)− λ+ 1

Hm
log λ,

and, since logm 6 Hm 6 logm+ 1 we conclude that

Pσ∈Sn
(
C[m](σ) > λ logm

)
6 e1−HmQ(λ)+(λ+1) log λ 6 em−Q(λ)λ1+λ.

The final estimate follows by taking λ = 1± ψ/
√

logm and using the bound (0.16) for Q(u). Here 0 6 λ 6
2. �

In particular, taking m = n, we see that C(σ) usually does not vary more that
√

log n from its mean
Hn.

The same proof yields a much more general result:

Corollary 1.12. Let T ⊂ [n]. Uniformly for 0 < ξ 6
√
H(T ), we have

Pσ
(
|CT (σ)−H(T )| > ξ

√
H(T )

)
� e−

1
3 ξ

2

.

This is not very useful when H(T ) < 1, however. In this case, we expect that CT (σ) will rarely be much
more than 1. Theorem 1.9 implies a right-tail bound of

Pσ (CT (σ) = k)� H(T )k−1

(k − 1)!
,

whereas the Poisson model predicts that the right side should be smaller, namely H(T )k/k!; but see Home-
work Exercise 1.2 below.

Theorem 1.13 (Prime factors in sets). Let T0, T1, . . . , Tr be a partition of the primes in [2, x]
with T1, . . . , Tr nonempty. Define

Hj = H({p− 1 : p ∈ Tj}) =
∑
p∈Tj

1

p− 1
(1 6 j 6 r).
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Let k1, . . . , kr > 0 and such that if T0 = ∅ then k1, . . . , kr are not all zero. Then

Px{ω(n;Tj) = kj (1 6 j 6 r)} �
r∏
j=1

(
H
kj
j

kj !
e−Hj

)(
η +

k1

H1
+ · · ·+ kr

Hr

)

6
r∏
j=1

(
(H(Tj) + 2)kj

k1!
e−H(Tj)

)
,

where η = 0 if T0 is empty, η = 1 otherwise.

Proof. Let
N = #{n 6 x : ω(n;Tj) = kj (1 6 j 6 r)},

Define mt,j = kj − 1(j = t > 1) and let

Lt(x) =
∑
h6x

ω(h;Tj)=mt,j (16j6r)

1

h
(0 6 t 6 r).

We use the unique factorization of integers into primes, (the “Wirsing trick”), starting with

log x� log n =
∑
pa‖n

log pa (x1/3 6 n 6 x).

It follows that
(log x)N �

∑
n6x1/3

ω(n;Tj)=kj (16j6r)

log x+
∑
n6x

ω(n;Tj)=kj (16j6r)

∑
pa‖n

log pa.

In the first sum, log x 6 x1/3 log x
n � x1/2

n , hence the sum is at most 6 x1/2L0(x). In the double sum, let
n = pah with p ∈ Tt. If t > 1 then ω(h, Tt) = kj − 1 and ω(h, Tj) = kj otherwise. That is, we have
ω(h;Tj) = mt,j for 1 6 j 6 t. Also, p ∈ T0 is only possible if η = 1. Hence

(log x)N � x1/2L0(x) +

r∑
t=1−η

∑
h6x

ω(h;Tj)=mt,j (16j6r)

∑
pa6x/h

log pa.

Using Chebyshev’s Estimate for primes or the Prime Number Theorem, the innermost sum over pa is O(x/h)
and thus the double sum over h, pa is O(Lt(x)). Also, if kj = 0 then there is the sum corresponding to t = j
is empty. This gives

(1.5) Px
(
ω(n;Tj) = kj (1 6 j 6 r)

)
� 1

log x

(
(η + x−1/2)L0(x) +

∑
16t6r:kt>0

Lt(x)

)
.

Now we fix t and bound the sum Lt(x); if t > 1 we may assume that kt > 1. Write the denominator
h = h1 · · ·hrh0, where, for 1 6 j 6 r, hj is composed only of primes from Tj and ω(hj ;Tj) = mt,j , and
further that h0 is composed of primes in T0. For 1 6 j 6 r we have∑

hj

1

hj
6

1

mt,j !

( ∑
p∈Tj

1

p
+

1

p2
+ · · ·

)mt,j
=
H
mt,j
j

mt,j !
,

and, using Mertens’ product estimate (0.7),∑
h′

1

h′
6
∏
p∈T0

(
1− 1

p

)−1

� (log x)
∏

p∈T1∪···∪Tr

(
1− 1

p

)
.

Thus,

Lt(x)� (log x)

r∏
j=1

H
mt,j
j

mt,j !

∏
p∈T1∪···∪Tr

(
1− 1

p

)
.
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Using the elementary inequality 1 + y 6 ey, we see that∏
p∈T1∪···∪Tr

(
1− 1

p

)
6 e−H(T1)−···−H(Tr)

and we obtain

(1.6) Lt(x)� (log x)

r∏
j=1

(
H
mt,j
j

mt,j !
e−H(Tj)

)
Combining estimates (1.5) and (1.6), we conclude that

N � x

(
η + x−1/2 +

r∑
j=1

kj
Hj

)
r∏
j=1

(
H
kj
j

kj !
e−H(Tj)

)
.

By hypothesis, either η = 1 or kj/Hj > 1/Hj � 1/ log log x for some j, and hence the additive term x−1/2

may be omitted. This proves the first claim.
Next,

r∏
j=1

H
kj
j

kj !

(
η +

r∑
j=1

kj
Hj

)
6

r∏
j=1

H
kj
j

kj !

r∏
j=1

(
1 +

1

Hj

)kj
=

r∏
j=1

(Hj + 1)kj

kj !

and we have

Hj = H(Tj) +
∑
p∈Tj

1

p(p− 1)
6 H(Tj) + 1.

This proves the final inequality. �

Remark. A version of Theorem 1.13 is stated in [67, Theorem 2], where only the case r = 1 is proved.
The full proof may also be found in [34].

Corollary 1.14 (Hardy-Ramanujan inequality, 1917). Uniformly for x > 3 and k ∈ N
we have

Px{ω(n) = k} � (log log x+O(1))k−1

(k − 1)!
.

Proof. Let T1 consist of all primes 6 x. Then η = 0 and H1 = log log x + O(1) by Mertens’ sum
estimate (0.5), and we obtain the desired bound. �

Taking as a single set the primes in an interval, we obtain the following very useful corollary.

Corollary 1.15 (Prime factors in intervals). Uniformly for 3 6 t 6 x and 0 6 λ 6 1, we
have

Px{ω(n, t) 6 λ log log t} � (log t)−Q(λ).

Let λ0 > 1. Uniformly for 3 6 t 6 x and 1 6 λ 6 λ0, we have

Px{ω(n, t) > λ log log t} �λ0
(log t)−Q(λ).

In particular, uniformly for 3 6 t 6 x and 0 6 ψ 6
√

log log t, we have

Px{|ω(n, t)− log log t| > ψ
√

log log t} � e−
1
3ψ

2

.

Proof. The proof is identical to the proof of Corollary 1.11, using T = T1 as the set of primes in [2, t],
H(T ) = log log t+O(1) from Mertens’ bound (0.5), and Theorem 1.13. �

Taking as a special case t = n, we recover a strong form of Theorem 1.8.
We can also analyze the distribution of integers composed only of primes factors from a given set.
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Corollary 1.16. Let T be a subset of the primes 6 x, and let N (T ) denote the set of integers 6 x
composed only of primes from T . For all k > 1,

#{n ∈ N (T ) : ω(n) = k} � x

log x
· (H(T ) + 1)k−1

(k − 1)!
.

Proof. Apply Theorem 1.13 with T1 = T and T2 being the set of all primes 6 x that are not in T ,
k1 = k and k2 = 0. Then η = 0, H1 6 H(T ) + 1 and the result follows. �

Remarks. Applying Theorem 1.13 with T1 the set of all primes 6 x that are not in T , and k1 = 0, we
see that

|N (T )| � e−H(T1)x � eH(T ) x

log x

since H(T ) +H(T1) = log2 x+O(1) by Mertens’ estimate (0.5). Oftentimes we have a corresponding lower
bound

(1.7) |N (T )| � eH(T ) x

log x
,

and this allows us to conclude that, conditionally on n ∈ N (T ), that ω(n) has an approximate Poisson
distribution with parameter H(T ) +O(1). That is, combining (1.7) with Corollary 1.16, we obtain

Px{ω(n) = k|n ∈ N (T )} � e−H(T ) (H(T ) + 1)k−1

(k − 1)!
.

For example, let T be the set of primes 6 x that are 1 mod 4; in particular, such numbers are the sum of
two squares. Then (1.7) follows from a theorem of Landau, and we have H(T ) = 1

2 log2 x+O(1) by Mertens’
theorem for arithmetic progressions (0.8). We then conclude that

Px{ω(n) = k|n ∈ N (T )} �
( 1

2 log2 x+O(1))k−1

(k − 1)!
√

log x
,

what is, conditional on n ∈ N (T ), ω(n) has roughly a Poisson distribution with parameter 1
2 log2 x.

If we condition on ω(n) = k, the r = 2 case of Theorem 1.13 supplies tail bounds for ω(n, T ). If X,Y
are independent Poisson random variables with parameters λ1, λ2, respectively, then X +Y

d
= Pois(λ1 +λ2)

and hence, for 0 6 ` 6 k, we have

P(X = `|X + Y = k) =
P(X = ` ∧ Y = k − `)

P(X + Y = k)

=
e−λ1−λ2(λ`1/`!)(λ

k−`
2 /(k − `)!)

e−λ1−λ2(λ1 + λ2)k/k!

=

(
k

l

)(
λ1

λ1 + λ2

)`(
λ2

λ1 + λ2

)k−`
.

Thus, conditional on ω(n) = k we expect that ω(n, T ) will have roughly a binomial distribution with
parameter α = H(T )/H(S), where S is the set of all primes in [2, x].

Theorem 1.17. Fix A > 1 and suppose that 1 6 k 6 A log log x. Let T be a nonempty subset of the
primes in [2, x] and define let α = H(T )/H(S). For any 0 6 ψ 6

√
αk we have

Px
(
|ω(n, T )− αk| > ψ

√
α(1− α)k

∣∣∣ ω(n) = k
)
�A e−

1
3ψ

2

,

the implied constant depending only on A.

We leave the proof as an exercise. It requires the lower bound

Px(ω(n) = k)�A
(log2 x)k−1

(k − 1)! log x
,

which follows, e.g., from the Sathe-Selberg theorem; see also Theorem 1.23 below.
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5. The sequence of cycles and prime factors from intervals

In this section, we take a first look at the random sequence C[m](σ) (1 6 m 6 n) for σ ∈ Sn, and random
function ω(n, t) (1 6 t 6 x) for integers n 6 x. As long as m and t are not too small, it is relatively easy to
deduce from Corollaries 1.11 and 1.15 that C[m](σ) is uniformly close to logm for most σ ∈ Sn and ω(n, t)
is uniformly close to log2 t for most n 6 x.

Theorem 1.18. Let 3 6 ξ 6 x. With probability 1−O((log log ξ)−1/3), we have

|ω(n, t)− log2 t| < 2
√

log2 t log3 t (ξ 6 t 6 x).

Theorem 1.19. Let 2 6 ξ 6 n. With probability 1−O(1/(log ξ)1/3), we have

|C[m] − logm| < 2
√

logm log2m (ξ 6 m 6 n).

Remark 1.20. When t is bounded, ω(n, t) has a discrete distribution and we cannot say anything
about almost all n; in fact it takes every possible value with positive probability; e.g. ω(n, 3) takes the values
0, 1, 2 with probabilities (as x → ∞) 1

3 ,
1
2 ,

1
6 , respectively. The same is true for C[m] when m is bounded;

see Exercise 1.1.

Proof. The proofs of Theorems 1.18 and 1.19 are nearly identical, the latter being simpler due to the
discrete nature of the sequence of values of m in question. Thus, we show full details only for Theorem 1.18.
Let

k1 = blog2 ξc+ 1, k2 = blog2 xc,
and for k1 6 k 6 k2, let tk = eek . Put tk1−1 = ξ and tk2+1 = x. For each k, k1 − 1 6 k 6 k2 + 1, let Fk be
the event

(1.8) Fk =
{
|ω(n, tk)− log2 tk| > 2

√
(k − 1) log(k − 1)− 1

}
.

As log2 tk = k +O(1) for all tk (including the endpoints),

2
√

(k − 1) log(k − 1)− 1 = ψ
√

log2 tk, ψ = 2
√

log k +O(1/
√
k).

Hence, by the third part of the Prime Factors in Intervals Corollary (Cor. 1.15),

PFk � e−
1
3ψ

2

� 1

k4/3
.

Summing over k, we see that Fk holds for some k with probability O(1/k
1/3
1 ). Now suppose that Fk fails for

every k in the range k1 − 1 6 k 6 k2 + 1. Let ξ 6 t 6 x and suppose that tk < t 6 tk+1. Evidently,

ω(n, tk) 6 ω(n, t) 6 ω(n, tk+1).

By the failure of Fk at every k,

ω(n, t) > log2 tk + 1− 2
√

(k − 1) log(k − 1) > log2 t− 2
√

log2 t log3 t

and
ω(n, t) 6 log2 tk+1 − 1 + 2

√
k log k 6 log2 t+ 2

√
log2 t log3 t. �

Theorems 1.18 and 1.19 also tell us about the normal behavior of pj(n), the j-th smallest (distinct)
prime factor of n, and Dj(σ), the length of the j-th smallest cycle of σ (note that Dj(σ) = Dj+1(σ) for
some j when σ has cycles of the same length). Since a typical integer has about log2 t prime factors 6 t, we
expect pj(n) ≈ eej . Likewise, a typical permutation σ ∈ Sn has about logm cycles of length 6 m, thus we
expect that Dj(n) ≈ ej .

Theorem 1.21 (j-th smallest prime factor). Let 1 6 θ 6 log2 x. For all but O(x/θ1/3)
integers n 6 x, we have

| log2 pj(n)− j| < 3
√
j log j (θ 6 j 6 ω(n)).
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Theorem 1.22 (j-th smallest cycle). Let 1 6 θ 6 log n. With probability 1 − O(θ−1/3), we
have

| logDj(σ)− j| < 3
√
j log j (θ 6 j 6 C(σ)).

Proof. The proof of Corollaries 1.21 and 1.22 are nearly identical, and so we provide details only for
Theorem 1.22. We may suppose that θ > θ0, where θ0 is a sufficiently large, absolute constant, for otherwise
the conclusion of the Corollary is trivial if the implied constant is large enough. Let ξ =

⌊
e(2/3)θ

⌋
. By

Theorem 1.19, with probability 1−O(1/θ1/3), we have

(1.9) |C[m](σ)− logm| < 2
√

logm log2m (ξ 6 m 6 n).

Also, by Exercise 1.2 (b), with probability 1−O(1/ξ) all the cycles of σ of length > ξ have distinct lengths.
Now suppose that σ is a permutation satisfying (1.9), and such that the cycles of σ with lengths > ξ have
distinct lengths. We suppose that θ0 is so large that the right side of the inequality in (1.9) is at most 1

2 logm
when m > ξ. In particular,

C[ξ](σ) <
3

2
log ξ 6 θ,

that is, Dθ(σ) > ξ. Thus, we may apply (1.9) with m = Dj(σ) for all θ 6 j 6 C(σ). As the cycle lengths
> ξ are distinct, we have j = C[m](σ) > 1

2 logDj(σ) and hence

|j − logDj(σ)| < 2
√

logDj(σ) log2Dj(σ) < 2
√

2j log(2j) < 3
√
j log j

provided that θ0 is large enough (and hence j is large enough). �

Slightly better bounds than those in Theorems 1.18 and 1.19 are attainable, based on ideas stemming
from the ‘Law of the Iterated Logarithm’ from probability theory. Essentially one can replace the factor
log3 t (or log2m) with log4 t (or log3m), and this is best possible. This is deducible, e.g., from the Kubilius
model of integers and the analog for permutations; see Section 4 below.

6. Lower bounds on Px{ω(n) = k}

Theorem 1.23. Fix A > 1. For some large constant x0(A), we have uniformly for x > x0(A) and
1 6 k 6 A log2 x that

Px
(
ω(n) = k

)
�A

(log2 x)k−1

(k − 1)! log x
.

Proof. The upper bound follows from the Hardy-Ramanujan inequality (Theorem 1.14), since

(log2 x+O(1))k−1 �A (log2 x)k−1 (k 6 A log2 x).

For the lower bound, WLOG suppose that A is sufficiently large. Let Q = 10A2 + 1, R = x1/100A and T the
set of all primes in [Q,R]. By Mertens’ theorem (0.5),

H := H(T ) = log2 x+OA(1).

We assume that x0 is large enough so that for x > x0(A) we have

(1.10) H >
log2 x

2
.

Let N be the set of integers of the form p1 . . . pk 6 x with Q 6 p1 < p2 < . . . < pk−1 6 R < pk and such
that p1 · · · pk−1 6 x1/2. Clearly ω(n) = k for each such n ∈ N . Given p1, . . . , pk−1 with product 6 x1/2, by
the Prime Number Theorem the number of choices for pk is

π

(
x

p1 · · · pk−1

)
− π(R)� x/ log x

p1 · · · pk−1
.

Thus,

Px (ω(n) = k)� S1 − S2

log x
,
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where
S1 =

∑
Q6p1<...<pk−16R

1

p1 · · · pk−1
, S2 =

∑
Q6p1<...<pk−16R
p1···pk−1>x

1/2

1

p1 · · · pk−1
.

We bound S1 using the lower bound in Proposition 0.1. We note that∑
p>Q

1

p2
6
∑
n>Q

1

n2
6

1

Q− 1
=

1

10A2
.

Using (1.10), we have k 6 2AH and hence

S1 >
Hk−1

(k − 1)!

(
1− k2

20H2A2

)
> 0.8

Hk−1

(k − 1)!
.

To bound S2, we use the fact that integers composed of primes below R that are > x1/2 are very rare; we
will devote the next sections to this type of problem. Let α = 1

logR = 100A
log x . Using Proposition 0.1 again,

S2 6
∑

Q6p1<···<pk−16R

1

xα/2(p1 · · · pk−1)1−α 6 e−50A (H ′)k−1

(k − 1)!
, H ′ =

∑
Q6p6R

1

p1−α .

Using the inequality ex 6 1 + 2x for 0 6 x 6 1 and Mertens’ estimate (0.6),

H ′ 6
∑

Q6p6R

1 + 2α log p

p
6 H + 2α(logR− logQ+O(1)) 6 H + 2

if A is large enough. Using (1.10) again yields

(H ′)k−1 6 Hk−1(1 + 2/H)2AH 6 e4AHk−1

which implies that

S1 − S2 >
Hk−1

(k − 1)!

(
0.8− e4A−50A

)
>

Hk−1

2(k − 1)!
=

(log2 x−OA(1))k−1

2(k − 1)!

Again, using that x > x0(A), we conclude that

Px(ω(n) = k)�A
(log2 x)k−1

(k − 1)! log x
,

as required. �

Much stronger bounds are known for Px(ω(n) = k) in a wide range of uniformity in k. The method are
complex-analytic and Chapter II.6 in [66] is devoted to this subject.

7. Prime factors counted with multiplicity

When prime factors of an integer are counted with multiplicity, that is, counted by means of the function
Ω(n), the normal behavior is the same as for the function ω(n). That is, for integers n 6 x, Ω(n) is tightly
concentrated near log2 x. However, the behavior changes “out in the right tail” region, owing to the influence
of large powers of small primes.

Here, we provide a general use utility for analyzing Ω(n) and other functions. It is often convenient to
use Ω(n), rather than ω(n), in applications because Ω(n) is completely additive (Ω(ab) = Ω(a) + Ω(b) for
every a, b). It is based on the method of parameters, used to capture tails of the distribution of a random
variable (cf. Chernoff’s inequality), sometimes referred to as “Rankin’s trick” in the literature.

Lemma 1.24 (Halberstam-Richert). Let f be a non-negative, real valued multiplicative function
and define

(a) A(x) =
1

x

∑
p6x

f(p) log p (x > 1);
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(b) B(x) =
∑
p

∑
k>2

pk6x

f(pk)

pk
log pk.

Then, for all x > 1 we have∑
n6x

f(n) 6 (A+B(x) + 1)
x

log x

∑
n6x

f(n)

n
A := max

y6x
A(y)

6 (A+B(x) + 1)eB(x) x

log x
exp

(∑
p6x

f(p)

p

)
.

Proof. Fix x > 1, let A = maxy6xA(y), B = B(x) and also define

M(x) =
∑
n6x

f(n), L(x) =
∑
n6x

f(n)

n
.

We begin in a similar way to the proof of The Prime Factors in Sets Theorem (Thm. 1.13). Since log u 6 u,

M(x) log x =
∑
n6x

f(n) log(x/n) +
∑
n6x

f(n)
∑
pk‖n

log pk (n = pkh)

6 xL(x) +
∑
pk6x

(
log pk

)
f(pk)

∑
h6x/pk

f(h)

6 xL(x) +
∑
pk6x
k>2

(
log pk

)
f(pk)

x

pk

∑
h6x/pk

f(h)

h
+
∑
p6x

f(p) log p
∑
h6x/p

f(h).

Recalling (b), the first double sum over pk and h is bounded by BxL(x). Invoking (a),∑
p6x

f(p) log p
∑
h6x/p

f(h) =
∑
h6x

f(h)
∑
p6x/h

f(p) log p 6 A(x/h)x
∑
h6x

f(h)

h
6 AxL(x).

We obtain
M(x) log x 6 (1 +B +A)xL(x),

which completes the proof of the first asserted inequality. For the second, we invoke (b) again, using (0.3),

L(x) 6
∑

P+(n)6x

f(n)

n
=
∏
p6x

(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)

6 exp

(∑
p6x

f(p)

p
+
f(p2)

p2
+ · · ·

)

6 exp

(
B +

∑
p6x

f(p)

p

)
.

�

Corollary 1.25. Let T be a subset of the primes in [2, x], and let 1 6 y0 < minT . Uniformly for
1 6 y 6 y0 we have ∑

n6x

yΩ(n,T ) �y0 xe(y−1)H(T ).

Proof. The function f(n) = yΩ(n,T ) is multiplicative, with f(pk) = 1 for p 6∈ T and f(pk) = yk if
p ∈ T . Thus,

1

u

∑
p6u

f(p) log p 6
y

u

∑
p6u

log p� y
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by the Prime Number Theorem. Thus, A(u)� y0 �y0 1. Also,

B(x) 6
∑
p

∑
k>2

f(pk)

pk
log pk =

∑
p 6∈T

∑
k>2

log pk

pk
+
∑
p∈T

∑
k>2

yk log pk

pk

� 1 +
∑
p∈T

(log p)

∞∑
k=2

k

(
y

p

)k
= 1 +

∑
p∈T

(log p)
(y/p) + (y/p)2 − (y/p)3

(1− y/p)2

� 1 +
∑

p>minT

log p

p(p− y)

�y0

1

(minT )− y
�y0 1

since y 6 y0 < minT . Hence, the hypotheses of Lemma 1.24 hold, with bounded A(x), B(x), the bounds
depending on y0. We conclude that∑

n6x

yΩ(n,T ) �y0

x

log x
exp

(∑
p6x

f(p)

p

)
=

x

log x
exp

(∑
p∈T
p6x

y

p
+
∑
p 6∈T
p6x

1

p

)

=
x

log x
exp

(∑
p∈T
p6x

y − 1

p
+
∑
p6x

1

p

)

6
x

log x
exp

(
(y − 1)H(T ) + log2 x+O(1)

)
,

since y > 1, and where Mertens’ bound (0.5) was used in the last step. �

Corollary 1.26. Let 1 < λ0 < 2. Uniformly for 1 6 λ 6 λ0 and 3 6 t 6 x,

Px{Ω(n, t) > λ log2 t} �λ0
(log t)−Q(λ).

Proof. Let T be the set of primes in [2, t]. By Mertens’ bound (0.5), H(T ) = log2 t + O(1). By
Corollary 1.25,

#{n 6 x : Ω(n, t) > λ log2 t} 6
∑
n6x

λΩ(n,t)−λ log2 t

�λ0 λ
−λ log2 txe(λ−1)H(T ) �λ0 x(log t)−Q(λ).

�

Remark 1.27. When λ > 2, the behavior of the quantity in Corollary 1.26 is different than that of
the quantity in Corollary 1.15. This is due to the behavior of powers of small prime factors, most important
being powers of 2, and in fact

(1.11) #{n 6 x : Ω(n, t) > λ log2 t} ≈ x(log t)−Q(2)−(log 2)(λ−2) =
x log t

2λ log2 t
.

8. Application: Erdős’ multiplication table problem

In 1955, Erdős [25] posed the following problem: Estimate the number, A(N), of distinct products of
the form ab with a 6 N , b 6 N . Erdős proved that A(N) = o(N2), and later in 1960 [26] refined the
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estimates to prove that A(N) = N2(logN)−E+o(1), where

E = Q

(
1

log 2

)
= 1− 1 + log log 2

log 2
= 0.08607 . . . .

Theorem 1.28. We have A(N)� N2(logN)−E .

Proof. Let k0 = log2N
log 2 . By Corollary 1.26 (with t = N), the number of distinct products with

Ω(ab) > k0 is bounded above by

#{m 6 N2 : Ω(m) > k0} � N2(logN)−Q(1/ log 2) = N2(logN)−E .

There are O(N) products with a = 1 or b = 1. If a > 1, b > 1 and Ω(ab) < k0, then ω(a) = h, ω(b) = j with
h > 1, j > 1 and h+ j = k < k0. The number of pairs a, b with a fixed h, j is, by Theorem 1.23,

� N2(log2N)h+j−2

(logN)2(h− 1)!(j − 1)!
.

Summing first over all j, h with h + j = k using the binomial theorem, and then over k < k0 we obtain an
upper bound for the total number of pairs a, b with Ω(ab) < k0 of

� N2

log2N

∑
k<k0

(2 log2N)k−2

(k − 2)!
� N2(log2N)−Q(1/ log 4) = N2(logN)−E

upon invoking Proposition 0.3. �

Remarks. The choice of k0 is motivated by λ = 1
log 2 being the unique solution of 2Q(λ/2) = Q(λ).

9. Number of divisors of integers

The number, τ(n), of positive divisors of n, is closely related to the distribution of ω(n). From the
formula

τ(n) =
∏
pa‖n

(a+ 1)

and the elementary inequality 2 6 a+ 1 6 2a, it follows that

2ω(n) 6 τ(n) 6 2Ω(n).

By a classical theorem of Dirichlet, E xτ(n) ∼ log x as x → ∞, so the average (mean) of τ(n) for n 6 x is
about log x.

What is τ(n) for a “typical” n 6 x? By Theorem 1.15 and Corollary 1.26, if ξ = ξ(x) → ∞ as x → ∞
then for almost all n 6 x we have

log2 x− ξ
√

log2 x 6 ω(n) 6 Ω(n) 6 log2 x+ ξ
√

log2 x,

and therefore for such n it follows that

τ(n) = (log x)log 2 exp{O(ξ
√

log2 x)} = (log x)log 2+o(1) (x→∞).

Hence, the mode is much smaller than the mean.

Further analysis of the sum
∑
n6x τ(n): As we have just seen, this sum must be dominated by

unusual integers, those with an abnormally large number of prime factors. But how large? Heuristically,
most integers have few repeated prime factors (see Exercise 1.5), so that τ(n) ≈ 2ω(n). The number of n 6 x
with ω(n) = k has order about x (log2 x)k

k!(log x) , so we get∑
n6x

τ(n) ≈
∑
k

2kx
(log2 x)k

k!(log x)
=

x

log x

∑
k

(2 log2 x)k

k!
.
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the sum over k has a peak around k = 2 log2 x, so we expect that the sum is dominated by integers
with ω(n) ∼ 2 log2 x. Moreover, the distribution is roughly Poisson with parameter 2 log2 x, which is well-
approximated by a Gaussian (Proposition 5.1). This motivates the next result.

Theorem 1.29. Let 1 6 ψ 6
√

log2 x. Then∑
n6x

|ω(n)−2 log2 x|>ψ
√

log2 x

τ(n)� (x log x)e−
1
12ψ

2

.

Proof. Let λ = ψ√
log2 x

∈ [0, 1]. Let 1 6 t 6 2. Then∑
n6x

ω(n)>(2+λ) log2 x

τ(n) 6
∑
n6x

τ(n)tω(n)−(2+λ) log2 x

= t−(2+λ) log2 x
∑
n6x

τ(n)tω(n).

The summand is multiplicative, and satisfies the conditions of Lemma 1.24. Hence∑
n6x

τ(n)tω(n) � x

log x
exp

(∑
p6x

2t

p

)
� x(log x)2t−1

and therefore ∑
n6x

ω(n)>(2+λ) log2 x

τ(n)� x(log x)2t−1−(2+λ) log t.

The optimum value of t to minimize the right side is t = 1 + λ
2 , and then the exponent of log x is

1−Q(1 +
λ

2
) 6 1− 1

12
λ2

using (0.16).
Similarly, taking t = 1− λ

2 , we obtain with a second application of Lemma 1.24 the estimate∑
n6x

ω(n)6(2−λ) log2 x

τ(n) 6 t−(2−λ) log2 x
∑
n6x

τ(n)tω(n)

� x(log x)−(2−λ) log t+2t−1

� x(log x)1−2Q(1−λ/2) � x(log x)1− 1
12λ

2

.

Finally, (log x)λ
2

= eψ
2

and the proof is complete. �

10. The range of Euler’s function

Let φ(n) be Euler’s “totient” function, i.e., the number of integers m ∈ [n] that are relatively prime to
n. Let V be the image of φ, i.e. V = {1, 2, 4, 6, 8, 10, 12, 16, · · · }, and let V (x) be the number of elements of
V that are 6 x, e.g. V (15) = 7. Since φ(p) = p− 1 for all primes p, we have V (x) > π(x+ 1)� x/ log x by
the Prime Number Theorem. Here we show an upper bound which is very close to this.

Theorem 1.30 (Erdős, 1935 [23]). We have V (x) = x(log x)−1+o(1).
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Proof. Fix an integer m > 10, let M = p1p2 · · · pm be the product of the first m primes. Let

Jm = {1 6 j 6M : (j,M) = 1, (j − 1,M) > logm}.
For each j ∈ [M ] with (j,M) = 1 let Pj = {p 6 x : p ≡ j (mod M)} and

P =
⋃
j∈Jm

Pj .

We first show that |Jm|/φ(M)→ 1 as m→∞. Let 2|`|M . Then

#{1 6 j 6M : (j,M) = 1, (j − 1,M) = `} =
∏
p|M/`

(p− 2)

= φ(M)
∏
p|M
p>2

p− 2

p− 1

∏
p|`
p>2

1

p− 2
.

Since p − 2 >
√
p for p > 5, the inner product is 6

√
3/`. The first product is � 1/ logm by Mertens.

Hence, summing over ` < logm we have

φ(M)− |Jm| = #{1 6 j 6M : (j,M) = 1, (j − 1,M) < logm} � φ(M)

logm

∑
`<logm

1√
`
� φ(M)

(logm)1/2
.

Hence,

(1.12) |Jm| ∼ φ(M) (m→∞).

Fix ε > 0. By an elementary estimate, for some large constant C, if φ(n) 6 x then n 6 y := Cx log2 x. Let
cm = |Jm|/φ(M). By Mertens theorem in arithmetic progressions (0.8),

H(P) = cm log2 x+Om(1).

Let δ = 2/ log2m and suppose m is large enough so that 0 < δ < 1/2. Also, δ → 0 as m→∞. By Theorem
1.13, followed by (0.3) and Stirling’s formula,

#{n 6 y : ω(n;P) < δ log2 x} �
y

(log x)1−cm

∑
k<δ log2 x

((1− cm) log2 x+Om(1))k

k!

� x log2 x

(log x)1−cm−δ log(e/δ)
.

If m is large enough, the exponent of log x is > 1− ε.
Now let W be the number of values of Euler’s function which have the form φ(n), where ω(n;P) > L :=

dδ log2 xe. Suppose that K > L and {kj : j ∈ Jm} is a vector of non-negative integers with sum K. If
ω(n;Pj) = kj for all j ∈ Jm then φ(n) is divisible by

∏
j∈Jm(j − 1,M)kj . Thus,

W 6
∑
K>L

∑
{kj :j∈Jm}∑

kj=K

x∏
j∈Jm(j − 1,M)

6
∑
K>L

∑
{kj :j∈Jm}∑

kj=K

x

(logm)K

6
∑
K>L

x(K + 1)|Jm|

(logm)K

� x(log2 x)|Jm|

(log x)δ log2m
=
x(log2 x)|Jm|

log2 x
�m

x

log x
.

This completes the proof. �
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11. Exercises
Exercise 1.1. (a) Derive the following general inclusion-exclusion formula, valid for any non-negative

integer u:

1(u = m) =

∞∑
j=m

(−1)j−m
(
j

m

)(
u

j

)
.

(b) Let 1 6 j 6 n and 0 6 m 6 n/j. Using part (a), derive an exact formula for the number of
permutations σ ∈ Sn with Cj(σ) = m.

(c) With j,m fixed, evaluate
lim
n→∞

Pσ∈Sn(Cj(σ) = m).

Exercise 1.2. (a) Show that if T is a nonempty susbet of [n], and k > 0, then

Pσ (CT (σ) > k) 6
H(T )k

k!
.

(this is sometimes stronger than Theorem 1.9, especially if H(T ) is small).
(b) Show that the probability that a permutation σ ∈ Sn has two cycles of the same length > `, is

O(1/`).

Exercise 1.3. Show that E 2C(σ) = n+ 1. Contrast this with the behavior of 2C(σ) for most σ ∈ Sn.

Exercise 1.4. Let 1 6 k 6 n. Show that if T is a nonempty subset of [n] with maxT 6 n/k, then

E σCT (σ)k = EZk,

where Z d
= Pois(H(T )).

Exercise 1.5. (a) Show that if T is a nonempty susbet of the primes in [2, x], and k > 0, then

Px{ω(n, T ) > k} 6 H(T )k

k!
.

(this is sometimes stronger than Theorem 1.13, especially if H(T ) is small).
(b) Show that the number of n 6 x that have two prime factors in some dyadic interval of the form

(z, 2z] with z > y, is O(x/ log y).

Exercise 1.6. (a) Prove that E σ∈Sn
1

C(σ)
∼ 1

log n
as n→∞.

(b) Prove that E x

(
1

ω(n)
1(n > 2)

)
∼ 1

log2 x
as x→∞.

Exercise 1.7. Provide full details for the proof of Corollary 1.12.

Exercise 1.8. Starting with Lemma 1.24, prove Corollary 1.15 using the method used to prove
Corollary 1.26.

Exercise 1.9. Prove Theorem 1.17 using Lemma 0.5 and Theorem 1.23.

Exercise 1.10. Provide full details of the proof of Theorem 1.19.

Exercise 1.11. Provide full details of the proof of Theorem 1.21.



CHAPTER 2

Distribution of the largest cycle and largest prime factor

1. Upper bounds

Theorem 1.9 implies that

ν(n,m) := Pσ∈Sn(C(m,n](σ) = 0) 6 e1−Hn+Hm 6 e2m/n 1 6 m 6 n.

When m is small, however, the number of cycles is at least n/m and this is extremely rare by Theorem
1.11. We can argue heuristically as follows: C1(σ), . . . , Cm(σ) behaves like a set of independent Poisson
variables Z1, . . . , Zm with Zj

d
= Pois(1/j). Thus, the event C(m,n](σ) = 0 can be modeled by the event

Z1 + 2Z2 + · · ·+mZm = n. Using the ideas behind Chernoff’s inequality, and Proposition 0.2, for any w > 1
we have

Pσ(Z1 + 2Z2 + · · ·+mZm = n) 6 E σw
Z1+2Z2+···+mZm−n

= w−n exp

{
w − 1

1
+
w2 − 1

2
+ · · · w

m − 1

m

}
.

Optimizing the choice of w will show that the RHS is decaying very rapidly as a function of u = n/m.
We utilize this idea to show the following.

Theorem 2.1 (No large cycles). Uniformly for 1 6 m 6 n we have

ν(n,m) 6 e−u log u+u−1, u = n/m.

Proof. Let w = u1/m. Following the heuristic above, we first write

ν(n,m) 6 E σ∈Snw
C1(σ)+2C2(σ)+···+mCm(σ)−n.

For each j ∈ [m], write wj = 1 + (wj − 1). By the binomial theorem and Lemma 1.1,

ν(n,m) 6 w−nE σ∈Sn

m∏
j=1

( ∞∑
kj=0

(wj − 1)kj
(
Cj(σ)

kj

))

= w−n
∑

k1,...,km>0

(w − 1)k1 · · · (wm − 1)kmE σ∈Sn

(
C1(σ)

k1

)
· · ·
(
Cm(σ)

km

)

6 w−n
∑

k1,...,km>0

(w − 1)k1 · · · (wm − 1)km
m∏
j=1

(1/j)kj

kj !

= w−n exp

{
w − 1

1
+
w2 − 1

2
+ · · · w

m − 1

m

}
.

The mean value theorem implies that wj = uj/m 6 1 + (u− 1)j/m for 1 6 j 6 m and hence

(2.1) w − 1 +
w2 − 1

2
+ · · ·+ wm − 1

m
6

m∑
j=1

(u− 1)j/m

j
= u− 1.

We conclude that
ν(n,m) 6 u−n/meu−1 = e−u log u+u−1. �

28
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Remarks. The upper bound in Theorem 2.1 is reasonably sharp throughout the range on n,m. For
example, if m = 1 then

A(1, n) =
1

n!
=

1

u!
= e−u log u+u−(1/2) log u+O(1)

by Stirling’s formula.

Let Ψ(x, y) = #{n 6 x : P+(n) 6 y}. These are known as y-smooth, or y-friable numbers. Applying
Theorem 1.13 with T1 being the set of all primes in (y, x], and k1 = 0, we have H(T1) = log2 x− log2 y+O(1)
by Mertens’ estimate (0.5), and hence

Ψ(x, y)� x
log y

log x
.

When log y is much smaller than log x, one can do substantially better using the ideas behind the proof of
Theorem 2.1.

Theorem 2.2. Uniformly for x > 10 and log x 6 y 6 x we have

Ψ(x, y) 6 xe−u log u+O(u), u =
log x

log y
.

Remarks. There is a change of behavior around y = log x, due to the fact that for smaller y, if
∏
p6y p ≈ x,

then some of the exponents of primes dividing n must be large.
We note some special cases which we will find useful for applications:

(2.2) Ψ(x, log x) 6 exp

{
(log x) log3 x

log2 x
+O

(
log x

log2 x

)}
= xo(1) (x→∞),

(2.3) Ψ(x, (log x)c) 6 x1−1/c+o(1) (x→∞)

for any fixed c > 1, and

(2.4) Ψ(x, xc(log3 x)/ log2 x)� x

(log x)c+o(1)
(x→∞).

Proof of Theorem 2.2. Define

α = 1− log u

log y
.

By our hypothesis that log x 6 y 6 x,

(2.5) 1 6 u 6
log x

log2 x
,

log3 x

log2 x
6 α 6 1, x1−α = eu log u.

Define

(2.6) S :=
∑

P+(n)6y

1

nα
=
∏
p6y

(
1 +

1

pα
+

1

p2α
+ · · ·

)
=
∏
p6y

(
1 +

1

pα − 1

)
6 exp

{∑
p6y

1

pα − 1

}
.

In the case 0 < α < 2/3, we use the simple bound

Ψ(x, y) 6
∑
n6x

P+(n)6y

(x
n

)α
6 xαS = xe−u log u S.
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We have y 6 u3 6 log3 x and u � log x
log2 x

. When p 6 21/α we have pα − 1 � α log p, and when p > 21/α we
have pα − 1 > 1

2p
α. Thus, using (2.5) again and ignoring that p is prime,

logS 6
∑

26n621/α

O(1)

α log n
+
∑
n>2

2

nα
� 1

α

∫ 21/α

2

dt

log t
+

∫ y

1

dt

tα

� 21/α +
y1−α

1− α
� (log x)o(1) + u� u.

This completes the proof in the case 0 < α < 2/3.
Next, assume that α > 2/3. For all w > 0, logw 6 w and thus for n 6 x, log(x/n) = α−1 log(x/n)α 6

α−1(x/n)α. Hence,

(log x)Ψ(x, y) =
∑
n6x

P+(n)6y

log(x/n) + log n

� xαS +
∑
n6x

P+(n)6y

∑
pk|n

log p,
(2.7)

In the double-sum on the right side of (2.7), let n = pkm, and separate into cases depending on k = 1 or
k > 1. The k = 1 terms contribute

6
∑
m6x

P+(m)6y

∑
p6min(y,x/m)

log p�
∑
m6x

P+(m)6y

min(y, x/m) 6
∑

P+(m)6y

y1−α
( x
m

)α
= uxαS.

The terms with k > 2 contribute

6
∑
p6y

26k6 log x
log p

log p
∑

m6x/pk

P+(m)6y

1 6
∑
p6y

26k6 log x
log p

log p
∑

P+(m)6y

(
x

pkm

)α
� xαS.

Therefore, by (2.5),

(2.8) Ψ(x, y)� u

log x
xαS =

xe−u log u

log y
S.

It remains to bound S. Since α > 2/3, (pα − 1)−1 = p−α + O(1/p4/3). For any 0 6 x 6 1, the mean value
theorem implies that ux 6 1 + (u− 1)x, hence

1

pα
=

1

p
u

log p
log y 6

1

p

(
1 + (u− 1)

log p

log y

)
.

Thus, by Mertens bounds (0.5) and (0.6),

logS 6 O(1) +
∑
p6y

1

pα

6 O(1) +
∑
p6y

1

p
+
u− 1

log y

∑
p6y

log p

p

6 log2 y +O(u+ 1).

Thus, S � (log y)eO(u). Combining this with (2.8), we get the claimed bound in the case α > 2/3. �
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When y 6 log x, simpler bounds are possible, since P+(n) 6 y implies that n =
∏
p6y p

ap . Therefore,
we have the equality

Ψ(x, y) = #
{

(ap)p6y :
∑
p6y

ap log p 6 log x : 0 6 ap (p 6 y)
}
,

and good bounds can be arrived at by combinatorial counting; see, e.g. Section III.5.2 in [66].

2. Application: large gaps between primes

Let pn denote the nth prime, and let

G(X) := max
pn+16X

(pn+1 − pn)

denote the the maximum gap between consecutive primes less than X.
In 1931, Westzynthius [70] proved that infinitely often the gap between consecutive prime numbers can

be an arbitrarily large multiple of the average gap, which is ∼ logX by the PNT. After improvements by
Ricci in 1934 and Erdős in 1935, in 1938 Rankin [59] proved that

(2.9) G(X)� logX log2X log4X

(log3X)2
.

This was not improved until August 2014, in two independent papers of Ford-Green-Konyagin-Tao and
Maynard. Later, Ford, Green, Konyagin, Maynard, and Tao [35] established the current world record

Theorem 2.3 (Ford-Green-Konyagin-Maynard-Tao [35, Theorem 1]). We have

G(X)� logX log2X log4X

log3X

for sufficiently large X.

Here we prove Rankin’s bound (2.9) using a very simple argument.

Idea #1. Let x be the largest integer such that P (x) 6 X/3, where P (x) is the product of primes below
x. By the PNT, x ∼ logX. Let J(x) be the largest gap between numbers that are coprime to P (x); the set
of such numbers is periodic modulo P (x), so J(x) exists. Such a gap occurs between P (x) and 3P (x), that
is, below X. Each number in the gap has a prime factor 6 x < P (x), thus these numbers are composite.
Therefore, G(X) > J(x).

Idea #2. Suppose that the integers coprime to P (x) have a gap [u, u+ y] of length y. For each prime
p 6 x, let ap be the residue class −u mod p. Then the set of residue classes ap, for p 6 x, cover all integers
in {1, 2, . . . , y − 1}; for all 1 6 j 6 y − 1, there is a p 6 x with p|(u+ j), hence j ≡ ap (mod p). Conversely,
if we can find residue classes ap, one for each prime p 6 x, that cover [1, y − 1], then G(X) > J(x) > y.

Rankin’s argument, based on earlier work of Westzynthius and Erdős. Suppose that x < y <
x log x, let

z = y(
log3 x
5 log2 x

),

P1 = {p : p 6 2 log x or z < p 6 x/2},
P2 = {p : 2 log x < p 6 z},
P3 = {p : x/2 < p 6 x}.

First, we set ap = 0 mod p for all p ∈ P1. These ap cover all integers in [1, y − 1] that have a prime
factor from P1. Let S0 be the set of uncovered integers n ∈ [1, y − 1]. Such n satisfy either P+(n) 6 z, or
they have a prime factor > x/2. In the latter case, as n has no prime factor < 2 log x and n 6 y 6 x log x,
we conclude that n is prime. Let u = 5 log2 x

log3 x
. Then u log u > (5 − o(1)) log2 x. By Theorem 2.2 and the

PNT,
|S0| 6 Ψ(y, z) + π(y)� y

log4 x
+

y

log x
� y

log x
.



32 2. DISTRIBUTION OF THE LARGEST CYCLE AND LARGEST PRIME FACTOR

Secondly, denote by q1, . . . , qk the primes in P2. Let Sj be the set of numbers in [1, y− 1] left uncovered
by ap for p ∈ P1 and also left uncovered by aq1 , . . . , aqj . For each j, if we are given Sj−1 we can always find
a choice of aqj (greedy choice) such that |Sj | 6 (1− 1/qj)|Sj−1|. In the end, we have

|Sk| 6 |S0|
k∏
j=1

(1− 1/qj) = |S0|
∏

2 log x<p6z

(1− 1/p)� |S0| log2 x

log z
� y(log2 x)2

(log3 x) log2 x

using Mertens’ product estimate (0.7). Therefore, if c > 0 is small enough, and we take

(2.10) y = c
x(log x) log3 x

(log2 x)2
,

then |Sk| 6 x
10 log x < π(x) − π(x/2), again using the PNT. Finally, the elements of Sk can be mapped to

distinct primes in P3. Thus, if ` ∈ Sk maps to p, take ap = ` mod p to cover `.
In conclusion, if y is given by (2.10), then G(X) > J(x) > y. As x ∼ logX,

y � (logX)
(log2X)(log4X)

(log3X)2
,

and this proves (2.9).

3. Asymptotic formulas when u is small

The idea behind the asymptotic formula is to first develop a recurrence formula. For 1 6 ` 6 m, there
are

(
n
`

)
(`− 1)! ways to form an `−cycle from [n]. Hence

ν(n,m) =
1

n!

∑
σ∈Sn

C(m,n](σ)=0

1

n

∑
τ |σ

τ a cycle

|τ | = 1

n · n!

m∑
`=1

`

(
n

`

)
(`− 1)!(n− `)!ν(n− `,m)

=
1

n

n−1∑
k=n−m

ν(k,m).

(2.11)

Heuristic. Suppose that ν(n,m) ≈ f(u), where u = n/m and f is continuous. By (2.11),

f(u) ≈ 1

n

n−1∑
k=n−m

f(k/m) ≈ 1

n

∫ n

n−m
f(t/m) dt =

1

u

∫ u

u−1

f(v) dv.

Assume we have equality instead of ≈. Differentiation gives uf ′(u) = −f(u − 1). This is known as a
differential-delay equation. If we add the natural initial conditions f(u) = 1 for 0 6 u 6 1, then there is a
unique continuous solution. This motivates the definition of the Dickman function ρ(u).

Definition 2.4. The Dickman function ρ : [0,∞)→ R is the unique continuous solution of

(2.12) ρ(u) = 1 (0 6 u 6 1); uρ′(u) = −ρ(u− 1) (u > 1).

Lemma 2.5. We have
(a) uρ(u) =

∫ u
u−1

ρ(v) dv for u > 1;
(b) ρ(u) > 0 for all u > 0;
(c) ρ(u) is decreasing for u > 0;
(d) For u > 1, −ρ

′(u)
ρ(u) � 1 + log u.

Proof. (a) follows by integrating (2.12) from u = 1 to u = v with v > 1. To prove (b), assume that
τ = min{u : ρ(u) = 0} exists. Since ρ(u) = 1− log u for 1 6 u 6 2, τ > 2. By (a),

0 = τρ(τ) =

∫ τ

τ−1

ρ(v) > 0,
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Figure 1. Dickman’s function from 0 6 u 6 15.

a contradiction. That ρ(u) is decreasing is clear from (b) and (2.12). This proves (c). From (2.12) and (a),

(2.13) −ρ
′(u)

ρ(u)
=

ρ(u− 1)∫ u
u−1

ρ(v) dv
.

Let Bk = max1<v6k/2(−ρ′(v)/ρ(v)). We have

B4 = max
1<v62

1/v

1− log v
=

1

2(1− log 2)
= 1.629 . . . .

If k > 4 and k/2 < u 6 (k + 1)/2 then the denominator on the right side of (2.13) is at least∫ u−1/2

u−1

ρ(v) dv > ρ(u− 1)

∫ u−1/2

u−1

e−Bk(v−u+1) dv =
ρ(u− 1)(1− e−

1
2Bk)

Bk
.

Using that e−
1
2Bk 6 e−

1
2B4 < 1/2, we infer that

Bk+1 6
Bk

1− e−
1
2Bk
6 Bk

(
1 + 2e−

1
2Bk
)
.

The function x(1 + 2e−x/2) is increasing for x > 0, hence if C is large and Bk 6 C log k then Bk+1 6
(C log k)(1 + 2/kC/2) 6 C log(k + 1). Therefore, Bk � log k and (d) follows. �

In Figure 3, we plot the Dickman function on a log-scale, and it is evident that ρ decreases rapidly. In
fact, ρ(u) = e−u log u−u log2(2u)+O(u); see [66], Ch. III.5.4 for further asymptotics and proofs.

Theorem 2.6. For all n > m > 1 we have

(2.14) ρ
( n
m

)
6 ν(n,m) 6 ρ

(
n+ 1

m+ 1

)
.
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Consequently, for
√
n log n 6 m 6 n we have

(2.15) ν(n,m) = ρ(u)

(
1 +O

(
u log(u+ 1)

m

))
, u = n/m.

Remarks. Inequality (2.15) recovers Theorem 4 of [55], with a much shorter proof, and provides an
asymptotic formula for ν(n,m) as long as n = o(m2/ logm). When n� m2/ logm, ν(n,m) 6∼ ρ(n/m), the
asymptotic having a different shape; see [58], Theorem 2.4 or [55] for details. Thus the final conclusion is
best-possible.

Proof. Suppose m 6 n 6 2m. As there is at most one cycle of length > m, Lemma 1.1 implies

(2.16) ν(n,m) = 1−
n∑

k=m+1

ECk(σ) = 1−Hn +Hm.

Since

Hn −Hm =

n∑
k=m+1

1

k
6

n∑
k=m+1

∫ k

k−1

dt

t
= log

n

m
= 1− ρ

( n
m

)
and

Hn −Hm >
n∑

k=m+1

∫ k+1

k

dt

t
=

∫ n+1

m+1

dt

t
= log

(
n+ 1

m+ 1

)
= 1− ρ

(
n+ 1

m+ 1

)
,

the bounds (2.14) hold when m 6 n 6 2m.
Now fix m > 1, let N > 2m + 1 and assume that (2.14) holds when m 6 n 6 N − 1. Using (2.11)

followed by Lemma 2.5 (a–c),

ν(N,m) =
1

N

N−1∑
k=N−m

A(k,m) >
1

N

N−1∑
k=N−m

ρ(k/m) >
1

N

N−1∑
k=M−n

∫ k+1

k

ρ(t/m) dt

=
1

N

∫ N

N−m
ρ(v/m) dv =

1

N/m

∫ N/m

N/m−1

ρ(v) dv = ρ(N/m)

and

ν(N,m) 6
1

N

N−1∑
k=N−m

ρ

(
k + 1

m+ 1

)
6

1

N

N−1∑
k=N−m

∫ k

k−1

ρ

(
t+ 1

m+ 1

)
dt

=
m+ 1

N

∫ N
m+1

N−m
m+1

ρ(v) dv

=
m+ 1

N

∫ N+1
m+1

N−m
m+1

ρ(v) dv − m+ 1

N

∫ N+1
m+1

N
m+1

ρ(v) dv

=
N + 1

N
ρ

(
N + 1

m+ 1

)
− m+ 1

N

∫ N+1
m+1

N
m+1

ρ(v) dv.

The final integral on the right side is > 1
m+1ρ

(
N+1
m+1

)
and thus ν(n,m) 6 ρ

(
N+1
m+1

)
. The claimed bounds

(2.14) now follow by induction on n.
Now we have

n

m
− n+ 1

m+ 1
=

n−m
m(m+ 1)

6
n

m2
.

Thus, by Lemma 2.5 (d),

ρ

(
n+ 1

m+ 1

)
6 ρ

( n
m

)
eO((n/m2) log(2u)) 6 ρ

( n
m

)
eO(u log(u+1)/m)
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When
√
n log n 6 m 6 n, u log(u+ 1)/m� 1 and (2.15) follows. �

Comparing Theorems 2.1 and 2.6, we immediately conclude that

(2.17) ρ(u)� e−u log u+u.

The “100 prisoners problem”
Imagine a prison holding 100 prisoners. They are offered to play a game, the reward being freedom for

all if they win; but they all must win in order for any to go free. The prisoners are numbered 1 to 100.
Inside a room are 100 boxes, and the numbers 1 through 100 are placed in these boxes in random order.
One by one, the prisoners are led into the room and allowed to open 50 boxes. If a prisoner finds his own
number in one of the boxes, he wins. The prisoners are allowed to discuss strategy before the game begins,
but then are separated and allowed no communication whatsoever (e.g., one prisoner cannot mark the boxes
indicating which number is inside). Is there a strategy that allows all of them to win with large probability?

Naively, if each prisoner chooses 50 boxes at random, then each has a 1/2 chance of winning, but there
is only a 1/2100 chance that they all win, and go free. There is a much better strategy, based on observing
that the number inside the boxes form a permutation of [100] (we can think of the boxes as lying in a row,
1st, 2nd, ...). The strategy for each prisoner number k is thus: first open the k-th box. If the number is k,
he wins. Otherwise, if box k contains the number m, next open box m. Continue in this manner until either
he finds his own number (win) or has opened 50 boxes without finding his own number (lose). Under what
conditions does prisoner k win with this strategy? He is essentially “following the cycle containing k”, and if
the cycle length is 6 50 he will win. Thus, if there are no cycles of length 50 or more, then everyone wins!
The likelihood of this is A(100, 50), and by (2.16) this equals

1−H100 +H50 ≈ 0.31

Thus, the prisoners have a 31% chance of all going free.

Next we develop a recursive formula for ψ(x, y) analogous to (2.11) and based on an idea of Hildebrand.

Lemma 2.7. For x > y > 2 we have

Ψ(x, y) =
1

log x

∑
p6y

(log p)Ψ

(
x

p
, y

)
+O

(
x

log x

)
.

Proof. We start with

Ψ(x, y) log x =
∑
n6x

P+(n)6y

log(x/n) +
∑
n6x

P+(n)6y

∑
pk|n

log p.

The first sum is �
∑
n6x(x/n)1/2 � x. In the second sum, let n = mpk, so that P+(m) 6 y and m 6 x/pk.

The terms with k = 1 have sum∑
p6y

(log p)
∑

m6x/p
P+(m)6y

1 =
∑
p6y

(log p)Ψ

(
x

p
, y

)
.

Likewise, the terms with k > 1 contribute∑
p6y
k>2

Ψ

(
x

pk
, y

)
6
∑
p6y
k>2

x

pk
� x. �

Theorem 2.8. For x > y > 3 we have Ψ(x, y) = xρ(u) +O(x/ log y), where u = log x
log y .

The proof of Theorem 2.8 is Exercise 2.1 below.
Theorem 2.8 provides an asymptotic formula for Ψ(x, y) as long as 1/ log y = o(ρ(u)). By Lemma 2.5

(f), this happens only for u� log2 x
log3 x

. In fact, the asymptotic Ψ(x, y) ∼ xρ(u) is true in a large range of x, y;
see [47] or [66, Ch. III.5] for specific statements.
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4. Exercises

Exercise 2.1. For x > y > 2 let u = log x
log y .

(a) Show that Ψ(x, y) = xρ(u) +O(x/ log x) for y 6 x 6 y2.
(b) Define ∆(x, y) by Ψ(x, y) = x(ρ(u) + ∆(x, y)). With y fixed, let ∆k := maxy6x6y2k |∆(x, y)|. Use

Lemma 2.7 to prove

∆k 6
log y +O(1)

log(y2k−1)
∆k−1 +O

(
1

log(y2k−1)

)
.

(c) use (a) and (b) to prove Theorem 2.8.

Exercise 2.2. Let
G = 1−

∫ ∞
1

ρ(u)

u2
du = 0.624329988 . . .

G is known as the “Golomb-Dickman constant”, although it was first written down by de Bruijn.
(a) Let C+(σ) denote the length of the largest cycle in σ. Show that E nC

+(σ) ∼ Gn as n→∞.
(b) Show that E x logP+(n) ∼ G log x as x→∞.

Exercise 2.3. Define a function ρ2(u) by ρ2(u) = 1 for 0 6 u 6 1 and

ρ2(u) = ρ(u) +

∫ u−1

0

ρ(w)

u− w
dw (u > 1).

(a) For a permutation σ ∈ Sn, let k2(σ) denote the length of the 2nd largest cycle (it may equal the
length of the largest cycle), and let k2(σ) = 0 if σ has only one cycle. Show that, uniformly for 1 6 m 6 n
and u = n/m, that

Pσ(k2(σ) 6 m) = ρ2(u) +O

(
1 + log u

m

)
.

(b) Let q2(n) denote the 2nd largest prime factor of an integer n (it may equal the largest prime factor,
if P+(n)2|n), and define q2(n) = 0 if n is prime. Show that, uniformly for 2 6 y 6 x and u = log x

log y ,

Px(q2(n) 6 y) = ρ2(u) +O

(
1 + log u

log y

)
.

(c) Show that ρ2(u) ∼ c/u as u→∞, where c =
∫∞

0
ρ(w) dw.



CHAPTER 3

Integers without small prime factors and
permutations without small cycles

1. Permutations without small cycles

For 1 6 m 6 n, let
Un,m = Pσ∈Sn

(
Cj(n) = 0 (1 6 j 6 m)

)
.

In particular, Un,0 = 1. Based on our heuristic model, Un,m should be (for m of moderate size) about
the probability that Z1 = · · · = Zm = 0, where Zj

d
= Pois(1/j) and Z1, . . . , Zm are independent. This

probability equals e−Hm ≈ e−γ

m . This cannot be expected to hold for large m, for example Un,m = 1/n if
m > n/2 (permutations lacking cycles of length 6 n/2 must be n-cycles). A special case of Corollary 1.11
(with λ = 0) implies that

(3.1) Un,m �
1

m

uniformly for 1 6 m 6 n. Our aim in this section is to prove strong asymptotics for Un,m throughout the
range 1 6 m 6 n.

As a first attempt, we’ll use inclusion-exclusion, obtaining for any ` > 1 the formula

(3.2) Un,m = E σ1(C[m](σ) = 0) =
∑̀
r=0

(−1)rE σ

(
C[m](σ)

r

)
+O

((
C[m](σ)

`+ 1

))
.

To evaluate the right side of (3.2) we derive a generalization of Lemma 1.1.

Lemma 3.1. Let I ⊆ [n] and let k > 0.

E σ

(
CI(σ)

k

)
6
H(I)k

k!
,

with equality if and only if k (max I) 6 n.

Proof. For non-negative integers x1, . . . , xt, k we have(
x1 + · · ·+ xt

k

)
=

∑
i1+···+it=k

t∏
j=1

(
xj
ij

)
.

Thus, since CI(σ) =
∑
r∈I Cr(σ),

E σ

(
CI(σ)

k

)
=

∑
∑
r∈I kr=k

E σ

∏
r∈I

(
Cr(σ)

kr

)
.

We apply Lemma 1.1 to the expectation on the right side, followed by the multinomial theorem, obtaining

E σ

(
CI(σ)

k

)
6

∑
∑
r∈I kr=k

∏
r∈I

(1/r)kr

kr!
=
H(I)k

k!
,

37
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with equality if and only if
∑
r∈I rkr 6 n for all choices of the kr. This latter condition clearly holds if

k(max I) 6 n. On the other hand, if k(max I) > n then there are terms with
∑
r∈I rkr > n, e.g. taking

kmax I = k, kr = 0 for other r. �

Theorem 3.2. Let 1 6 m 6 n and set u = n/m. Then

Un,m = e−Hm +O

((
e(logm+ 1)

u

)u)
.

Proof. The bound is trivial if u < e(logm + 1), thus we may assume that u > e(logm + 1). Let
` = buc = bn/mc. For 0 6 r 6 `, rmax I1 6 n, and thus applying Lemma 3.1 to (3.2), we obtain

Un,m = E σ

∑̀
r=0

(−1)r
(
C[m](σ)

r

)
+O

((
C[m](σ)

`+ 1

))

=
∑̀
r=0

(−1)r
Hr
m

r!
+O

(
H`+1
m

(`+ 1)!

)
.

Since `+1 > e(logm+1) > eHm, the sum equals e−Hm+O(H`+1
m /(`+1)!). Finally, since Hm 6 logm+1

and (`+ 1)! > ((`+ 1)/e)`+1 > (u/e)u we obtain the claimed bound. �

The inclusion-exclusion identity (3.2) corresponds to the original Brun sieve technique. The bound in
Theorem 3.2 is nontrivial only for u � logm, that is, when m � n/ log n. When u is large, however, the
error term is very tiny compared to the main term e−Hm � 1/m.

When u is bounded, the behavior of Un,m is more complex. We will derive a recurrence for Un,m in (3.6)
below, and use it to obtain an asymptotic for Un,m when u is small. We first must introduce the Buchstab
function ω(u), defined recursively for u > 1 by

(3.3) ω(u) =
1

u
(1 6 u 6 2), uω(u) = 1 +

∫ u−1

1

ω(v) dv (u > 2).

An easy induction argument shows that ω(u) is continuous, differentiable except at the point u = 2, and
satisfies 1/2 6 ω(u) 6 1 for all u > 1. Differentiating the integral equation in (3.3) yields

(3.4) ω′(u) =
ω(u− 1)− ω(u)

u
= − 1

u

∫ u

u−1

ω′(v) dv (u > 2).

Lemma 3.3. We have ω′(u)� 1/buc!. Consequently, for some C ∈ [1/2, 1] we have

ω(u) = C +O(1/buc!).

Proof. By 1/2 6 ω(u) 6 1 for all u, (3.4) gives |ω′(u)| 6 1/(2u) for u > 2. By induction on k > 2 we
have

|ω′(u)| 6 1

2u(u− 1) · · · (u− k + 2)
(u > k).

For any u, let k = buc 6 u. Then |ω′(u)| 6 1/k!. The second claim follows from the first and

ω(u)− ω(v) =

∫ u

v

ω′(w) dw � 1

bvc!
(2 6 v 6 u). �

Much more is known about ω(u), in fact we have ω(u) = e−γ +O(1/buc!), and ω(u) = e−γ changes sign
infinitely many times (Maier). We will derive such an asymptotic in a indirect way using the next Theorem.

Theorem 3.4. Suppose that m,n are integers with 1 6 m 6 n− 1. Then

(3.5)
1

2m+ 1
6 Un,m 6

1

m+ 1
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and

Un,m =
ω(u)

m

(
1 +O

(
1

m

))
, u = n/m.

The second part provides an asymptotic Un,m ∼ ω(u)/m as long as m→∞ as n→∞.

Proof. We follow the method of Granville [40, Theorem 2.2], beginning with an analog of the recursion
(2.11). If σ ∈ Sn has no cycles of length 6 m, then either σ is an n-cycle, or all cycles in σ have length in
[m+ 1, n−m− 1]. Following the proof of (2.11), we start with

Un,m =
1

n
+

1

n · n!

∑
σ∈Sn

C[m](σ)=0

∑
α|σ

α a cycle
|α|6n−m−1

|α|.

With ` = |α| fixed, there are
(
n
`

)
(` − 1)! ways to choose α. Writing σ = αβ, there are (n − `)!U(n − `,m)

ways to choose β. Letting k = n− `, we thus we obtain

(3.6) Un,m =
1

n
+

1

n

∑
m+16k6n−m−1

Uk,m.

If m + 1 6 n 6 2m + 1, then Un,m = 1/n and thus 1
2m+1 6 Un,m 6 1

m+1 . Now suppose that N > 2m + 2

and that (3.5) holds for m+ 1 6 n 6 N − 1. By (3.6),

NUN,m 6 1 +
∑

m+16k6N−m−1

1

m+ 1
= 1 +

N − 2m− 1

m+ 1
6

N

m+ 1

and
NUN,m > 1 +

∑
m+16k6N−m−1

1

2m+ 1
=

N

2m+ 1
.

Thus, (3.5) follows by induction on n.
The second inequality is true when 1 6 u = n/m 6 2 since then Un,m = 1/n = ω(u)/m. We now

proceed by induction on N = buc with m fixed. Let

∆(n,m) = mUn,m − ω(n/m), ∆N := max
m+16n6mN

|∆(n,m)|

In particular, ∆2 = 0. Now suppose that N > 2 and that mN < n 6 m(N + 1). By (3.6),

(3.7) ω(n/m) + ∆(n,m) =
m

n
+

1

n

n−m−1∑
k=m+1

ω

(
k

m

)
+

1

n

n−m−1∑
k=m+1

∆(k,m).

If m + 1 6 k 6 n − m − 1, then n − k 6 mN , and thus the second sum on the right side is bounded in
absolute value by (n − 2m − 1)∆N . Writing u = n/m and using Euler’s summation formula together with
Lemma 3.3, the first sum equals

n−m−1∑
k=m+1

ω

(
k

m

)
= −ω(u− 1) +

n−m∑
k=m+1

ω

(
k

m

)

= −ω(u− 1) +

∫ n−m

m

ω(t/m) dt+

∫ n−m

m

t− btc
m

ω′(t/m) dt

= O(1) +m

∫ u−1

1

ω(v) dv.

By (3.3), the final integral equals uω(u)− 1, and hence

|∆(n,m)| 6
(

1− 2

N + 1

)
∆N +O

(
1

n

)
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Figure 1. Buchstab’s function from 1 6 u 6 4.

and thus

∆N+1 6

(
1− 2

N + 1

)
∆N +O

(
1

mN

)
.

Iterating this gives

∆N �
1

m
(N > 2)

and the second claim in the theorem follows. �

Combining Theorems 3.2 and 3.4, we derive a strong asymptotic for ω(u) and a strong uniform asymptotic
for Un,m. In figure 1 is a graph of ω(u) for 1 6 u 6 4. The rapid convergence to e−γ is evident.

Theorem 3.5. We have ω(u) = e−γ +O(e−u log u+O(u)).

Proof. In light of Lemma 3.3 it suffices to evaluate C = limu→∞ ω(u). Let m be large, n = m2, u = m.
By Theorems 3.2 and 3.4, we have

Um2,m =
ω(m)

m

(
1 +O

(
1

m

))
= e−Hm

(
1 +O

(
m

(
e(1 + logm)

m

)m))
ad it follows that C = e−γ . �

Theorem 3.6. For any 1 6 m 6 n− 1 we have

Un,m = e−Hm(1 +O(e−u/5)) (u = n/m).

Proof. When u > 5 logm, Theorems 3.2 and 3.5 gives

Un,m = e−Hm(1 +O(e−u/4)).

When u 6 5 logm, Theorems 3.4 and 3.5 imply

Un,m =
ω(u)

m

(
1 +O

(
1

m

))
= e−Hm(1 +O(e−u/5)). �
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2. Integers without small prime factors

Let Φ(x, z) denote the number of positive integers n 6 x that have no prime factor 6 z. Again, a simple
heuristic suggests that for small z we should have Φ(x, z) ≈ x

∏
p6z(1−1/p), and this is what we will in fact

demonstrate below. A special case of Corollary 1.15 (with λ = 0) implies that

(3.8) Φ(x, z) = #{n 6 x : ω(n, z) = 0} � x(log z)−Q(0) =
x

log z
� x

∏
p6z

(
1− 1

p

)
,

uniformly for 2 6 z 6 x. Here ω(n, z) is the number of distinct prime factors of n that are 6 z.
Following what we did with permutations, we first prove a bound for Φ(x, z) which is very strong for

small z and then by another method work out a bound which is good for large z.

Theorem 3.7. Uniformly for x > 2, 2 6 z 6 x1/(4.5 log2 x) we have

Φ(x, z) = x
∏
p6z

(
1− 1

p

)
+O

(
xe−u/2

)
u =

log x

log z
;

Proof. We may assume that x is sufficiently large. Following the proof of Lemma 3.2, we apply “Brun’s
pure sieve”. Let ` > 1, and apply inclusion-exclusion to obtain

1(ω(n, z) = 0) =
∑̀
r=0

(−1)r
(
ω(n, z)

r

)
+O

((
ω(n, z)

`+ 1

))
.

We sum over x and use∑
n6x

(
ω(n, z)

r

)
=

∑
p1<···<pr6z

⌊
x

p1 · · · pr

⌋
=

∑
p1<···<pr6z

(
x

p1 · · · pr
+O(1)

)
.

The totality of the O(1) terms is

�
∑̀
r=0

#{d 6 zr : ω(d) = r} 6 z`.

Let T be the set of primes 6 z, and let H = H(T ). By Mertens’ sum estimate (0.5), H(T ) = log2 z +O(1).
By Theorem 1.6, ∑

n6x

(
ω(n, z)

`+ 1

)
6 x

H`+1

(`+ 1)!
.

We get

Φ(x, z) = x
∑̀
r=0

(−1)r
∑

p1<···<pr6z

1

p1 · · · pr
+O

(
z` + x

H`+1

(`+ 1)!

)
.

Extending the sum on r to all non-negative integers, we have using (0.4)
∞∑
r=0

(−1)r
∑

p1<···<pr6z

1

p1 · · · pr
=

∑
P+(d)6z

µ(d)

d
=
∏
p6z

(
1− 1

p

)
.

Now assume that ` > 2H. Using (0.1), we have∣∣∣∣∣
∞∑

r=`+1

(−1)r
∑

p1<···<pr6z

1

p1 · · · pr

∣∣∣∣∣ 6
∞∑

r=`+1

Hr

r!
� H`+1

(`+ 1)!
.

We conclude that

Φ(x, z) = x
∏
p6z

(
1− 1

p

)
+O

(
z` + x

H`+1

(`+ 1)!

)
.
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If 2 6 z 6 e
√

log x, equivalently
√

log x 6 u 6 log x
log 2 , take ` = bu/5c so that ` > 2H if x is large enough. Then

z` 6 x1/5 6 xe−u/2, and
H`+1

(`+ 1)!
6

(
5eH

u

)u/5
� e−u/2.

If e
√

log x 6 z 6 x1/(4.5 log2 x), equivalently 4.5 log2 x 6 u 6
√

log x, we take ` = bu− 1c. Then

` > u− 2 > 4.5 log2 x− 2 > 4.5H + 2

for large x. Here z` 6 x/z 6 xe−u and

H`+1

(`+ 1)!
6

(
eH

u− 1

)u−1

�
( e

4.5

)u−1

� e−u/2. �

When z is large, the asymptotics of Φ(x, z) are related to the Buchstab function ω(u) defined in (3.3).

Theorem 3.8. Uniformly for 2 6 z 6 x we have

Φ(x, z) =
xω(u)− z

log z
+O

(
x

log2 z

)
, u =

log x

log z
.

This provides an asymptotic formula Φ(x, z) ∼ ω(u) x
log z as long as z → ∞ and x = o(x) as x → ∞.

Our proof is based on a recurrence formula similar to (3.6).

Lemma 3.9. (i) When 2 6 z 6 x 6 z2 we have

Φ(x, z) =
xω(u)− z

log z
+O

(
x

log2 x

)
.

(ii) When z > 2 and x > z2 we have

(log x)Φ(x, z) = x+
∑

z<p6x/z

(log p)Φ(x/p, z) +O

(
x

log z

)
.

Proof. When z 6 x 6 z2, the Prime Number Theorem gives

Φ(x, z) = 1 + π(x)− π(z) =
x

log x
− z

log z
+O

(
x

log2 x

)
=
xω(u)− z

log z
+O

(
x

log2 x

)
,

proving (i). Here we used that ω(u) = 1/u for 1 6 u 6 2.
Now suppose 2 6 z 6 x1/2. We start with the fundamental theorem of arithmetic in the form

log x = log
x

n
+ log n = log

x

n
+
∑
pk|n

log p.

Thus,
(log x)Φ(x, z) =

∑
n6x

P−(n)>z

log
x

n

︸ ︷︷ ︸
S1

+
∑
n6x

P−(n)>z

∑
pk|n

log p

︸ ︷︷ ︸
S2

.

In S1, break up the summands into intervals xe−j < n 6 xe1−j for integers j > 1. Using (3.8)

S1 6
∑
j>1

jΦ(xe1−j , z)�
∑
j>1

xje1−j

log z
� x

log z
.

We have
S2 =

∑
pk6x
p>z

(log p)Φ(x/pk, z).
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Using (3.8) again, the terms with k > 2 contribute

�
∑
pk6x
k>2
p>z

(log p)
x

pk log z
� x

log z

∑
p>z

log p

p2 − p
� x

z log z
.

The terms with k = 1 give, by the Prime Number Theorem,∑
z<p6x/z

(log p)Φ(x/p, z) +
∑

x/z<p6x

log p =
∑

z<p6x/z

(log p)Φ(x/p, z) + x+O

(
x

log z

)
.

This completes the proof of (ii). �

Now we argue that Lemma 3.9 (ii) is analogous to the recurrence (3.6). Let

Vn,m =
Φ(en, em)

en
.

Assuming that Φ(x, z)/x is slowly varying in x and in z, we get from Lemma 3.9 (ii)

nVn,m ≈
n−m∑
k=m+1

Vn−k,m
∑

ek−1<p6ek

log p

p
≈

n−m∑
k=m+1

Vn−k,m

using Mertens’ estimate (0.6).

Proof of Theorem 3.8. Let z0 be a sufficiently large constant. The statement is trivial if z 6 z0 and
also it follows from (3.8) when z > x1/2, thus we may assume that z0 6 z 6 x1/2.

We iterate the recurrence in Lemma 3.9 (ii) in a manner similar to the way we analyzed (3.6), however
there are more delicate error terms to analyze. Define ∆(x, z) by

log z

x
Φ(x, z) = ω(u)− z

x
+ ∆(x, z),

where u = log x
log z . With z fixed, define

∆∗N = max
z6x6zN

|∆(x, z)| (N = 2, 3, . . .).

By Lemma 3.9 (i), we have

∆∗2 �
1

log z
.

Now suppose that N > 3 and zN−1 < x 6 zN . Divide Lemma 3.9 (ii) by ux, obtaining
log z

x
Φ(x, z) =

1

u
+O

(
1

u log z

)
+

1

u log z

∑
z<p6x/z

log p

p

(
log z

x/p
Φ(x/p, z)

)
.

Since z/x 6 1/
√
x < 1

u log z by our assumptions on z and u, we get

(3.9) ω(u) + ∆(x, z) =
1

u
+O

(
1

u log z

)
+

1

u log z

∑
z<p6x/z

log p

p

(
ω

(
log(x/p)

log z

)
− zp

x
+ ∆

(
x

p
, z

))
.

In (3.9), the summands −zp/x contribute, by the Prime Number Theorem,

� z/x

u log z

∑
z<p6x/z

log p� 1

u log z
.

Since x/p < x/z < zN−1, the summands ∆(x/p, z) contribute an amount which in absolute value does not
exceed

∆∗N−1

u log z

∑
z<p6x/z

log p

p
=

∆∗N−1

log x
(log x− 2 log z +O(1)) 6 (1− 1/N)∆∗N−1
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if z is large enough, where we used Mertens’ estimate (0.6). Using (0.6), partial summation and the rapid
decay of ω′(u) (Theorem 3.3), we obtain∑
z<p6x/z

log p

p
ω

(
log(x/p)

log z

)
=

∫ x/z

z

1

t
ω

(
log(x/t)

log z

)
dt+ +

∫ x/z

z

O(e−
√

log t)ω′
(

log(x/t)

log z

)
dt

t log z
+O(1)

= (log z)

∫ u−1

1

ω(v) dv +O(1).

Inserting all of these estimates into (3.9), we find that

|∆(x, z)| 6

∣∣∣∣∣− ω(u) +
1

u
+

1

u

∫ u−1

1

ω(v) dv

∣∣∣∣∣+

(
1− 1

N

)
∆∗N−1 +O

(
1

u log z

)
=

(
1− 1

N

)
∆∗N−1 +O

(
1

N log z

)
using the recurrence (3.3) and that N − 1 6 u 6 N . Taking a maximum over all zN−1 < x 6 zN we get

∆∗N 6 max

(
∆∗N−1,

(
1− 1

N

)
∆∗N−1 +O

(
1

N log z

))
.

Iterating this gives

∆∗N �
1

log z
(N = 2, 3, . . .).

From the definition of ∆∗N we conclude that

∆(x, z)� 1

log z
(u > 2).

This completes the proof. �

An unusual application of these theorems is the evaluation of the constant in the Mertens’ product
formula (0.7). It is rather straightforward to obtain a version of (0.7) where e−γ is replaced by some
unspecified constant, and evaluation of the constant is not that easy.

Corollary 3.10. Assume a weak form of Mertens’ product formula

(3.10)
∏
p6z

(
1− 1

p

)
� 1

log z
(z > 2).

Then ∏
p6z

(
1− 1

p

)
∼ e−γ

log z
(z →∞).

Proof. This proof was suggested by Granville. It is easy to check that in the proof of Theorems 3.7
and 3.8, we did not use (0.7) anywhere in the strong form. Fix z and let x = z10 log2 z. Then u = log x

log z =

10 log2 z > 5 log2 x if z is large enough. Using (3.10) and Theorem 3.7, we have

Φ(x, z) = x
∏
p6z

(
1− 1

p

)(
1 +O(e−u/2 log z)

)
= x

∏
p6z

(
1− 1

p

)(
1 +O(1/ log4 z)

)
.

On the other hand, using Theorem 3.8, followed by Theorem 3.5,

Φ(x, z) =
xω(u)

log z

(
1 +O

(
1

log z

))
=
xe−γ

log z

(
1 +O

(
1

log z

))
.

The claim follows. �
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Theorem 3.11. Uniformly for 2 6 z 6 x we have

Φ(x, z) = x
∏
p6z

(
1− 1

p

)(
1 +O(e−u/5)

)
.

Proof. When u > 4.8 log2 x, equivalently, z 6 x1/4.8 log2 x, we use Theorem 3.7 and get

Φ(x, z) = x
∏
p6z

(
1− 1

p

)(
1 +O(e−u/2 log z)

)
= x

∏
p6z

(
1− 1

p

)(
1 +O(e−u/5)

)
.

When 1 6 u 6 2, the claim follows from (3.8). Now suppose that 2 6 u 6 4.8 log2 x. By Theorem 3.8,
followed by Mertens’ estimate (0.7), we have

(3.11) Φ(x, z) =
xω(u)

log z

(
1 +O

(
1

log z

))
= xeγω(u)

∏
p6z

(
1− 1

p

)(
1 +O

(
1

log z

))
.

Now
1

log z
=

u

log x
� u

eu/4.8
� e−u/5

and the claim follows from Theorem 3.5. �

3. Exercises

Exercise 3.1. Show that Φ(x, z) � x/ log z uniformly for x > 2z > 4. Be careful with the case of
small x.

Exercise 3.2. Show that Ψ(x, y)� xe−u uniformly for all x > y > 3, where u = log x
log y .

Exercise 3.3 ([45],Exercise 03). (Integers with a large smooth part). For an integer n and y > 2
let ny be the product of all prime powers dividing n with the prime 6 y. Define, for y 6 z 6 x the function

Θ(x, y, z) = #{n 6 x : ny > z}.

(a) Show that Θ(x, y, z) 6
∑

z<a6x/y
P+(a)6y

Φ(x/a, y) + Ψ(x, y).

(b) Show that, for any 2 6 y 6 z 6 x we have

Θ(x, y, z)� x exp

{
− log z

2 log y

}
.

Exercise 3.4. (a) Show that for 1 6 m 6 n,

1 = ν(n,m) +

n−m−1∑
k=0

Un−k,mν(k,m),

where ν(k,m) = 1 if m > k.
(b) Combine (a) with Theorems 2.6 and 3.4 to deduce that

ρ(u) +

∫ u−1

0

ρ(v)ω(u− v) dv = 1 (u > 1).

Remark: This provides a ‘combinatorial proof’ of a purely analytic statement.



CHAPTER 4

Poisson approximation of small cycle lengths and small prime
divisors

1. Small cycles of permutations

Let 1 6 k 6 n and consider the problem of modeling

Ck = (C1(σ), . . . , Ck(σ))

by the random vector
Zk = (Z1, . . . , Zk), Zj

d
= Pois(1/j).

We especially desire a good approximation when k is large, as opposed to bounded (ref. Theorem 1.9). We
express our results in terms of the Total Variational Distance dTV (X,Y ) between two random variables X
and Y taking values in a discrete space Ω, defined by

(4.1) dTV (X,Y ) := sup
U⊂Ω

P(X ∈ U)− P(Y ∈ U).

The supremum occurs when U = {ω ∈ Ω : P(X = ω) > P(Y = ω)}, hence

(4.2) dTV (X,Y ) =
∑
ω∈Ω

max
(
0,P(X = ω)− P(Y = ω)

)
.

Replacing U by Ω \ U , we see that dTV (X,Y ) = dTV (Y,X).
In comparing Ck and Zk, the space of values is Ω = Nk0 .

Lemma 4.1. We have

dTV (Ck,Zk) =
∑
h∈Nk0

k∏
j=1

1

jhjhj !
max

(
0, e−Hk − Un′,k

)
,

where n′ = n′(h) = n−
∑k
j=1 jhj.

Proof. From (4.2) we have

dTV (Ck,Zk) =
∑
h∈Nk0

max
(

0,P(Zk = h)− P(Ck = h)
)
.

Clearly,

P(Zk = h) = e−Hk
k∏
j=1

(1/j)hj

hj !
.

Now fix h, write g = h1 + 2h2 + · · · + khk and consider P(Ck = h). If g > n, then P(Ck = h) = 0. Now
suppose that g 6 n. Write σ = σ1σ2, where σ1 is the product of the cycles of length at most k and permutes
a subset I of [n] of size g, and σ2 is the product of the cycles of length greater than k and permutes [n] \ I
of size n′ = n− g. By Cauchy’s formula (Theorem 1.2), applied to σ1, it follows that

P(Ck = h) = Un′,k

k∏
j=1

(1/j)hj

hj !
,

46
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and the lemma follows. �

Theorem 4.2 (Poisson distribution of small cycles). Let 1 6 k 6 n. Then

dTV (Ck,Zk)� e−n/(5k).

Proof. Consider a generic vector h = (h1, · · · , hk) ∈ Nk0 and let n′ = n − (h1 + 2h2 + · · · + khk). If
n′ > k then By Theorem 3.6,

Un′,k = e−Hk
(

1 +O
(
e−n

′/(5k)
))
.

If n′ 6 k we’ll use the trivial bound max(0, e−Hk − Un′,k) 6 e−Hk , and thus for all h we have

max
(
0, e−Hk − Un′,k

)
� e−Hk−n

′/(5k).

Therefore, and thus∑
h∈H1

k∏
j=1

(1/j)hj

hj !
max

(
0, e−Hk − Un′,k

)
� e−Hk−n/(5k)

∑
h∈Nk0

k∏
j=1

(1/j)hjejhj/(5k)

hj !

= exp

{
−Hk −

n

5k
+

k∑
j=1

ej/(5k)

j

}
� e−n/(5k),

using (2.1) in the last step with u = e1/5 and w = e1/(5k). The theorem now follows from Lemma 4.1. �

Remarks. By a more sophisticated sieve method than that used to prove Theorem (2.1), see [33], it is
possible to prove that

dTV (Ck,Zk)� e−f(n/k),

where f(x) ∼ x log x as x→∞. This is the true order (the asymptotics of the logarithm of the left side), and
a result of Arratia and Tavaré [2]. Sharper bounds are known, and are expressed in terms of the Dickman
and Buhstab functions (see [58]).

We almost immediately obtain the following corollary, by grouping together integers into sets.

Corollary 4.3. Let k 6 n. Then, for any subset T ⊆ [k] and A ⊆ N0, we have

P
(
CT (σ) ∈ A

)
= P

(
ZT ∈ A

)
+O(e−n/(5k)).

where ZT
d
= Pois(H(T )).

As long as k = o(n) as n → ∞, the error term is o(1) and this establishes, in a very strong form, the
validity of the Poisson model for Ck.

2. The Kubilius model of small prime factors of integers

We will make formal a probabilistic interpretation of various results about the distribution of integers
which have been stated in earlier sections. Consider a randomly chosen integers n ∈ [1, x]. Such an integer
n has a canonical prime factorization as

n =
∏
p6x

pvp .

We regard each of the exponents vp as random variables (they depend on p and also on x). We compute
exactly

Px(vp = k) =
1

bxc

(⌊
x

pk

⌋
−
⌊

x

pk+1

⌋)
=

1

pk
− 1

pk+1
+O

(
1

x

)
,

the error term being relatively small when pk is small. Moreover, the variables vp are quasi-independent;
that is, the correlations are small, again provided that the primes are small. The variables vp corresponding
to large p are very dependent on each other, for example the event (vp > 0, vq > 0) is impossible if pq > x.
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The model of Kubilius is a sequence of idealized random variables which remove the error terms above,
and is thus easier to compute with. For each prime p, define the random variable Xp that has domain N0

and such that

P(Xp = k) =
1

pk
− 1

pk+1
=

1

pk

(
1− 1

p

)
(k = 0, 1, 2, . . .).

Furthermore, the variables Xp are all independent. If y is small compared with x, we expect that the random
vector

Xy = (Xp : p 6 y)

has distribution close to that of the random vector

Vy = (vp : p 6 y).

Again, Vy depends on x as well.
Recall the definition (4.1) of the total variation distance and the basic identity (4.2).

Lemma 4.4. We have

dTV (Xy,Vy) =
∑

P+(m)6y

max

(
0,
ζy
m
− 1

bxc
Φ
( x
m
, y
))

, ζy =
∏
p6y

(
1− 1

p

)
.

Proof. (cf. Tenenbaum [64]). Fix u = (up : p 6 y) and write m =
∏
p6y p

up . Then

P(Xy = u) =
∏
p6y

P(Xp = up) =
∏
p6y

1

pup

(
1− 1

p

)
=
ζy
m

and
Px (Vy = u) =

1

bxc
#{` ∈ N : m` 6 x, P−(`) > y} =

1

bxc
Φ
( x
m
, y
)
. �

The lemma follows from (4.2).

Theorem 4.5 (Kubilius model approximation). Let 2 6 y 6 x. Then

dTV (Xy,Vy)� exp
{
− log x

5 log y

}
.

Proof. Let δ = 1/(5 log y), so that 0 < δ 6 1/3. Let m satisfy P+(m) 6 y. If m 6 x/y2 then Theorem
3.11 implies that

Φ
( x
m
, y
)

=
x

m
ζy

(
1 +O(e−δ log(x/m))

)
.

For m > x/y2 we’ll just use the trivial bound

max

(
0,
ζy
m
− 1

bxc
Φ
( x
m
, y
))
6
ζy
m
.

Thus, for all m we have

max

(
0,
ζy
m
− 1

bxc
Φ
( x
m
, y
))
� ζy

m
e−δ log(x/m) =

ζy
xδm1−δ .

By Lemma 4.4,

dTV (Xy,Vy)� ζyx
−δ

∑
P+(m)6y

m−1+δ

= ζyx
−δ
∏
p6y

(
1 +

1

p1−δ +
1

p2−2δ
+ · · ·

)

� x−δ

log y
exp

{∑
p6y

pδ

p

}
.
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Since pδ = 1 +O(δ log p), Mertens’ estimates (0.5) and (0.6) imply that the final sum on p is log2 y +O(1).
The theorem follows. �

We next use the Kubilius model to show that prime factors have an approximate Poisson distribution.
There are two complications. First, as with permutations, large prime factors (those > xc for some fixed
c > 0) cannot be Poisson distributed because they are highly dependent on each other, and the number of
such factors is limited (trivially bounded by 1/c). Secondly, and unlike the case of permutations, the small
prime factors also cannot be Poisson distributed (that is, as x → ∞). Take the case ω(n, 2), which equals
0 or 1, each with probability tending to 1

2 as x → ∞. Likewise, for fixed t, ω(n, t) takes only finitely many
values and thus cannot approach a Poisson limit as x → ∞. Hence, in the result stated below, the Poisson
approximation reveals itself only when “intermediate prime factors” of n are dominant, that is, those in an
interval (y, z] where y →∞ and log z

log x → 0 as x→∞. For a set T of primes, denote

UT =
∑
p∈T

1(Xp > 1), WT =
∑
p∈T

Xp

which, in the Kubilius model, are model for ω(n;T ) and Ω(n;T ), respectively. Since E1(Xp > 1) = 1/p and
EXp = 1/(p− 1) we have

(4.3) EUT = H(T ), EWT = H ′(T ) :=
∑
p∈T

1

p− 1
.

Define also

H ′′(T ) :=
∑
p∈T

1

p2
.

Theorem 4.6. Let T be a finite subset of the primes, and suppose either Y = UT or Y = WT . Let
H = EY , using the formulas (4.3). Let Z d

= Pois(H). Then

P (Y = k)− P(Z = k)�

{
H ′′(T )H

k

k! e−H
(

1
k+1 +

(
k−H
H

)2)
0 6 k 6 1.9H

H ′′(T )e0.9H(1.9)−k k > 1.9H.

Proof. Write H ′′ = H ′′(T ). When k = 0, P(Z = 0) = e−H and

P(Y = 0) = P(∀p ∈ T : Xp = 0) =
∏
p∈T

(
1− 1

p

)
= e−H+O(H′′) = e−H(1 +O(H ′′)),

and the desired inequality follows.
For k > 1, we work with moment generating functions. For any complex s, (0.11) implies

(4.4) E sZ = e(s−1)H .

If Y = UT , then H = H(T ), and uniformly for complex s with |s| 6 2 we have

E sUT =
∏
p∈T

E s1(Xp>1) =
∏
p∈T

(
1 +

s− 1

p

)
= e(s−1)H+O(|s−1|2H′′) = e(s−1)H

(
1 +O

(
|s− 1|2H ′′(T )

))(4.5)

If Y = WT then H = H ′(T ) and uniformly for |s| 6 1.9 we have

E sWT =
∏
p∈T

E sXp =
∏
p∈T

(
1 +

s− 1

p− s

)
=
∏
p∈T

(
1 +

s− 1

p− 1
+

(s− 1)2

(p− 1)(p− s)

)
= e(s−1)H+O(|s−1|2H′′) = e(s−1)H

(
1 +O(|s− 1|2H ′′(T ))

)
.

(4.6)
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Then, for any 0 < r 6 1.9, (4.4), (4.5) and (4.6) imply

P(Y = k)− P(Z = k) =
1

2πi

∮
|s|=r

E sY − E sZ

sk+1
dz

=
1

rk

∫ 1

0

e−2πikθ
[
E (re2πiθ)Y − E (re2πiθ)Z

]
dθ

� H ′′

rk

∫ 1/2

0

∣∣re2πiθ − 1
∣∣2e(r cos(2πθ)−1)H dθ.

Now, for 0 6 θ 6 1
2 ,

r cos(2πθ)− 1 = r − 1− 2r sin2(πθ) 6 r − 1− 8rθ2

and ∣∣re2πiθ − 1
∣∣2 = (r − 1− 2r sin2(πθ))2 + sin2(2πθ)� (r − 1)2 + θ2,

so we obtain

P(Y = k)− P(Z = k)� H ′′
e(r−1)H

rk

∫ 1/2

0

(|r − 1|2 + θ2)e−8rθ2H dθ

� H ′′
e(r−1)H

rk

(
|r − 1|2√
1 + rH

+
1

(1 + rH)3/2

)
.

(4.7)

When 1 6 k 6 1.9H, we take r = k/H in (4.7) and obtain, using Stirling’s formula,

P(Y = k)− P(Z = k)� H ′′
Hkek−H

kk

(
|k/H − 1|2

k1/2
+

1

k3/2

)
� H ′′

e−HHk

k!

(∣∣∣∣k −HH
∣∣∣∣2 +

1

k

)
.

This completes the proof when k 6 1.9H.
When k > 1.9H we take r = 1.9 and the result follows in this case as well from (4.7). �

Theorem 4.7. Let T be a finite subset of the primes. Then

dTV
(
UT ,Pois(H(T ))

)
� H ′′(T )

1 +H(T )

and

dTV
(
WT ,Pois(H ′(T ))

)
� H ′′(T )

1 +H(T )
,

Proof. Let Y ∈ {UT ,WT }. If Y = UT , letH = H(T ) and if Y = WT , letH = H ′(T ). Let Z d
= Pois(H).

Again, write H ′′ = H ′′(T ). From (4.2),

dTV (Y,Z) 6
∞∑
k=0

∣∣P(Z = k)− P(Y = k)
∣∣.

Consider two cases. First, if H 6 2, we have by Theorem 4.6,

dTV (Y, Z)� H ′′ +
∑

k>1.9H

H ′′(1.9)−k � H ′′.

If H > 2, Theorem 4.6 likewise implies that∑
k>1.9H

|P(Y = k)− P(Z = k)| � H ′′
∑

k>1.9H

e0.9H

(1.9)k
� H ′′e−0.3H
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and also ∑
k61.9H

|P(Y = k)− P(Z = k)| � H ′′e−H
∞∑
k=0

Hk

k!

[
1

k + 1
+
k(k − 1) + k − 2kH +H2

H2

]

= H ′′e−H
[ ∞∑
k=0

Hk

(k + 1)!
+

∞∑
k=2

Hk−2

(k − 2)!
+

1

H

∞∑
k=1

Hk−1

(k − 1)!
+

− 2

∞∑
k=1

Hk−1

(k − 1)!
+

∞∑
k=0

Hk

k!

]

= H ′′e−H
[

eH − 1

H
+ eH +

eH

H
− 2eH + eH

]
� H ′′

H
.

This proves the bound when H > 2, upon noting that H ′(T ) � H(T ). �

We can use Theorem 4.6 to deal with prime factors in an arbitrary collection of subsets, by a simple com-
binatorial device. The following is a consequence of Exercise 4.1. Here ZTi

d
= Pois(H(Ti)), and ZT1

, . . . , ZTm
are independent.

Corollary 4.8. Let T1, . . . , Tm be disjoint sets of primes. Then

dTV ((UT1
, . . . , UTm), (ZT1

, . . . , ZTm))�
m∑
j=1

H ′′(Tj)

max(1, H(Tj))
.

Combining this Corollary with the Kubilius model (Thm. 4.5), we conclude that the “intermediate” (not
too small and not too large) prime factors of an integer are “Poisson distributed”.

Theorem 4.9. Let 2 6 y 6 x, and let T1, . . . , Tm be disjoint sets of primes 6 y. Then

dTV ((ω(n;T1), . . . , ω(n;Tm)), (ZT1 , . . . , ZTm))�
m∑
j=1

H ′′(Tj)

max(1, H(Tj))
+O

(
e−

log x
5 log y

)
.

Proof. Let ω = (ω(n;T1), . . . , ω(n;Tm)), U = (UT1
, . . . , UTm) and Z = (ZT1

, . . . , ZTm) By the triangle
inequality for dTV , which follows easily from the definition (4.1), we have

dTV (ω,Z) 6 dTV (ω,U) + dTV (U,Z)

6 dTV (Vy,Xy) + dTV (U,Z).

The theorem now follows by combining Theorem 4.5 with Corollary 4.8. �

3. Exercises

Exercise 4.1. (a) Prove that ifX1, . . . , Xm are independent discrete random variables, and Y1, . . . , Ym
are independent discrete random variables (with Yj having the same domain as Xj), then

dTV ((X1, . . . , Xm), (Y1, . . . , Ym)) 6
m∑
j=1

dTV (Xj , Yj).

(b) Let Xj
d
= Pois(λj) for 1 6 j 6 m, where 0 < λj 6 1 for each j. Also suppose that Yj is a Bernouilli

random variable, with P(Yj = 0) = 1− λj , P(Yj = 1) = λj for each j. Show that

dTV ((X1, . . . , Xm), (Y1, . . . , Ym))�
m∑
j=1

λ2
j .
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Exercise 4.2. For each j ∈ N, let Zj be Poisson with parameter 1/j, and Z1, Z2, . . . independent.
(a) Show that P(Zj 6 1 ∀j) = e−γ .
(b) Let An be the probability that a random σ ∈ Sn has distinct cycle sizes. Prove that lim

n→∞
An = e−γ .

(This is a result of Lehmer from 1972).

Exercise 4.3. Let 2 6 y 6 x, and let T1, . . . , Tm be disjoint sets of primes 6 y. Then

dTV ((Ω(n;T1), . . . ,Ω(n;Tm)), (ZT1
, . . . , ZTm))�

m∑
j=1

H ′′(Tj)

max(1, H(Tj))
+O

(
e−

log x
5 log y

)
.



CHAPTER 5

Central Limit Theorems

1. Gaussian approximation of Poisson variables

It is well-known that, as λ→∞ that Pois(λ) approaches a Gaussian distribution. This is a special case
of the Central Limit Theorem. Below we record a quantitative version with explicit error term, and provide
an elementary proof.

Proposition 5.1 (Poisson CLT). Uniformly for real λ > 1, X d
= Pois(λ), and real z, we have

P
(
X 6 λ+ z

√
λ
)

= Φ(z) +O
(
λ−1/2

)
,

where

Φ(z) =
1√
2π

∫ z

−∞
e−

1
2 t

2

dt

is the distribution function of the standard Gaussian distribution.

Proof. We may assume that λ is sufficiently large. Let h∗ = 3
√
λ log(1 + λ). First observe that by the

Poisson Tails Proposition 0.3 and the crude bounds for Q(x) (0.16), we have

P(|X − λ| > h∗) 6 2e−3 log(1+λ) =
2

(1 + λ)3
.

Likewise,

(5.1)
∫

|t|>3
√

log(1+λ)

e−
1
2 t

2

dt� 1

(1 + λ)3
.

Consequently, we may assume that |z| 6 h∗, and deduce

P
(
X 6 λ+ z

√
λ
)

= e−λ
∑

λ−h∗6k6λ+z
√
λ

λk

k!
+O

(
1

λ3

)
.

For |k − λ| 6 h∗, Stirling’s formula implies that

k! =

(
k

e

)k√
2πλ

(
1 +O

(
|k − λ|+ 1

λ

))
.

Write k = λ+ u. Then, for |u| 6 h∗, we have

e−λ
λk

k!
=

1 +O
(
|u|+1
λ

)
√

2πλ
e−λ

(
eλ

λ+ u

)λ+u

=
1 +O

(
|u|+1
λ

)
√

2πλ

eu

(1 + u/λ)λ+u

=
1 +O

(
|u|+1
λ

)
√

2πλ
exp

{
u− (λ+ u)

(
u

λ
− 1

2

(u
λ

)2

+O

((u
λ

)3
))}

=

(
1 +O

(
1 + |u|
λ

+
|u|3

λ2

))
e−

u2

2λ

√
2πλ

.
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It follows that

e−λ
∑

λ−h∗6k6λ+z
√
λ

λk

k!
= M + E,

where
M =

1√
2πλ

∑
λ−h∗6k6λ+z

√
λ

e−
(k−λ)2

2λ

and

E � 1√
λ

∑
k

(
1 + |k − λ|

λ
+
|k − λ|3

λ2

)
e−
|k−λ|2

2λ .

For some integer a > 1 we have (a− 1)
√
λ 6 |k − λ| 6 a

√
λ. Summing over all a gives

E �
∞∑
a=1

(
a+ a3

√
λ

)
e−(a−1)2/2 � 1√

λ
.

By Euler summation,

M =
1√
2πλ

[∫ λ+z
√
λ

λ−h∗
e−

(t−λ)2
2λ dt−

∫ λ+z
√
λ

λ−h∗
{t}
(
t− λ
λ

)
e−

(t−λ)2
2λ dt+O(1)

]
.

The integral involving {t} is O(1). The first equals, by (5.1),
√
λ

∫ z

−3
√

log(1+λ)

e−
1
2u

2

du =
√
λ

∫ z

−∞
e−

1
2u

2

du+O(λ−5/2),

and hence

M =
1√
2π

∫ z

−∞
e−

1
2u

2

du+O

(
1√
λ

)
= Φ(z) +O

(
1√
λ

)
.

The proof is complete. �

2. Central Limit Theorems for cycles

Combining Theorem 4.3 with the Central Limit Theorem for Poisson variables (Theorem 5.1 below)
establishes a Central Limit Theorem for the count of cycles whose lengths lie in an arbitrary set I ⊂ [n].

Theorem 5.2. Let I ⊂ [n]. Uniformly for all I and any real w,

Pσ∈Sn
(
CI(σ) 6 H(I) + w

√
H(I)

)
= Φ(w) +O

(
log(2H(I))√

H(I)

)
.

Proof. Let H = H(I). We may assume that H > 100, otherwise the claim is trivial. If |w| >
√

3 logH
then the result follows from Corollary 1.12, since the left side is thus O(1/H) = Φ(w) + O(1/H) if w 6
−
√

3 logH and is 1−O(1/H) = Φ(w) +O(1/H) if w >
√

3 logH. Suppose now that |w| <
√

3 logH, let

A = H + w
√
H, m =

⌈
n

5 logH

⌉
, J = I ∩ [m].

Because
H(I \ J) =

∑
m<k6n
k∈I

1

k
6 H((m,n] ∩ N) 6 log logH +O(1)

we have H(J) = H +O(log logH). Thus,

A = H(J) + w′
√
H(J), w′ = w +O

(
log logH√

H

)
.
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Let Y be a Poisson random variable with parameter H(J). Thus, by Theorem 4.3 and Proposition 5.1,

Pσ(CI(σ) 6 A) 6 Pσ(CJ(σ) 6 A)

= P(Y 6 A) +O(e−n/5m)

= Φ(w′) +O
(
H(J)−1/2 + e−n/5m

)
= Φ(w′) +O

(
1√
H

)
= Φ(w) +O

(
log logH√

H

)
.

We also have

A− 5 logH = H(J) + w′′
√
H(J), w′′ = w +O

(
logH√
H

)
and it follows that

Pσ(CI(σ) 6 A) > Pσ
(
CJ(σ) 6 A− 5 logH and CI\J(σ) 6 5 logH

)
= Pσ (CJ(σ) 6 A− 5 logH) ,

since min(I \ J) > m > n/(5 logH) implies that CI\J(σ) 6 5 logH always. Hence, by Theorem 4.3 and
Lemma 5.1,

Pσ(CI(σ) 6 A) > Φ(w′′) +O(1/
√
H)

= Φ(w) +O

(
logH√
H

)
.

The theorem follows by combining the upper and lower bounds for P(CI(σ) 6 A). �

The special case I = [n] was established by Goncharov [39], without a specific rate of convergence.
Goncharov analyzed carefully the asymptotics of the Stirling number of the first kind, s(n,m), the absolute
value of which counts the number of permutations σ ∈ Sn with C(σ) = m. Since Hn = log n+O(1) and Φ
has bounded derivative, we quickly arrive at the following.

Theorem 5.3. Let n > 100 and w be real. Then

Pσ∈Sn
(
C(σ) 6 log n+ w

√
log n

)
= Φ(w) +O

(
log2 n√

log n

)
.

Proof. Letting log n+ w
√

log n = Hn + w′
√
Hn, we have

w − w′ � 1√
log n

.

Hence,

Pσ
(
C(σ) 6 log n+ w

√
log n

)
= Φ(w′) +O

(
logHn√
Hn

)
= Φ(w) +O

(
log2 n√

log n

)
. �

The big-O term in Theorem 5.2 cannot be made smaller than 1/
√
H(I) since CI(σ) is integer valued,

and thus the left side is constant in intervals of w of length 1/
√
H(I), while Φ′(w)� 1 if w is bounded. We

remark that when H(I) is bounded, CI(σ) is expected to have Poisson distribution with small parameter,
and this cannot be approximated by a Gaussian.

We also derive that the j-th smallest cycle of σ, denoted Dj(σ) (with ties allowed), also obeys the
Gaussian law, refining Theorem 1.22.
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Theorem 5.4. Uniformly for j in the range

1 6 j 6 log n−
√

(log n) log log n

and for any real w,

Pσ∈Sn
(

logDj(σ) 6 j + w
√
j
)

= Φ(w) +O

(
log(2j)√

j

)
.

Proof. Wemay assume that j > 10 and that n is sufficiently large, the statement being trivial otherwise.
We may also assume that |w| 6

√
log j, since the statement for w outside this range follows from the

monotonicity of P(logDj(σ) 6 j + w
√
j), as a function of w, the statement for the two points w = ±

√
log j

and the fact that Φ(−
√

log j)� 1/j1/2 and Φ(
√

log j) = 1−O(1/j1/2).
Let k =

⌊
ej+w

√
j
⌋
, so by hypothesis,

log k 6 j +
√
j log j 6 j +

√
(log n) log log n 6 log n.

Then Dj(σ) 6 k is equivalent to C[k](σ) > j. As Hk = log k +O(1) and
√
Hk =

√
j +O(|w|+ 1), we have

j − 1 = Hk − u
√
Hk, where u = w +O

(
w2 + 1√

j

)
.

By Theorem 5.2,

Pσ(Dj(σ) 6 k) = Pσ(C[k](σ) > j)

= 1− Pσ(C[k](σ) 6 j − 1)

= 1− Φ(−u) +O

(
logHk√
Hk

)
= Φ(u) +O

(
log(2j)√

j

)
.

Also,

Φ(u) = Φ(w) +O

(
w2 + 1√

j

)
= Φ(w) +O

(
log(2j)√

j

)
and the proof is complete. �

3. Central Limit theorems for prime factors

Theorem 5.5 (Prime factors CLT). Suppose that T is a subset of the primes in [2, x]. For any
real w,

Px
(
ω(n;T ) 6 H(T ) + w

√
H(T )

)
= Φ(w) +O

(
log(2H(T ))√

H(T )

)
.

Proof. Let H = H(T ). Assume H > 100, else the conclusion is trivial. As in the proof of Theorem
5.2, the conclusion in the case |w| >

√
3 logH follows from Theorem 1.13 and Proposition 0.3.

Suppose now that |w| <
√

3 logH, let

A = H + w
√
H, y = x1/(5 logH), J = T ∩ [2, y].

Because
H(T \ J) 6

∑
y<p6x

1

p
6 log logH +O(1)

we have H(J) = H +O(log logH). Thus,

A = H(J) + w′
√
H(J), w′ = w +O

(
log logH√

H

)
.
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Let Y be a Poisson random variable with parameter H(J). Thus, by Theorem 4.9 and Proposition 5.1,

Px(ω(n;T ) 6 A) 6 Px(ω(n; J) 6 A)

= P(Y 6 A) +O(1/H)

= Φ(w′) +O

(
1√
H

)
= Φ(w) +O

(
log logH√

H

)
.

We also have
A− 5 logH = H(J) + w′′

√
H(J), w′′ = w +O

(
logH√
H

)
and it follows that

Px(ω(n;T ) 6 A) > Px
(
ω(n; J) 6 A− 5 logH and ω(n;T \ J) 6 5 logH

)
= Px (ω(n; J) 6 A− 5 logH) ,

since min(T \ J) > y implies that ω(n;T \ J) 6 5 logH always. Hence, by Theorem 4.9 and Lemma 5.1,

Px(ω(n;T ) 6 A) > Φ(w′′) +O(1/
√
H)

= Φ(w) +O

(
logH√
H

)
.

The theorem follows by combining the upper and lower bounds for P(ω(n;T ) 6 A).
�

We remark that an error term H(T )−1/2 is best possible; in fact, the erro term may be replaced by
an asymptotic expansion in powers of H(T )−1/2; this is a consequence of a general theory of CLT-type
expansions for sums of random variables; see [38].

As with cycles of permutations, we may extend this to handle the distribution of all prime factors of
integers, or any function ω(n, T ) where the large prime factors contribute ‘negligibly’. The following is a
quantitative version of the famous theorem of Erdős and Kac [28].

Theorem 5.6 (CLT for all prime factors). For any real w,

Px
(
ω(n) 6 log2 x+ w

√
log2 x

)
= Φ(w) +O

(
log3 x

(log2 x)1/2

)
.

Proof. Let P be the set of all primes 6 x, H = H(P ), and

log2 x+ w
√

log2 x = H + w′
√
H.

Since H = log2 x+O(1), we have w − w′ � (log2 x)−1/2. Thus, by Theorem 5.5,

Px
(
ω(n) 6 log2 x+ w

√
log2 x

)
= Φ(w′) +O

(
logH

H

)
= Φ(w) +O

(
log3 x

(log2 x)1/2

)
. �

An error term of O((log2 x)−1/2) in Theorem 5.6 is best possible (cf. work of Rényi-Turán, Delange and
Kubilius in the late 1950s/early 1960s).

We also derive that the j-th smallest distinct prime factor of n, denoted pj(n), also obeys the Gaussian
law, refining Theorem 1.21.

Theorem 5.7. Uniformly for j in the range

1 6 j 6 log2 x−
√

(log2 x) log3 x

and for any real w, we have

Px
(

log2 pj(n) 6 j + w
√
j
)

= Φ(w) +O

(
log(2j)√

j

)
.
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A version of this, without a rate of convergence, was proved by Galambos [37].

4. Exercises

Exercise 5.1. Prove the following variant of Theorem 5.5: Suppose that T is a subset of the primes
in [2, x]. For any real w,

Px
(

Ω(n;T ) 6 H(T ) + w
√
H(T )

)
= Φ(w) +O

(
log(2H(T ))√

H(T )

)
.

Exercise 5.2. Prove Theorem 5.7.

Exercise 5.3. (a) Let T1, T2 be disjoint sets of primes 6 x. Show that, uniformly for all real w1, w2,

Px
(
ω(n;T1) 6 H(T1) + w1

√
H(T1), ω(n;T1) 6 H(T1) + w2

√
H(T1)

)
= Φ(w1)Φ(w2)+

O

(
log(2H(T1))√

H(T1)
+

log(2H(T2))√
H(T2)

)
.

(b) Let T1 denote the set of primes 6 x that are 1 mod 4, and let T2 denote the set of primes 6 x that
are 3 mod 4. Show that

Px
(
ω(n;T1) 6 1

2 log2 x+ w1

√
1
2 log2 x, ω(n;T2) 6 1

2 log2 x+ w2

√
1
2 log2 x

)
= Φ(w1)Φ(w2)+O

(
log3 x√
log2 x

)
.

Exercise 5.4. (Galambos, 1976 [37]). Fix ε > 0 and z ∈ R. Show that if j = j(x) → ∞ as x → ∞
and j(x) 6 (1− ε) log2 x, then

Px
(

log2 pj+1(n)− log2 pj(n) 6 z
)
→ 1− e−z (x→∞).

Exercise 5.5. Fix ε > 0 and z ∈ R. Show that if j = j(n)→∞ as n→∞ and j(n) 6 (1− ε) log n,
then

Pσ∈Sn
(

logDj+1(σ)− logDj(σ) 6 z
)
→ 1− e−z (n→∞).

This matches the spacing distribution of points in a Poisson process.



CHAPTER 6

The concentration of divisors of integers and permutations

1. Concentration of divisors

Erdős conjectured [24] in 1948 that almost all integers have two divisors d and d′ with d < d′ < 2d.
This may seem counterintuitive, given that we have already shown (cf. Theorem 1.21) that a typical integer
has about 2j divisors less than eej , and hence the k-th smallest divisor of a typical integer, for k large, is
about exp{k1/ log 2}. Hence, one may be led to believe that dk+1/dk →∞ for a typical n, as long as k →∞
(and τ(n) − k → ∞ by symmetry). This, however, is faulty reasoning, as (i) as we see in Theorem 5.7,
there is a very large “normal” range of deviation for each prime pj(n), on a log log-scale; however having two
close prime factors is genuinely rare (see Exercise 1.5). Also, (ii) divisors form from combinations of prime
factors in complicated ways, which lack the “independence” of prime divisors. Erdős proved [24] that the set
{n ∈ N : ∃d, d′|n with d < d′ < 2d} has asymptotic density, say δ. Note that δ > 1/6 because 2 < 3 < 2 · 2.
The question whether δ = 1 would remain open for another 36 years.

Working heuristic: Assume that the set {log(d′/d) : dd′|n, (d, d′) = 1} ⊂ [− log n, log n] is well-
distributed for a typical integer n. Since #{(d, d′) : dd′|n, (d, d′) = 1} > 3ω(n), we expect that

|{dd′|n : (d, d′) = 1, | log(d′/d)| 6 σ}| ≈ 3ω(n) σ

log n
.

The right hand side above is at least 1 for σ & (log n)3−ω(n) ≈ (log n)1−log 3 = o(1).

Maier and Tenenbaum proved that this heuristic is in fact close to the truth.

Theorem 6.1 (Maier, Tenenbaum, 1984 [52]). Fix ε > 0. Then almost all integers n have
two divisors d and d′ such that

d < d′ < d
(
1 + (log n)1−log 3+ε

)
.

It is possible to show more, that for almost all n there are intervals (y, ey] containing many divisors of
n. We define the Erdős-Hooley ∆-function

∆(n) := max
t

#{d|n, log d ∈ (t, t+ 1]},

that is to say the maximum number of divisors n has in any interval of logarithmic length 1. Its normal
order (almost sure behavior) has proven quite mysterious. Work on the distibution of ∆(n) began with Erdős
[18], Erdős and Nicolas [20, 21] and Hooley [48] in the 1970s. Further work on the normal and average
behavior of ∆(n) can be found in works of Tenenbaum [62, 63], Hall and Tenenbaum [42, 43, 44], Maier
and Tenenbaum [52, 53, 54], and most recently Ford, Green and Koukoulopoulos [36]. See also [45, Ch.
5,6,7]. Tenenbaum’s survey paper [65, p. 652–658] includes a history of the function ∆(n) and description
of many applications in number theory.

The best bounds for ∆(n) for “normal” n currently known were obtained in papers of Maier and Tenen-
baum [54] (upper bound) and Ford, Green and Koukoulopoulos [36] (lower bound). For almost all n we
have

(6.1) (log2 n)η−o(1) 6 ∆(n) 6 (log2 n)log 2+o(1),

where η = 0.35332277270132346711 . . . is a specific constant.
In this section, we prove a weaker lower bound, recovering the bound proved by Maier and Tenenbaum

[52].
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Theorem 6.2. Fix ε > 0. For almost all n we have ∆(n) > (log log n)η1−ε, where

η1 =
log 2

log
(

log 3
log 3−1

) = 0.2875404895 . . .

The same argument will provide a measure of the concentration of divisors of random permutations.

Theorem 6.3. For a permutation σ on Sn, denote by

∆(σ) := max
r

#{τ |σ : |τ | = r}.

Then, for all but o(n!) of the permutations σ ∈ Sn, we have

∆(σ) > (log n)η1−o(1).

Here the terms o(1) refer to functions that → 0 as n→∞.

2. A random model of prime factors and cycle lengths

As we have seen by Theorem 4.2, the number of cycles of size i in a random permutation is well-
approximated by a Pois(1/i) variable. Also, by Theorem 4.9, ω(n;T ) is well approximated by Pois(H(T ))
for a set T of primes which are 6 xo(1) and not ”too thin”. In particular, if i is much larger than K and T
is the set of primes in (ei/K , e(i+1)/K ] then by Mertens’ Theorem (0.5), H(T ) ≈ 1/i and hence ω(n;T ) is
well-approximate by Pois(1/i). In turn, when i is large, by Exercise 4.1 (b), Pois(1/i) is well-approximated
by a Bernouilli random variable Y with P(Y = 1) = 1/i. This motivates the following random model.

Definition 6.4. We define A to be the random set of positive integers such that P(i ∈ A) = 1/i for
each i, and the events i ∈ A are independent for different values of i. That is, if Y1, Y2, . . . are independent
Bernouilli random variables with P (Yi = 1) = 1/i for each i, then A = {i : Yi = 1}.

The property that an integer has k close divisors can be modeled by the event that A has k equal subset
sums.

Definition 6.5. Let k > 2 be an integer. Let βk be the supremum of all exponents c < 1 for which
the following is true with probability → 1 as D →∞: there are distinct sets A1, · · · , Ak ⊂ A∩ [Dc, D] with∑

a∈A1

a = · · · =
∑
a∈Ak

a.

It is not a priori obvious that βk exists. We will establish this later in Theorem 6.9. In particular, we
have 0 < βk < 1/10 for all k.

Define

(6.2) ζk =
log k

log(1/βk)
.

Theorem 6.6 ([36]). Fix k > 2 and ε > 0. For almost every positive integer n, we have

∆(n)� (log log n)ζk−ε.

Theorem 6.7 ([36]). Fix k > 2 and ε > 0. Then, for all but on→∞(n!) of the permutations σ ∈ Sn,
we have

∆(σ) > (log n)ζk−ε.

We also prove a more general version of Theorem 6.1. Define αk be the supremum of all real numbers
α such that for almost every n ∈ N, n has k divisors d1 < · · · < dk with dk 6 d1(1 + (log n)−α). In 1964,
Erdős [17] conjectured that α2 = log 3 − 1, and this was confirmed by Erdős and Hall [19] (upper bound)
and Maier and Tenenbaum [52] (lower bound). Maier and Tenenbaum [54] showed that

αk 6
log 2

k + 1
(k > 3)
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and (this is not stated explicitly in [54])

(6.3) αk >
(log 3− 1)m3m−1

(3 log 3− 1)m−1
(2m−1 < k 6 2m,m ∈ N).

See also [65, p. 655–656]1. In particular, it is not known if α3 > α4, although Tenenbaum [65] conjectures
that the sequence (αk)k>2 is strictly decreasing. Ford, Green and Koukoulopoulos connected αk to the
constant βk from the random model.

It is easy to see that for any k > 2, αk 6 α2 6 1. Indeed, αk 6 α2 is obvious. Let δ = (log x)−1−ε for
arbitrary fixed ε > 0. If n has two divisors d, d′ with d < d′ 6 d(1 + δ), then WLOG there exist two such
divisors with (d, d′) = 1, hence dd′|n. Thus, the number of n 6 x divisible by two such divisors is at most∑

1/δ6d6
√
x

∑
d<d′6d(1+δ)

x

dd′
6 x

∑
1/δ<d6

√
x

dδ

d2
� δx log x = o(x)

as x→∞. This proves α2 6 1.

Theorem 6.8 ([36]). For all k > 2, αk > βk/(1− βk).

The authors in [36] conjecture the corresponding upper bound αk 6 βk/(1− βk). The methods of [36]
allow one to compute βk for any k using a finite procedure. In particular, we have

β3 =
log 3− 1

log 3 + 1
ξ

= 0.02616218797316965133 . . .

and
β4 =

log 3− 1

log 3 + 1
ξ + 1

ξλ

= 0.01295186091360511918 . . .

where
ξ =

log 2− log(e− 1)

log(3/2)
, λ =

log 2− log(e− 1)

1 + log 2− log(e− 1)− log(1 + 21−ξ)
.

In [36] it is also proved that
sup
k>2

ζk > η = 0.3533227727 . . .

which, combined with Theorem 6.6, gives the lower bound in (6.1). The authors of [36] conjecture that
lim supk→∞ ζk = η. Most of the paper [36] is devoted to relating βk to a certain combinatorial optimization
problem, which grows very complex as k increases.

In these notes we will concentrate on the easiest case k = 2 and prove

Theorem 6.9. We have β2 = 1− 1
log 3 = 0.0897607 . . . and, for any k > 2,

βk > β
d log k

log 2 e
2 .

Trivially, βk 6 β2 for all k. Thus, we see that βk exists for all k > 2 and 0 < βk 6 β2 < 1/11 for all k.
Combining Theorem 6.9 with Theorems 6.6 and 6.7 gives Theorems 6.2 and 6.3. Also, combining

Theorems 6.8 and 6.9 gives Theorem 6.1.
It remains to prove Theorems 6.6, 6.7, 6.8, and 6.9.

Further Remarks. The average order of ∆(n) is also rather mysterious, the best known bounds being

log log x 6
1

x

∑
n6x

∆(n) 6 ec
√

log log x,

for some c > 0. The lower bound is due to Hall and Tenenbaum (see [45, Theorem 60]) and the upper bound
is from an unpublished manuscript of Koukoulopoulos which slightly refines a bound of Tenenbaum [62] (see
also [45, Theorem 70]).

1The factor 3m−1 is missing in the stated lower bounds for αk in [65].
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3. Proof of Theorems 6.6, 6.7, and 6.8

In this section we assume Theorem 6.9 and deduce Theorems 6.6, 6.7, and 6.8. In particular, 0 < βk <
1/10 for all k.

We begin with a simple combinatorial argument, first used in a related context in the work of Maier-
Tenenbaum [52], which shows how to use equal subsums in multiple intervals (uc, u] to create many more
common subsums in A. For any finite subset S of positive integers, denote by ΣS the sum of the elements
of S.

Lemma 6.10. Let k > 1 be an integer and fix ε > 0. Let C,D be parameters with log u 6 (log v)o(1)

and u → ∞ as v → ∞. Then, with probability → 1 as v → ∞, there are distinct A1, . . . , AM ⊂ A ∩ (u, v]
with ΣA1 = · · · = ΣAM and M > (log v)ζk−ε.

Proof. Fix δ ∈ (0, βk), depending on ε, set α := βk − δ and assume that v is sufficiently large in terms
of ε, δ. Set

m :=
⌊ log log v − log log u

− logα

⌋
and consider the intervals Ji := (vα

i+1

, vα
i

], i = 0, 1, . . . ,m−1. Due to the choice of m, these all lie in (u, v].
For each i ∈ {0, 1, . . . ,m−1}, let Ei be the event that there are distinct Ai,1, . . . , Ai,k ⊂ Ji with equal sums.
Then, by the definition of βk, if v is large enough then P(Ei) > 1− δ, uniformly in i. These events Ei are all
independent. The Law of Large Numbers then implies that, with probability at least 1−δ, at least (1−2δ)m
of them occur. Suppose we are in this event, suppose that Ei occurs for i ∈ I, where |I| > (1− 2δ)m. Then
there are numbers si, i ∈ I, and sets Ai,1, . . . , Ai,k ⊂ Ji all with sum si.

It is now clear that for each j = {ji : i ∈ I} ∈ [k]I , the set

Bj =
⋃
i∈I

Ai,ji

lies in (u, v] and has sum
∑
i∈I si. Moreover, these sets are distinct. Let M = k|I|, then

M > k(1−2δ)m > k−1

(
log v

log u

)(1−2δ)(log k)/(− logα)

.

Recall the definition (6.2) of ζk. By our assumption on u, and if δ is small enough, the right side is
> (log v)ζk−ε, as required. �

Lemma 6.11. Let x be a large parameter, suppose that

(6.4) 1 6 K 6 (log x)1/2,

and let I = (u, v] ∩ N, where

(6.5) u =
⌊
100K(log2 x)2

⌋
, v =

⌊
K log x

5 log3 x

⌋
− 1.

For i ∈ I, let Ti be the set of primes in (ei/K , e(i+1)/K ], and define the random set

B = {i ∈ (u, v] : ω(n;Ti) > 1}.
Uniformly for any collection I of subsets of I, we have

P(A ∩ I ∈ I ) = Px(B ∈ I ) +O(1/ log2 x).

Proof. For u < i 6 v, let ωi = 1(ω(n;Ti) > 1), Pi
d
= Pois(H(Ti)) (these being independent for different

i) and let Zi = 1(Pi > 1). Each Ti is contained in [log x, y], where y = x1/5 log3 x. Hence, by Theorem 4.9
and (6.5),

dTV (ω,Z)� 1

log2 x
+
∑
i∈I

H ′′(Ti)�
1

log2 x
.



3. Proof of Theorems 6.6, 6.7, and 6.8 63

By the strong form of Mertens’ estimate (0.5),

H(Ti) = log
( i+ 1

K

)
− log

( i
K

)
+O(e−(i/K)1/2) =

1

i
+O

( 1

i2

)
.

Hence, if Yi is a Bernouilli variable with P(Yi = 1) = 1/i, then by Exercise 4.1 (b),

dTV (Z,Y) 6
∑
i∈I

dTV (Zi, Yi)�
∑
i∈I

1

i2
� 1

log2 x
.

By the triangle inequality,

dTV (ω,Y) 6 dTV (ω,Z) + dTV (Z,Y)� 1

log2 x

and the claim follows. �

Proof of Theorem 6.6. Fix ε > 0, let x be large, let K = (log2 x)2 and define u, v by (6.5). Define
B and sets Ti as in Lemma 6.11. Throughout the proof, o(1) means a function → 0 as x → ∞. By
Lemma 6.10, with probability 1− o(1), there are distinct sets A1, . . . , AM of A∩ (u, v] with equal sums and
M > (log2 x)ζk−ε. We also have that with probability 1 − o(1), |A ∩ (u, v]| 6 2 log v. Indeed, by Markov’s
inequality,

P(|A ∩ (u, v]| > 2 log v) = P(2|A∩(u,v]| > 22 log v)

6 v− log 4E 2|A∩(u,v]|

= v− log 4
D∏

j=u+1

(
1− 1

i
+

2

i

)
= (v/u)v− log 4 = o(1) (v →∞).

Let F be the event that A∩ (u, v] has at most 2 log v elements and has M distinct subsets with equal sums.
By the above discussion, P(F ) = 1 + o(1). By Lemma 6.11, the corresponding event F ′ for the random set
B also holds with probability 1− o(1); that is, F ′ is the event that |B ∩ (u, v]| 6 2 log v and that there are
distinct subsets B1, . . . , BM of B with equal sums. If we are in the event F ′ and n is divisible by

∏
b∈B pb,

where pb ∈ Tb for each b ∈ B, then let di =
∏
b∈Bi pb for each i 6M . For 1 6 i < j 6M we have

| log di − log dj | =
∣∣∣ ∑
b∈Bi

log pb −
∑
b∈Bj

log pb

∣∣∣ 6 |Bi|+ |Bj |
K

+
1

K

∣∣∣ ∑
b∈Bi

b−
∑
b∈Bj

b
∣∣∣

=
|Bi|+ |Bj |

K
6

4 log v

K
� 1

log2 x
.

Thus, there are M divisors di of n whose logarithms all lie in a single interval of length O(1/ log2 x) < 1. It
follows that Px(∆(n) >M) = 1− o(1), as required for Theorem 6.6. �

Proof of Theorem 6.7. Fix ε > 0. Let u = log n and v = n/ log n. For each j, let Zj
d
= Pois(1/j),

with Z1, Z2, . . . independent. For a random permutation σ ∈ Sn, let C = {j : Cj(σ) > 1}, and define the
random set Ã = {j : Zj > 1}. By Theorem 4.2, Exercise 4.1 (b), and the triangle inequality, we have

dTV (A ∩ (u, v],C ∩ (u, v]) 6 dTV (A ∩ (u, v], Ã ∩ (u, v]) + dTV (Ã ∩ (u, v],C ∩ (u, v])

= o(1)

as n→∞. By Lemma 6.10, with probability → 1 as n→∞, A ∩ (u, v] has M distinct subsets A1, . . . , AM
with equal sums, where M > (log v)ζk−ε. Hence, C has distinct subsets S1, . . . , SM with equal sums with
probability → 1 as n → ∞. Each subset Sj corresponds to a distinct divisor of σ, the size of the divisor
being the sum of elements of Sj . As ε > 0 is arbitrary, the result follows. �
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Proof of Theorem 6.8. Fix 0 < c < βk
1−βk , so that c < 1/10. Let x be large and set K = (log x)c.

Define u, v by (6.5), let D = v and define c′ by Dc′ = u. By assumption,

c′ ∼ c

c+ 1
(x→∞)

and therefore there is a δ > 0 so that c′ 6 βk − δ for sufficiently large x. Let n be a random integer chosen
uniformly in [1, x]. With probability → 1 as x→∞, ω(n) 6 2 log2 x (e.g., Theorem 1.8). By the definition
of βk and Lemma 6.11, with probability 1 − o(1), the set B defined in that Lemma has k distinct subsets
B1, . . . , Bk with equal sums. For each b ∈ B, let pb be a prime factor of n lying in Tb. Let di =

∏
b∈Bi pb,

for 1 6 i 6 k. We have ∣∣∣ ∑
b∈Bi

log pb −
∑
b∈Bj

log pb

∣∣∣ 6 |Bi|+ |Bj |
K

6
4 log2 x

(log x)c
.

Thus,

max(dj) 6 min(dj) exp

{
O

(
log2 x

(log x)c

)}
= min(dj)

(
1 +O

(
log2 x

(log x)c

))
.

Since c is arbitrary subject to c < βk/(1− βk), we conclude that αk > βk/(1− βk). �

It remains to prove Theorem 6.9, which we accomplish in the next section.

4. Proof of Theorem 6.9

Our proof use the method introduced by Maier and Tenenbaum in [52], adapted to the random set A.
This can be thought of as a ‘global-to-local’ principle, where the local behavior of divisor ratios is deduced
from a result about the global distribution of ratios. A similar principle will be utilized in the study of
integers with a divisor in a given interval.

It is easy to see the claimed lower bound on βk given that β2 exists, following the idea in Lemma 6.10.
Indeed, fix very small ε > 0 and m ∈ N, and set α = β2 − ε. Let D be large and set Ii = (Dαi , Dαi−1

]
for 1 6 i 6 m. By the definition of β2, with probability → 1 as D → ∞ there are distinct sets Ai,j ∈ Ii,
1 6 i 6 m, 1 6 j 6 2 such that

ΣAi,1 = ΣAi,2 (1 6 i 6 m).

It follows that the 2m sets Bj =
⋃m
i=1Ai,ji , where j = (j1, . . . , jm) ∈ {1, 2}m, all have equal sums. It follows

that β2m > αm. As ε is arbitrary, β2m > βm2 . The claim now follows from the obvious fact that (βk)∞k=2 is a
decreasing sequence (k + 1 equal subset sums implies k equal subset sums).

It thus remains to establish the value of β2. First, we show that |A ∩ I| ≈ H(I) with high probability.

Lemma 6.12. Let I be a finite set of positive integers, and 1 6 θ 6
√
H(I). Then

P
(∣∣|A ∩ I| −H(I)

∣∣ > θ√H(I)
)
6 2e−

1
3 θ

2

.

Proof. Let H = H(I). By hypothesis, H > 1. For any λ > 0 we have

Eλ|A∩I| =
∏
j∈I

(
1 +

λ− 1

j

)
6 e(λ−1)H .

Take λ = 1 + θ/
√
H. Then

P
(
|A ∩ I| > H + θ

√
H
)
6 Eλ|A∩I|−H−θ

√
H

1

6 λ−H−θ
√
H

1 e(λ1−1)H = e−Q(λ1) 6 e−
1
3 θ

2

using (0.4) at the last step. Similarly, if λ2 = 1− θ/
√
H then

P
(
|A ∩ I| 6 H − θ

√
H
)
6 Eλ|A∩I|−H+ψ

√
H

2 6 e−Q(λ2) 6 e−
1
3 θ

2

. �
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Lemma 6.13. Given 1 6 C < D, ψ > 1 and 0 < ε 6 1, the probability that both∣∣∣#(A ∩ (C, v]
)
− log(v/C)

∣∣∣ 6 ε log(v/C)) (Ceψ 6 v 6 D),∣∣∣#(A ∩ (u,D]
)
− log(D/u)

∣∣∣ 6 ε log(D/u) (C 6 u 6 De−ψ)

is > 1−Oε(e−(1/3)ε2ψ).

Proof. The probability in question is at least 1 minus the probability that

(6.6)
∣∣∣#A ∩ (ek, el]− (l − k)

∣∣∣ > ε(l − k)− 4

for some k, l ∈ N with either k = blogCc and k + ψ − 1 6 l 6 logD + 1 or l = blogDc + 1 and logC −
1 6 k 6 l − ψ + 2. This comes from the monotonicity of #(A ∩ (C, v]) as a function of v, and the
monotonicity of #(A ∩ (u,D]) as a function of u (cf., the proof of Theorem 1.18). By Lemma 6.12 with
θ = ε(l− k)1/2 +O((l− k)−1/2), the probability that (6.6) holds is O(e−

1
3 ε

2(k−l)). Summing on k, l gives the
lemma. �

To establish the lower bound on β2, we first analyze the global distribution of divisor ratios. For
1 6 C < D define the random set

λ(C,D) =
{

ΣA1 − ΣA2 : A1 ⊆ A ∩ (C,D], A2 ⊆ A ∩ (C,D], A1 ∩A2 = ∅, A1 6= ∅, A2 6= ∅
}
,

where ΣA is the sum of the elements of A.

Lemma 6.14. Fix ε satisfying

0 < ε <
1

200
.

Suppose that 1 6 C < D and
C 6 D1− 1

log 3−ε.

For any 10 6 ξ 6 logD, with probability 1−Oε(1/ log ξ) we have

#λ(C,D) > D/ξ and Σ(A ∩ [1, D]) 6 ξD.

Proof. We may assume that ξ > e20, else the lemma is trivial. Firstly, EΣ(A ∩ [1, D]) = D, hence by
Markov’s inequality,

(6.7) P
(
Σ(A ∩ [1, D])

)
> ξD

)
6

1

ξ
.

We will use a second moment argument. Let V denote the number of quadruples (A1, A2, A3, A4) with each
Ai a nonempty subset of A′, A1 ∩A2 = A3 ∩A4 = ∅ and

(6.8) ΣA1 − ΣA2 = ΣA3 − ΣA4.

Our main task is to show that with probability 1−Oε(1/ log ξ) we have

(6.9) V 6 ξ · 32|A′|

2D
and |A′| > logD

log 3
.

Assuming (6.9), let

gm = #{(A1, A2) : ∅ 6= A1 ⊆ A′, ∅ 6= A2 ⊆ A′, A1 ∩A2 = ∅,ΣA1 − ΣA2 = m}.

In this notation, V =
∑
m g

2
m and λ(C,D) = {m : gm > 0}. By Cauchy’s inequality,

(3|A
′| − 2|A

′|+1)2 =
(∑

m

gm

)2

6 #λ(C,D)
∑
m

g2
m = #λ(C,D)V.

The lemma now follows from (6.9), since (3|A
′| − 2|A

′|+1)2 > 1
232|A′| for large enough D.
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To prove (6.9), we first separate off those solutions of (6.8) with A1 = A3 and A2 = A4. Thus,

V 6 3|A
′| + V ∗,

where V ∗ counts solutions with A1 6= A3 or A2 6= A4. Let ψ = log ξ
3 . Let E be the event that

|A ∩ (B,D)| > (1− ε) log(D/B) (C 6 B 6 De−ψ).

This implies that

(6.10) |A ∩ (B,D)| > (1− ε) log(D/B)− ψ (C 6 B 6 D).

By Lemma 6.13, P(E) � e−(1/3)ε2ψ �ε 1/ log ξ. Assume now that we are in event E. In particular, since
log(D/C) > ( 1

log 3 + ε) logD, we have

3|A
′| > 3(1−ε) log(D/C)−ψ > D

if D is large enough, giving the second part of (6.9). Hence,

(6.11) V 6
ξ

4
· 32|A′|

D
+ V ∗.

Our next task is to show that

(6.12) T := E
(
V ∗1(E)

32|A′|

)
� ξ1/2

D
.

Assuming (6.12), Markov’s inequality gives

P
(
V ∗ >

ξ

4
· 32|A′|

D
and E

)
6

T

(ξ/4)D−1
� ξ−1/2,

which implies that (6.9) holds with probability 1−Oε(1/ log ξ), as required.
It remains to prove (6.12). Assuming E, consider solutions of (6.8) with A1 6= A3 or A2 6= A4. Elements

in A1 ∩A3 and in A2 ∩A4 cancel each other. Let n∗ be the largest uncancelled element, and write

A′ = Q ∪ {n∗} ∪Q′, maxQ < n∗ < minQ′.

In particular, all elements of Q′ cancel out in (6.8), that is,

(6.13) ΣA1 ∩ (Q ∪ {n∗})− ΣA2 ∩ (Q ∪ {n∗}) = ΣA3 ∩ (Q ∪ {n∗})− ΣA4 ∩ (Q ∪ {n∗}).

Also, by (6.10), if M = maxQ then

|Q′| = |A ∩ (M,D]| − 1 > (1− ε) log(D/M)− ψ − 1 =: k(M).(6.14)

Given Q, the intersections Ai ∩Q for 1 6 i 6 4, and one of the O(1) possibilities for which sets Ai contain
n∗ (there are 6 possibilities, namely n∗ may lie in a single set Ai, or in A1 and A4 or in A2 and A3), the
element n∗ is uniquely determined by (6.13). We will compute T as follows:

• Fix M ∈ (C,D] and Q ⊂ (C,M ] with M ∈ Q; compute P(A ∩ (C,M ] = Q;
• Fix the sets Ai ∩Q, i = 1, 2, 3, 4;
• Fix one of the possibilities for n∗; compute P(A ∩ (M,n∗] = {n∗};
• Fix Q′ ⊆ (n∗, D] for which (6.14) holds; compute P(A ∩ (n∗, D] = Q′;
• there are then 3|Q

′| ways to form the sets Ai ∩ Q′, 1 6 i 6 4, namely each element of Q′ lies in
A1 ∩A3, or in A2 ∩A4 or neither (it cannot be in both since A1, A2 are disjoint).
• By (6.14), we have

3|Q
′|

32|A′| =
1

32+2|Q|+|Q′| 6
1

32+k(M)+2|Q| .
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Following this process, we have

T 6
∑

C<M6D

1

32+k(M)

∑
Q⊆(C,M ]
M∈Q

P(A ∩ (C,M ] = Q)

32|Q|

∑
A1∩Q,...,A4∩Q

∑
n∗

P
(
A ∩ (M,n∗] = {n∗}

)
×

×
∑

Q′⊆(n∗,D]
|Q′|>k(M)

P
(
A ∩ (n∗, D] = Q′

)
.

The inner sum over Q′ is clearly 6 1. For each n∗,

P
(
A ∩ (M,n∗] = {n∗}

)
6

1

n∗
6

1

M
.

Also, with Q fixed there are 32|Q| ways to choose A1 ∩Q, . . . , A4 ∩Q. Thus,

T �
∑

C<M6D

1

M · 3k(M)

∑
Q⊆(C,M ]
M∈Q

P
(
A ∩ (C,M ] = Q

)
.

The inner sum on Q equals P(M ∈ A) = 1/M . Recalling (6.14), we see that

T �ε 3ψ
∑

C<M6D

1

M2(D/M)(1−ε) log 3
= 3ψD−(1−ε) log 3

∑
C<M6D

M (1−ε) log 3−2 � 3ψ

D
,

as required for (6.12). This completes the proof of the lemma. �

Proof that β2 > 1− 1
log 3 . We use a device from [52] to build up a solution of ΣA1 = ΣA2, starting

with Lemma 6.14. Fix ε ∈ (0, 1
200 ), let N be large and let ξ = ξ(N) = log2N , let D0 = N1−ε and

Dj = D0(3ξ)j for j > 1. Let C = D
1− 1

log 3−ε
0 and put λj = λ(C,Dj) for j > 0. Let Ej be the event that

0 6∈ λj , and let E ′j be the event that Ej holds and also that |λj | > Dj/ξ and Σ(A ∩ (C,Dj ]) 6 ξDj . By
Lemma 6.14,

0 6 P Ej − P E ′j � 1/ log ξ.

Let Hj be the event that there are integers n, n′ ∈ A with ξDj < n < n′ 6 3ξDj and n−n′ ∈ λj , and define
Fj = E ′j ∧Hj . Since Fj implies that 0 ∈ λj+1 we have

P Ej+1 6 P Ej − PFj .

With A ∩ (C,Dj ] fixed such that E ′j holds we have

PHj >
∑
m∈λj
m>0

∑
ξDj<n62ξDj

P
(
A ∩ (ξDj , 3ξDj ] = {n, n+m}

)

=
∑
m∈λj
m>0

∑
ξDj<n62ξDj

1

n(n+m)

∏
ξDj<h63ξDj
h6=n,h6=n+m

(
1− 1

h

)

�
∑
m∈λj
m>0

∑
ξDj<n62ξDj

1

n(n+m)

� |λj |
ξDj

� 1

ξ2
.

It follows that
PFj = P E ′j P(Fj | E ′j)� ξ−2P E ′j .
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Hence, for some constants c > 0 and c′ > 0, which depend only on ε,

P Ej+1 6 P Ej − cξ−2P E ′j = (1− c/ξ2)P Ej +
c′

log ξ

c

ξ2
.

Iterating this, starting with PE0 6 1, gives

PEj 6 (1− c/ξ2)j +
c′c

ξ2 log ξ

j−1∑
h=0

(1− c/ξ2)h.

Taking J =
⌊
ξ3
⌋
, we conclude that P EJ � 1/ log ξ. Since DJ < N , it follows that with probability

1 − O(1/ log ξ), there are distinct sets A1, A2 ⊆ A ∩ (C,N ] with ΣA1 = ΣA2. As ε > 0 is arbitrary, this
proves that

β2 > 1− 1

log 3
. �

Proof of the upper bound β2 6 1− 1
log 3 . Fix ε > 0 small, let N be large and put C = N1− 1

log 3 +ε.
It suffices to show that with probability → 0 as N → ∞, A ∩ (C,N ] has two disjoint, nomempty subsets
with equal sums. Let E be the event that

(6.15) |A ∩ (C,B]| 6 log(B/C) +
ε

2
logN (C 6 B 6 N).

If N is large enough, this occurs if we have

|A ∩ (C,B]| 6 (1 + ε/4) log(B/C) (C logN 6 B 6 N).

By Lemma 6.13 with ψ = log logN , PE = o(1) as N → ∞. The probability that there exist distinct
nonempty sets A1, A2 ∈ A∩ (C,N ] with ΣA1 = ΣA2 is at most P(E) +E S ·1(E), where S is the number of
pairs A1, A2 of distinct subsets of A ∩ (C,N ] with equal sums. For counting S, WLOG let M = maxA1 >
maxA2, A′1 = A1 \ {M} and M ′ = max(A′1 ∪ A2). Given A′1 and A2, M is unique determined (if it exists;
it must also satisfy M > M ′). Also, with M ′ fixed, (6.15) implies that

|A ∩ (C,M ′]| 6 log(M ′/C) +
ε

2
logN =: k(M ′).

Then

E S · 1(E) 6 2
∑

C<M ′6N

∑
A′⊆(C,M ′]
M ′∈A′

|A′|6k(M ′)

P(A ∩ (C,M ′] = A′)
∑

A′1,A2⊆A′
A′1∩A2=∅

P
(
M ∈ A ∩ (M ′, N ]

)
.

The innermost probability is 1
M 6

1
M ′ , while the number of pairs (A′1, A2) equals 3|A

′| 6 3k(M ′). Thus,

E S · 1(E) 6 2
∑

C<M ′6N

3k(M ′)

M ′

∑
A′⊆(C,M ′]
M ′∈A′

P(A ∩ (C,M ′] = A′)

6 2
∑

C<M ′6N

3k(M ′)

(M ′)2

� 3(ε/2) logN

C log 3

∑
C<M ′6N

(M ′)log 3−2

�ε 3(ε/2) logNN−ε log 3 � N−ε/2. �

5. Exercises

Exercise 6.1. Let 2 6 ` 6 k. Show that βk > β
d log k

log ` e
` .



CHAPTER 7

Integers with a divisor in a given interval

1. Exact formulas

For 0 < y < z, let τ(n; y, z) be the number of divisors d of n which satisfy y < d 6 z. Define H(x, y, z)
to be the number of positive integers n 6 x with τ(n; y, z) > 0, and Hr(x, y, z), the number of n 6 x with
τ(n; y, z) = r. By inclusion-exclusion,

H(x, y, z) =
∑
k>1

(−1)k−1
∑

y<d1<···<dk6z

⌊
x

lcm[d1, · · · , dk]

⌋
,

but this is not useful for estimating H(x, y, z) unless z−y is small. With y and z fixed, however, this formula
implies that the set of positive integers having at least one divisor in (y, z] has an asymptotic density, i.e.

ε(y, z) := lim
x→∞

H(x, y, z)

x
=
∑
k>1

(−1)k−1
∑

y<d1<···<dk6z

1

lcm[d1, · · · , dk]
.

In these notes we primarily focus on the case y 6 x3/4. Since d|n if and only if (n/d)|n, if n ≈ x then we
expect that

H(x, y, z) ≈ H(x, x/z, x/y).

This has been proved in [29], although the details are rather messy due to the fact that many n are
significantly smaller than x, and we actually require short interval versions, that is, estimating H(x, y, z)−
H(x′, y, z) from below.

2. Easy bounds when z is small or large

When z − y is small compared with y, it is very rare to have more than one divisor in (y, z].

Theorem 7.1. For 2 6 y + 1 6 x3/4 with z = (1 + η)y ∈ [y + 1, 2y]. Then

H(x, y, z) = x
∑

y<d6z

1

d
+O

(
ηy + η2x log(2y)

)
.

Consequently, if y →∞, z − y →∞, z = o(x) and η = o(1/ log(2y)) as x→∞, then

H(x, y, z) ∼ ηx.

Remarks. If y 6
√
x and z − y = o(y/ log y), then the second conclusion follows. Using more sophisti-

cated methods, Tenenbaum [61] showed that H(x, y, z) ∼ ηx in the range z − y 6 y/(log y)log 4−1+ε for any
fixed ε > 0, and the constant log 4− 1 cannot be replaced by a smaller number. See also [45, p. 38–39].

Proof. We start with a simple truncated form of inclusion-exclusion, which implies that∑
y<d6z

⌊x
d

⌋
−

∑
y<d1<d26z

⌊
x

[d1, d2]

⌋
6 H(x, y, z) 6

∑
y<d6z

⌊x
d

⌋
.

The first sum over d equals

O(ηy) + x
∑

y<d6z

1

d
.

69
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In the sum over d1, d2, let m = (d1, d2), ti = di/m for i = 1, 2. We also have m 6 d2 − d1 6 z − y = ηy.
Therefore, ∑

y<d1<d26z

⌊
x

[d1, d2]

⌋
6 x

∑
m6ηy

1

m

∑
y/m<t1<t26z/m

1

t1t2

6 x
∑
m6ηy

1

m

(
log

z

y
+O

(
m

y

))2

� xη2
∑
m6ηy

1

m

� xη2 log(2y).

The first assertion follows.
To achieve the second conclusion, we use∑

y<d6z

1

d
= log

z

y
+O(1/y) = η +O(η2 + 1/y).

Under the hypotheses, η → 0 and log min(2y, 2x/y)→∞, and we deduce that H(x, y, z) ∼ ηx. �

Theorem 7.2. (a) Fix c > 0. For some y0(c), if y > y0(c) and y1+c 6 z 6 x then H(x, y, z)�c x.
(b) For all 2 6 y 6 z 6 x, we have

H(x, y, z) = x

(
1 +O

(
log y

log z

))
.

Proof. For (a), we will show more, that there are �c x integers n 6 x with exactly one prime divisor
in (y, z]. Let T denote the set of primes in (y, z]. We may assume without loss of generality that c 6 1 and
that z = y1+c. We have, by Mertens’ estimate (0.5),

H(T ) = log(1 + c) +O(1/ log y) ∈ [ 1
2 log(1 + c), 1]

if y0(c) is large enough. By Exercise 1.5,

Px(ω(n, T ) > 1) > E x

[
ω(n, T )−

(
ω(n, T )

2

)]
>

1

x

∑
y<p6z

⌊
x

p

⌋
− H(T )2

2

> H(T )− H(T )2

2
−O

(
π(z)

x

)
>
H(T )

3
�c 1

if y0(c) is large enough.
The upper bound in (b) is trivial. For the lower bound, we also consider integers with at least one prime

factor in (y, z]. By Theorem 1.13,

Px{τ(n, y, z) = 0} 6 Px{ω(n, T ) = 0} � e−H(T ) � log y

log z

and (b) follows. �
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Remarks. In general, the error term O( log y
log z ) cannot be improved. For example, note that τ(n, y, z) = 0

if n = mh with m 6 y and P−(h) > z. If z 6
√
x then by Exercise 3.1,

#{n 6 x : τ(n, y, z) = 0} >
∑

m6y1/2

Φ
( x
m
, z
)
�

∑
m6y1/2

x

m log z
� x log y

log z
.

3. The critical case z = 2y

Besicovitch [6] showed in 1934 that

(7.1) lim inf
y→∞

ε(y, 2y) = 0,

and used this to construct an infinite set A of positive integers such that its set of multiples B(A ) = {am :
a ∈ A ,m > 1} does not possess asymptotic density. Erdős in 1935 [22] showed lim

y→∞
ε(y, 2y) = 0 and in

1960 [26] gave the further refinement

ε(y, 2y) = (log y)−E+o(1) (y →∞),

where

E = 1− 1 + log log 2

log 2
= 0.086071 . . . .

In 1984, Tenenbaum [61] refined the bounds to
x

(log y)E exp{c
√

log2 y log3 y}
� H(x, y, 2y)� x

(log y)E(log2 y)1/2
,

valid for 100 6 y 6
√
x, where c > 0 is a constant. Hall and Tenenbaum’s book Divisors [45, Ch. 2] gives a

simpler proof of Tenenbaum’s theorem.

Theorem 7.3 (Ford [29]). Uniformly for 4 6 y 6 x1/2 we have

H(x, y, 2y) � x

(log y)E(log2 y)3/2
.

Remarks. Theorem 1 of [29] establishes the order of H(x, y, z) for all x, y, z, improving upon cruder
estimates of Tenenbaum [61].

Our proof of the lower bound implicit in Theorem 7.3 gives a somewhat stronger conclusion, where we
restrict to integers in an interval which are squarefree and free of small prime factors. We will leave the
details as an exercise, Exercise 7.1 below.

Theorem 7.4. Fix c′ < 1 < c, and w > 1. We have, for 4 6 y 6 x1/2,

#{c′x < n 6 x : µ2(n) = 1, τ(n, y, cy) > 1} �c,c′ H(x, y, z).

Remarks. In Theorem 7.4, we consider c, c′, w all fixed. In [32], the order of magnitude of #{n 6 x :
P−(n) > w, τ(n, y, 2y) > 1} was determined for all x, y, w. The results change behavior depending on the
relative size of y, w.

4. Some applications of Theorem 7.3

1. Distinct products in a multiplication table, a problem of Erdős from 1955 ([25], [26]). Let A(x) be
the number of positive integers n 6 x which can be written as n = m1m2 with each mi 6

√
x. Earlier, see

Theorem 1.28, we showed that A(x)� x/(log x)E .

Theorem 7.5. We have
A(x) � x

(log x)E(log log x)3/2
.
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Proof. Evidently A(x) is at least the number of n 6 x/4 with a divisor in ( 1
4

√
x, 1

2

√
x]. Also, if

n = m1m2 with m1 6
√
x,m2 6

√
x then for some integer k > 0, 2−k−1

√
x < m1 6 2−k

√
x, and hence

n 6 2−kx. Thus,

H

(
x

4
,

√
x

4
,

√
x

2

)
6 A(x) 6

∑
k>0

H

(
x

2k
,

√
x

2k+1
,

√
x

2k

)
.

The theorem now follows quickly from Theorem 7.3. For the right side, use Theorem 7.3 when k 6 10 log2 x
and the trivial upper bound x/2k when k > 10 log2 x. �

2. Distribution of Farey gaps (Cobeli, Ford, Zaharescu [9]).

Theorem 7.6. Let ( 0
1 ,

1
Q , . . . ,

Q−1
Q , 1

1 ) denote the sequence of Farey fractions of order Q, and let N(Q)

denote the number of distinct gaps between successive terms of the sequence. Then

N(Q) � Q2

(logQ)δ(log logQ)3/2
.

Proof. The distinct gaps are precisely those products qq′ with 1 6 q, q′ 6 Q, (q, q′) = 1 and q+q′ > Q.
Thus, max(q, q′) > Q/2, so N(Q) 6 H(Q2, Q/2, Q) and the upper bound follows from Theorem 7.3. For the
lower bound, consider squarefree 0.3Q2 < n 6 0.36Q2 with a divisor in (0.5Q, 0.6Q]. The complementary
divisor then lies in (0.5Q, 0.72Q]. Hence

N(Q) >
1

2
#{0.3Q2 < n 6 0.36Q2 : µ2(n) = 1, τ(n, 0.5Q, 0.6Q) > 1}

and the lower bound follows from Theorem 7.4. �

3. Density of unions of residue classes. Given moduli m1, . . . ,mk, let δ0(m1, . . . ,mk) be the minimum,
over all possible residue classes a1 mod m1, . . . , ak mod mk, of the density of integers which lie in at least
one of the classes. By a theorem of Rogers (see [41, p. 242–244]), the minimum is achieved by taking
a1 = · · · = ak = 0 and thus δ0(m1, . . . ,mk) is the density of integers possessing a divisor among the numbers
m1, . . . ,mk. When m1, . . . ,mk consist of the integers in an interval (y, z], then δ0(m1, . . . ,mk) = ε(y, z).

4. Partial Möbius divisor sums, which was first studied by Erdős and Hall [27]. Define

M(n, y) =
∑
d|n
d6y

µ(d).

Theorem 7.7 (K. Ford, unpublished). Let 10 6 y 6
√
x. The number of integers n 6 x with

M(n, y) 6= 0 is
� x

(log y)E(log2 y)3/2
.

This requires versions of H(x, y, 2y) which count integers free of prime factors 6 w, uniformly in w, as
well as a version counting integers with exactly one divisor in (y, 2y]. The former is dealt with in [32] and
the latter in [29].

Here we argue more crudely and show that

(7.2) #{n 6 x : M(n, y) 6= 0} � x

(log y)E/2
(y 6 x1/3).

Let w = exp{(log y)E/2}. By Theorem 3.8,

#{n 6 x : P−(n) > w} = Φ(x,w)� x

(log y)E/2
.

Now consider n 6 x with p = P−(n) 6 w. If pa|n with pa > w2 then for some d ∈ N with d > w, d2|n. The
number of such n is at most

�
∑
d>w

x

d2
� x

w
� x

log y
.
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Now consider n 6 x where p = P−(n) 6 w, pa‖n, pa 6 w2, n = pam. If τ(n, y, py) = 0 then for any
squarefree d|m, pd 6 y and hence

M(n, y) =
∑
d|m
d6y

µ(d) + µ(pd) = 0.

The number of such n is at most∑
p6w
pa6w2

H

(
x

pa
, y, py

)
�

∑
p6w
pa6w2

∑
06k6 log p

log 2

H

(
x

pa
, 2ky, 2k+1y

)

�
∑
p6w
a>1

x log p

pa(log y)E
� x

(log y)E/2

by Mertens’ estimate (0.6). This proves (7.2).

5. A heuristic for H(x, y, 2y)

Write n = n′n′′, where n′ is composed only of primes 6 2y and n′′ is composed only of primes > 2y. For
simplicity, assume n′ is squarefree and n′ 6 y100. Assume for the moment that the set D(n′) = {log d : d|n′}
is uniformly distributed in [0, log n′]. If n′ has k prime factors, then the expected value of τ(n′, y, 2y) should
be about 2k log 2

logn′ �
2k

log y . This is � 1 precisely when k > k0 + O(1), where k0 :=
⌊

log log y
log 2

⌋
. Using the fact

that, e.g. Theorem 1.13 for the upper bound, the number of n 6 x with n′ having k prime factors is of order

x

log y

(log log y)k

k!
,

we obtain a heuristic estimate for H(x, y, 2y) of order

x

log y

∑
k>k0+O(1)

(log log y)k

k!
� x(log log y)k0

k0! log y
� x

(log y)δ(log log y)1/2
.

This is slightly too big, and the reason stems from the uniformity assumption about D(n′). In fact, for
most n′ with about k0 prime factors, the set D(n′) is far from uniform, possessing many clusters of divisors
and large gaps between clusters. This substantially decreases the likelihood that τ(n′, y, 2y) > 1. If we write
n′ = p1 · · · pk, where p1 < p2 < . . . < pk, then we expect log log pj ≈ j log log y

k0
= j log 2 + O(1) for each j.

The Central Limit Theorem for prime factors 6 2y (e.g. Theorem 5.7) tell us that with high probability
there is a j for which log log pj 6 j log 2 − c

√
log log y, where c is a small positive constant. Thus, the 2j

divisors of p1 · · · pj will be clustered in an interval of logarithmic length about � log pj 6 2je−c
√

log2 y. On
a logarithmic scale, the divisors of n′ will then lie in 2k−j translates of this cluster, the total length of the
clusters being � 2ke−c

√
log2 y. A measure of the degree of clustering of the divisors of an integer a is given

by

(7.3) L (a) =
⋃
d|a

[− log 2 + log d, log d) L(a) = measL (a).

The probability that τ(n′, y, 2y) > 1 should then be about L(n′)/ log y. Making this precise leads to the
upper and lower bounds for H(x, y, 2y) given below in Proposition 7.8. The upper bound for L(a) given
in Lemma 7.9 (iii) below quantifies how small L(a) must be when there is a j with log log pj considerably
smaller than j log 2.

What we really need to count is n for which n′ has about k0 prime factors and L(n′) � log n′. This
roughly corresponds to asking for log log pj > j log 2−O(1) for all j. The analogous problem from statistics
theory is to ask for the likelihood than given k0 random numbers in [0, 1], there are 6 k0x + O(1) of them
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which are 6 x, uniformly in 0 6 x 6 1. Later, we will see that this probability is about 1/k0 � 1/ log log y
and this leads to the correct order of H(x, y, 2y) given in Theorem 7.3.

6. A global-to-local principle

In this section, we estimate H(x, y, 2y) in terms of an average over L(a), as defined in (7.3). As L(a)
captures the global distribution of divisors of a, we call this a ’global-to-local’ principle. Introduce the
notation

P(x) = {n ∈ N : µ2(n) = 1, P+(n) 6 x}.

Proposition 7.8. If y0 is sufficiently large and y0 6 y 6
√
x, then

H(x, y, 2y) � x

log2 y

∑
a∈P(y)

L(a)

a
.

We first show some basic inequalities for L(a) and then relate sums of the type on the RHS in Proposition
7.8.

Lemma 7.9. We have
(i) L(a) 6 min(τ(a) log 2, log(2a));
(ii) If (a, b) = 1, then L(ab) 6 τ(b)L(a);
(iii) If p1 < · · · < pk, then

L(p1 · · · pk) 6 min
06j6k

2k−j(log(2p1 · · · pj)).

Proof. Part (i) is immediate, since L (a) is the union of τ(a) intervals of length log 2, all contained in
[− log 2, log a). Part (ii) follows from

L (ab) =
⋃
d|b

{u+ log d : u ∈ L (a)}.

Combining parts (i) and (ii) with a = p1 · · · pj and b = pj+1 · · · pk yields (iii). �

Lemma 7.10. Let w2 > w1 > 2. Then∑
a∈P(w2)

L(a)

a
�
(

logw2

logw1

)2 ∑
a∈P(w1)

L(a)

a
.

Proof. Given a ∈ L (w2), write a uniquely as a = a1a2 where P+(a1) 6 w1 < P−(a2). By Lemma 7.9
(ii), L(a) 6 τ(a2)L(a1). Thus,∑

a∈P(w2)

L(a)

a
=

∑
a1∈P(w1)

L(a1)

a1

∑
p|a2⇒w1<p6w2

τ(a2)µ2(a2)

a2
.

By Mertens’ product estimate (0.7), the sum on a2 equals∏
w1<p6w2

(
1 +

2

p

)
6

∏
w1<p6w2

(1− 1/p)−2 �
(

logw2

logw1

)2

. �

For the upper bound we also need the following technical lemma, which is a special case of a result of
Kouloulopoulos [50, Lemma 2.2].

Lemma 7.11. We have∑
a∈P(2y)

L(a)

a log2(P+(a) + y2/3/a)
� 1

(log y)2

∑
a∈P(2y)

L(a)

a
.
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Proof. Let P1 = {a ∈P(y1/4) : a > y1/2}. Then clearly∑
a∈P(2y)

L(a)

a log2(P+(a) + y2/3/a)
�

∑
a∈P1

L(a)

a log2 P+(a)
+

1

(log y)2

∑
a∈P(2y)

L(a)

a
.

For a ∈P1, let p = P+(a) and a = pb, so b > y1/4. By Lemma 7.9 (ii), L(a) 6 2L(b) and thus∑
a∈P1

L(a)

a log2 P+(a)
6 2

∑
p6y1/4

1

p log2 p

∑
b∈P(p)

b>y1/4

L(b)

b

6 2
∑

p6y1/4

1

p log2 p

43

log3 y

∑
b∈P(p)

L(b) log3 b

b
.

Next, ∑
b∈P(p)

L(b) log3 b

b
=

∑
b∈P(p)

L(b)

b

∑
p1|b,p2|b,p3|b

(log p1)(log p2)(log p3)

6 8
∑

p1,p2,p36p

(log p1)(log p2)(log p3)

[p1, p2, p3]

∑
t∈P(p)

L(t)

t
,

where we have written b = [p1, p2, p3]t and used Lemma 7.9 (ii) again. Considering separately the three cases
(p1 = p2 = p3, two of the pi equal, all pi distinct), we find that∑

p1,p2,p36p

(log p1)(log p2)(log p3)

[p1, p2, p3]
� (log p)3

by Mertens’ estimate. Extending the range of t to t ∈P(2y), we get∑
a∈P1

L(a)

a log2(P+(a) + y2/3/a)
�

∑
p6y1/4

1

p log2 p

(log p)3

(log y)3

∑
t∈P(2y)

L(t)

t
.

A final application of Mertens’ estimate concludes the proof. �

We are now ready to embark on the proof of Proposition 7.8.
We begin with the lower bound, which is easier. Consider integers n = ap1p2b 6 x with p1 and p2 prime,

a 6 y1/5 < p1 < p2 6
1

4
y4/5 < P−(b),

and with log(y/p1p2) ∈ L (a). The last condition implies that there is a divisor d|a with

d

2
6

y

p1p2
< d,

which is equivalent to y < dp1p2 6 2y. Thus, for such n, τ(n, y, 2y) > τ(ap1p2, y, 2y) > 1. In particular,
y4/5 6 y/a < p1p2 6 2y, so that x/ap1p2 > x/(2y6/5) > 1

2y
4/5. Thus, by Exercise 3.1, for each triple

a, p1, p2, the number of possible b is

> Φ

(
x

ap1p2
,

1

4
y4/5

)
� x

ap1p2 log y
.

Now L (a) is the disjoint union of intervals of length > log 2, all contained in [− log 2, 1
5 log y]. For each such

interval [u, v] we have by Mertens’ estimae (0.5)∑
u6log(y/p1p2)6v
y1/5<p1<p2<

1
4y

4/5

1

p1p2
>

∑
8y1/5<p16y2/5

1

p1

∑
ye−v/p1<p26ye−u/p1

1

p2
� v − u

log y
.
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Thus, with a fixed, we have ∑
log(y/p1p2)∈L (a)

1

p1p2
� L(a)

log y
.

Hence,

H(x, y, 2y)� x

log2 y

∑
a6y1/5

L(a)

a
.

Next, we replace the sum over a more convenient set, starting with∑
a6y1/5

L(a)

a
>

∑
a6y1/5

a∈P(y1/15)

L(a)

a
>

∑
a∈P(y1/15)

L(a)

a

(
1− log a

log(y1/5)

)
.

Next, ∑
a∈P(y1/15)

L(a) log a

a
=

∑
a∈P(y1/15)

L(a)

a

∑
p|a

log p

=
∑

p6y1/15

log p

p

∑
b∈P(y1/15)

p-b

L(pb)

b

6
∑

p6y1/15

2 log p

p

∑
b∈P(y1/15)

L(b)

b

= (2 log(y1/15) +O(1))
∑

b∈P(y1/15)

L(b)

b

using the relation L(pb) 6 2L(b) from Lemma 7.9 (ii) and Mertens’ estimate (0.6). Thus,∑
a6y1/5

L(a)

a
>

∑
a∈P(y1/15)

L(a)

a

(
1− 2 log(y1/15) +O(1)

log(y1/5)

)
�

∑
a∈P(y1/15)

L(a)

a
.

Applying Lemma 7.10 with w1 = y1/15 and w2 = y concludes the proof of the lower bound in Proposition
7.8.

We now prove the upper bound in Proposition 7.8. We will first show that

(7.4) H(x, y, 2y)� x
∑

a∈P(2y)

L(a)

a log2(y2/3/a+ P+(a))
.

We may assume that y is sufficiently large (say y > y0), as (7.4) is trivial for small y. First, we relate
H(x, y, 2y) to H∗(x, y, z), the number of squarefree integers n 6 x with τ(n, y, z) > 1. Let δ be a fixed, small
constant. Write n = n′n′′, where n′ is squarefree, n′′ is squarefull and (n′, n′′) = 1. The number of n 6 x
with n′′ > yδ is

6 x
∑
n′′>yδ

1

n′′
� x

yδ/2
,

since the number of squarefull integers below w is O(
√
w). If n′′ 6 yδ, then for some f |n′′, n′ has a divisor

in (y/f, 2y/f ], hence

(7.5) H(x, y, 2y) 6
∑
n′′6yδ

∑
f |n′′

H∗
(
x
n′′ ,

y
f ,

2y
f

)
+O

(
x

yδ/2

)
.
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For any n′′ and f , y/f > y1−δ. Next, we show that

(7.6) H∗(x1, y1, 2y1)−H∗( 1
2x1, y1, 2y1)� x1

∑
a∈P(2y1)

L(a)

a log2
(
y

3/4
1 /a+ P+(a)

) (y1−δ 6 y1 6 x
1
2 +δ
1 ).

Consider squarefree n ∈ ( 1
2x1, x1] with a divisor in (y1, 2y1]. Put z1 = 2y1, y2 = x1

4y1
, z2 = x1

y1
. Then

n = m1m2 with yi < mi 6 zi (i = 1, 2). For some j ∈ {1, 2} we have p = P+(mj) < P+(m3−j). Write

n = abp, P+(a) < p < P−(b).

Then b > p and this is crucial to our argument. Since τ(ap, yj , zj) > 1 and

y2 >
1

4
x

1
2−δ
1 >

1

4
y

1/2−δ
1/2+δ

1 > y3/4
1

if δ is small enough, we have
p > yj/a > y

3/4
1 /a.

Thus, p > Q(a) := max(P+(a), y
3/4
1 /a). We also have p 6 min(z1, z2) 6 2y1. As noted earlier, b > p and so

ap 6 x1/p. Hence, by (3.8), given a and p, the number of possible b is

6 Φ

(
x1

ap
, p

)
� x1

ap log p
6

x1

ap logQ(a)
,

Since a has a divisor in (yj/p, zj/p], we have log(yj/p) ∈ L (a) or log(2yj/p) ∈ L (a) (the latter case is
needed if j = 2 since z2 = 4y2). Since L (a) is the disjoint union of intervals of length > log 2 with total
measure L(a), by repeated use of Mertens’ sum estimate (0.5), we obtain∑

log(cyj/p)∈L (a)

p>P+(a)

1

p
� L(a)

logQ(a)
(c = 1, 2),

and (7.6) follows upon summing over all possible a and over j = 1, 2.
Write x2 = x/n′′, y1 = y/f . Each n ∈ (x2/y

δ
1, x2] lies in an interval (2−r−1x2, 2

−rx2] for some integer
0 6 r 6 δ log y1

log 2 . We note that y1 > y1−δ since f 6 n′′ 6 yδ and also

x1 = 2−rx2 > x2y
−δ
1 > xy−2δ > y2−2δ > y2−2δ

1 ,

which implies y1 6 x
1

2(1−δ)
1 6 x

1
2 +δ
1 . Applying (7.6) with x1 = 2−rx2 and summing over r we find that

H∗(x2, y1, 2y1)� x2

yδ1
+ x2

∑
a∈P(2y1)

L(a)

a log2
(
y

3/4
1 /a+ P+(a)

) .
The first term x2/y

δ
1 may be ignored because L(1) = log 2 and thus the term a = 1 is � 1/ log2 y1. Thus,

by (7.5),

H(x, y, 2y)� x

yδ/2
+ x

∑
n′′6yδ

1

n′′

∑
f |n′′

∑
a∈P(2y/f)

L(a)

a log2
(
(y/f)3/4/a+ P+(a)

) .
Again, the term x/yδ/2 is negligible and may be omitted. We have (y/f)3/4 > (y1−δ)3/4 > y2/3 for any pair
(n′′, f) and ∑

n′′

τ(n′′)

n′′
=
∏
p

(
1 +

3

p2
+

4

p3
+ · · ·

)
� 1.

This completes the proof of (7.4).
Combining (7.4) with Lemma 7.11, we find that

H(x, y, 2y)� 1

log2 y

∑
a∈P(2y)

L(a)

a
.
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Finally, applying Lemma 7.10 with w1 = y and w2 = 2y completes the proof of the upper bound in
Proposition 7.8.

7. Completion of the lower bound in Theorem 7.3

Lemma 7.12. For any finite set A of positive integers,

∑
a∈A

L(a)

a
> (log 2)

(∑
a∈A

τ(a)
a

)2

∑
a∈A

W (a)
a

,

where
W (a) = |{(d, d′) : d|a, d′|a, | log d/d′| 6 log 2}|.

Proof. Since

τ(a) log 2 =

∫
τ(a, eu, 2eu) du =

∫
1(u ∈ L (a))τ(a, eu, 2eu) du

and
∫
1(u ∈ L (a)) du = L(a), by the Cauchy-Schwarz inequality,(∑

a∈A

τ(a)

a

)2

(log 2)2 =

(∑
a∈A

1

a

∫
τ(a, eu, 2eu) du

)2

6

(∑
a∈A

L(a)

a

)(∑
a∈A

1

a

∫
τ2(a, eu, 2eu) du

)
.

Now ∫
τ2(a, eu, 2eu) du =

∫
#{d|a, d′|a, eu < d, d′ 6 2eu} du

=
∑

d|a,d′|a

max
(
0, log 2− | log(d′/d)|

)
6 (log 2)W (a)

and the proof is complete. �

We apply Lemma 7.12 with sets A of integers whose prime factors are localized. To simplify later
analysis, partition the primes into sets D1, D2, . . ., where each Dj consists of the primes in an interval
(λj−1, λj ], with λj ≈ λ2

j−1. More precisely, let λ0 = 1.9 and define inductively λj for j > 1 as the largest
prime so that

(7.7)
∑

λj−1<p6λj

1

p
6 log 2.

For example, λ1 = 2, D1 = {2}, λ2 = 7 and D2 = {3, 5, 7}. The left side of (7.7) is = log 2 +O(1/λj), hence
by Mertens’ estimate (0.5),

(7.8) log log λj − log log λj−1 = log 2 +O(1/ log λj−1).

We claim that this implies

(7.9) log λj = 2j+O(1) (j > 0).

To see (7.9), let wj = log log λj . Since each Dj contains at least one prime, wj → ∞ as j → ∞ and hence,
for some j0, if j > j0 then the big-O term in (7.8) is 6 0.1 and wj−wj−1 > log 2−0.1 > 1/2. It then follows
that the big-O term is � e−wj � e−j/2, and thus (7.8) implies

(wj − j log 2)− (wj−1 − (j − 1) log 2)� e−j/2.

By Cauchy’s criterion, limj→∞(wj − j log 2) exists and (7.9) follows.
For a vector b = (b1, . . . , bJ) of non-negative integers, let A (b) be the set of square-free integers a

composed of exactly bj prime factors from Dj for each j, and having no other prime factors.
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Lemma 7.13. Assume b = (b1, . . . , bJ). Then∑
a∈A (b)

W (a)

a
� (2 log 2)b1+···+bJ

b1! · · · bJ !

J∑
j=1

2−j+b1+···+bj .

Proof. Let B = b1 + · · ·+ bJ and for j > 0 let Bj =
∑
i6j bj . Let a = p1 · · · pB , where

(7.10) pBj−1+1, . . . , pBj ∈ Dj (1 6 j 6 J)

and the primes in each intervalDj are unordered. SinceW (p1 · · · pB) is the number of pairs Y,Z ⊆ {1, . . . , B}
with

(7.11)

∣∣∣∣∣∑
i∈Y

log pi −
∑
i∈Z

log pi

∣∣∣∣∣ 6 log 2,

we have

(7.12)
∑

a∈A (b)

W (a)

a
6

1

b1! · · · bJ !

∑
Y,Z⊆{1,...,B}

∑
p1,...,pB

(7.10),(7.11)

1

p1 · · · pB
.

By (7.7), we have ∑
pi

1

pi
6 log 2.

When Y = Z, the inner sum on the right side of (7.12) is 6 (log 2)B , and there are 2B such pairs Y,Z. When
Y 6= Z, let I = max[(Y ∪Z)− (Y ∩Z)]. With all the pi fixed except for pI , (7.11) implies that U 6 pI 6 4U
for some number U . Let E(I) be defined by BE(I)−1 < I 6 BE(I), i.e. pI ∈ DE(I). By Mertens’ bound (0.5)
and (7.9), ∑

U6pI64U
pI∈DE(I)

1

pI
� 1

max(logU, log λE(I)−1)
� 2−E(I).

Thus, by (7.7) the inner sum in (7.12) is � 2−E(I)(log 2)B . For each I, there are 2B−I+14I−1 = 2B+I−1

corresponding pairs Y,Z. Hence, by (7.12),∑
a∈A (b)

W (a)

a
� (2 log 2)B

b1! · · · bJ !

[
1 +

B∑
I=1

2I−E(I)

]
� (2 log 2)B

b1! · · · bJ !

(
1 +

J∑
j=1

2−j
∑

Bj−1<I6Bj

2I
)
.

The sum on I on the right side is 6 2Bj+1 = 21+b1+···+bj . When j = 1, 2−j+b1+···+bj > 2−1 and thus we
may remove the additive term 1 on the right side above. The claimed bound follows. �

Now suppose that y is sufficiently large, M is a sufficiently large, fixed positive integer, bi = 0 for i < M ,
and bj 6 Mj for each j (this last constraint is very mild, as we expect that each Dj contains only 1 prime
on average). Let k = bM + · · ·+ bJ . By (7.9),∑

a∈A (b)

τ(a)

a
= 2k

J∏
j=M

1

bj !

( ∑
p1∈Dj

1

p1

∑
p2∈Dj
p2 6=p1

1

p2
· · ·

∑
pbj∈Dj

pbj 6∈{p1,...,pbj−1}

1

pbj

)

> 2k
J∏

j=M

1

bj !

(
log 2− bj

λj−1

)bj
>

(2 log 2)k

2bM ! · · · bJ !
.

(7.13)

Let

k =

⌊
log log y

log 2
− 2M

⌋
, J = M + k − 1.
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Let B be the set of vectors (b1, . . . , bJ) with bi = 0 for i < M and b1 + · · · + bJ = k. Let B∗ be the set of
b ∈ B with bj 6Mj for each j >M . If b ∈ B∗ and a ∈ A (b), then by (7.9),

P+(a) 6 λJ 6 exp
(
2J+O(1)

)
6 y

if M is large enough. Put

(7.14) f(b) :=

J∑
h=M

2M−1−h+bM+···+bh =

J∑
h=M

2(bM−1)+···+(bh−1).

Since

(7.15) (bM − 1) + · · ·+ (bJ − 1) = k − (J −M + 1) = 0,

we have f(b) > 1 and hence, by Lemma 7.13,∑
a∈A (b)

W (a)

a
� (2 log 2)k

bM ! · · · bJ !

(
M−1∑
j=1

2−j + 21−Mf(b)

)
� (2 log 2)k

bM ! · · · bJ !
f(b).

By Proposition 7.8, Lemma 7.12, plus (7.13), we have for large y

(7.16) H(x, y, 2y)� x(2 log 2)k

log2 y

∑
b∈B∗

1

bM ! · · · bJ !f(b)
.

Roughly speaking,
f(b) ≈ g(b) := max

j
2(bM−1)+···+(bj−1).

Observe that the product of factorials is unchanged under permutation of bM , . . . , bJ . Given real numbers
z1, · · · , zk with zero sum, there is a cyclic permutation z′ of the vector z = (z1, . . . , zk) all of whose partial
sums are > 0: let i be the index minimizing z1 + · · · + zi and take z′ = (zi+1, . . . , zk, z1, . . . , zi). In
combinatorics, this fact is know as the cycle lemma. Thus, there is a a cyclic permutation b′ of b with
g(b′) = 1. Thus, we expect that 1/f(b′) will be � 1/k on average over b′ and that 1/f(b) � 1/k on
average over b ∈ B. This is essentially what we prove next; see (7.18) below.

Lemma 7.14. For positive real numbers x1, . . . , xr with product X, let xr+i = xi for i > 1. Then
r−1∑
j=0

(
r∑

h=1

x1+j · · ·xh+j

)−1

∈
[

1

max(1, X)
,

1

min(1, X)

]
.

Proof. Put y0 = 1 and yj = x1 · · ·xj for j > 1. The sum in question is

r−1∑
j=0

(
r∑

h=1

yh+j

yj

)−1

=

r−1∑
j=0

yj
y1+j + · · ·+ yr+j

.

Since yr = X,

y1+j + · · ·+ yr+j = X(y0 + · · ·+ yj) + y1+j + · · ·+ yr−1

∈ [min(1, X)(y0 + · · ·+ yr−1),max(1, X)(y0 + · · ·+ yr−1)]. �

We have

(7.17)
∑

b∈B∗

1

bM ! · · · bJ !f(b)
> S0 −

∑
M6j<k/M

S1(j),

where
S0 =

∑
b∈B

1

bM ! · · · bJ !f(b)
, S1(j) =

∑
b∈B
bj>Mj

1

bM ! · · · bJ !f(b)
.
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Let xi = 2bM−1+i−1 for 1 6 i 6 k, and xi = xi−k for i > k. By (7.14) and (7.15), x1 · · ·xk = 1 and

f(b) = x1 + x1x2 + · · ·+ x1x2 · · ·xk.

By Lemma 7.14 and the multinomial theorem,

(7.18) S0 =
∑
b∈B

1

bM ! · · · bJ !

1

k

k−1∑
j=0

(
k∑
h=1

x1+j · · ·xh+j

)−1

=
kk−1

k!
.

To bound S1(j), apply Lemma 7.14 with xi = 2bj+i−1 for 1 6 i 6 J − j. By (7.15) and bj > jM we have

X := x1 · · ·xJ−j = 2(bj+1−1)+···+(bJ−1)

= 2−(bM−1)−···−(bj−1)

6 2j−M+1−Mj

< 1.

From the definition of J and our assumption j 6 k/M , we have J − j > k/2. Write

b′ = (bM , . . . , bj−1, bj+1, . . . , bJ),

whose sum of components is k − bj . We will sum over cyclic permutations of (bj+1, . . . , bJ) using Lemma
7.14. Ignoring the terms with h 6 j in (7.14), we have

f(b) >
J∑

h=j+1

2M−1−h+bM+···+bh

=

J∑
h=j+1

2M−1−j+bM+···+bj+(bj+1−1)+···+(bJ−1)

= 2M−1−j+bM+···+bj (x1 + x1x2 + · · ·x1 · · ·xJ−j).

Since the variables bi are unrestricted for i 6= j, and have sum k − bj , we get

S1(j) 6
∑

bj>Mj

1

bj !

∑
b′

1∏
i6=j bi! 2M−1−j+bM+·+bj

· 1

J − j

J−j−1∑
i=0

(
J−j∑
h=1

x1+i · · ·xh+i

)−1

6
∑

bj>Mj

1

bj !

∑
b′

1∏
i6=j bi! 2M−1−j+bM+·+bj

· 1

(J − j)X

=
2k

J − j
∑

bj>Mj

1

2bj bj !

∑
b′

∏
i 6=j

2−bi

bi!

=
2k

J − j
∑

bj>Mj

1

2bj bj !

(
k−1

2

)k−bj
(k − bj)!

,
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using the multinomial theorem in the last step. We conclude that

S1(j) 6
2

k

∑
bj>Mj

(k − 1)k−bj

bj !(k − bj)!

=
2(k − 1)k−1

k · k!

∑
bj>Mj

k(k − 1) · · · (k − bj + 1)

bj !(k − 1)bj−1

6
2(k − 1)k−1

k!

∑
bj>Mj

1

bj !

6
kk−1

k!

2

(Mj)!
.

Hence, if M > 2 then

(7.19)
∑

M6j<k/M

S1(j) 6
kk−1

10k!
.

By (7.17), (7.18), and (7.19), ∑
b∈B∗

1

bM ! · · · bJ !f(b)
>
kk−1

2k!
.

The lower bound in Theorem 7.3 for large y now follows from (7.16) and Stirling’s formula:

H(x, y, 2y)� x(2 log 2)kkk

(log2 y)k · k!
� x(2e log 2)k

(log2 y)k3/2
� x

(log y)E(log2 y)3/2
.

8. Bounding H(x, y, z) above in terms of uniform order statistics

We cut up the sum in Proposition 7.8 according to ω(a). Let

Tk =
∑

a∈P(y)
ω(a)=k

L(a)

a
.

Recalling Proposition 7.8, our goal is to show that∑
k

Tk �
(log y)2−E

(log2 y)3/2
.

Note the trivial bound L(a) 6 min(τ(a) log 2, log(2a)) ≈ min(2k, log y) if ω(a) = k, from Lemma 7.9.
There is a transition at the point where 2k = log y, that is, at

k0 =

⌊
log2 y

log 2

⌋
.

When |k − k0| is relatively large, it is easy to deduce that Tk is small.

Lemma 7.15. We have ∑
|k−k0|>10 log3 y

Tk �
(log y)2−E

(log2 y)3
.

Proof. When k 6 k0 we’ll use the bound L(a) 6 τ(a) log 2 6 2k. Thus,

Tk 6 2k
∑

a∈P(y)
ω(a)=k

1

a
6

2k

k!
(log2 y +O(1))k � (2 log2 y)k

k!
.
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We have 2 log2 y
k > 2 log 2, hence∑

k6k0−10 log3 y

Tk �
∑

k6k0−10 log3 y

(2 log 2)k−k0
(2 log2 y)k0

k0!

� (2 log 2)10 log3 y
(log y)2−E√

log2 y

� (log y)2−E

(log3 y)3
.

Now suppose that k > k0 and use the bound L(a) 6 log(2a)� log(a) (since a > 2). We have

Tk �
∑

a∈P(y)
ω(a)=k

1

a

∑
p|a

log p

6
∑
p6y

log p

p

∑
b∈P(y)
ω(b)=k−1

1

b

� (log y)
(log2 y +O(1))k−1

(k − 1)!
.

Since log2 y+O(1)
k−1 > 1/ log 2 − o(1) > 1.3 for large y, the sum over k is dominated by the smallest term

k = k1 := k0 + d10 log3 ye. Hence∑
k>k0+10 log3 y

Tk � (log y)
(log2 y +O(1))k1−1

(k1 − 1)!

� (log y)
(log2 y)k1−1

(k1 − 1)!

� (log y)
(log2 y)k0

k0!

(
1

log 2

)k1−1−k0

� (log y)2−E√
log2 y

(log2 y)10 log log 2

� (log y)2−E

(log2 y)3
. �

Remarks. By the same argument applied to all k we deduce∑
k

Tk �
(log y)2−E√

log2 y
,

which is too big by a factor log2 y. The correct order is achieved by using the more sophisticated bound
for L(a) given by Lemma 7.9 (iii). In particular, this captures when there are an unusually large number of
small prime factors of a, this forcing L(a) to be small.

For k near k0, we bound Tk in terms of a mutivariate integral. Since
∑
p6z 1/p = log log z + O(1), by

partial summation we expect for “nice” functions f that

∑
p1<···<pk6y

f
(

log2 p1
log2 y

, · · · , log2 pk
log2 y

)
p1 · · · pk

≈ (log2 y)k
∫
· · ·
∫

06ξ16···6ξk61

f(x) dx.
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For a = p1 . . . pk, the function L(a) is not very regular as a function of p1, . . . , pk. However, the most common
way for L(a) to be small is for a to have many small prime factors, and the bound in Lemma 7.9 (iii) captures
this nicely. Moreover, this bound has the useful property of being monotone in each variable pi

Lemma 7.16. Suppose y is large and k0/2 6 k 6 2k0. Then

Tk � (2 log2 y)kUk(k0), Uk(v) =

∫
· · ·
∫

06ξ16···6ξk61

min
06j6k

2−j(1 + 2vξ1 + · · ·+ 2vξj ) dx.

Proof. Recall the definition of λi, Di from the previous section. Consider a = p1 · · · pk, where p1 <
· · · < pk 6 y, and define ji by pi ∈ Dji (1 6 i 6 k). By (7.9), pi ∈ Dj implies that log pi � 2j . By (7.9),
0 6 ji 6 k1 for each i, where k1 = k0 +O(1). By Lemma 7.9 (iii),

L(a) 6 2k+1 min
06g6k

2−g log(2p1 · · · pg)� 2kF (j),

where
F (j) = min

06g6k
2−g(1 + 2j1 + · · ·+ 2jg ).

For each 1 6 j 6 k1, let bj = #{i : pi ∈ Dj} Then

Tk � 2k
∑

16j16···6jk6k1

F (j)

k1∏
j=1

(log 2)bj

b1!
� (2 log 2)k

b1! · · · bk1 !

∑
j

F (j).

Extend the domain of F to include k-tuples of non-negative real numbers. It is clear that if ji − 1 6 ti 6 ji
for each i, then F (j) 6 2F (t). Therefore, writing Bi = b1 + · · ·+ bi as before,

1

b1! · · · bk1 !

∑
j

F (j) =
∑
j

F (j)

k1∏
j=1

∫
· · ·
∫

j−16tBj−1+16···6tBj6j

1dt

6 2

∫
· · ·
∫

06t16···6tk6k1

F (t) dt.

Making the change of variables ti = k1ξi for each i, we see that the multiple integral on the right side equals

kk1

∫
· · ·
∫

06ξ16···6ξk61

min
06g6k

2−g
(
1 + 2k1ξ1 + · · ·+ 2k1ξg

)
dξ.

Recalling that k1 = k0 +O(1), we conclude that

Tk � (2k0 log 2 +O(1))kUk(k0).

Lastly, (2k0 log 2 +O(1))k � (2 log log y)k since k 6 2k0, and the lemma follows. �

Estimating Uk(v) is the most complex part of the argument. For comparison purposes, observe that the
region of integration has volume 1/k! and that the integrand is roughly � min(1, 2v−k). This leads to an
upper bound roughly like

Uk(v)� 1

k!(2k−v + 1)
.

The next lemma will be proved in the next section. In the case |k − v| small, this improves upon the
trivial bound by a factor 1/k.

Lemma 7.17. Suppose k, v are integers with 0 6 k 6 2v. Then

Uk(v)� 1 + |v − k|2

(k + 1)!(2k−v + 1)
.
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Proof of Theorem 7.3, upper bound, assuming Lemma 7.17. By Lemmas 7.16 and 7.17,∑
k06k6k0+10 log3 y

Tk �
∑

k06k62k0

2k0((k − k0)2 + 1)
(log2 y)k

(k + 1)!
� (2 log2 y)k0

(k0 + 1)!
� (log y)2−E

(log2 y)3/2
.

and ∑
k0−10 log3 y6k6k0

Tk �
∑
k6k0

((k0 − k)2 + 1)(2 log2 y)k

(k + 1)!
� (2 log2 y)k0

(k0 + 1)!
� (log y)2−E

(log2 y)3/2
.

Combining these with Lemma 7.15 and Proposition 7.8 completes the proof. �

9. Upper bound, part II

The goal of this section is to prove Lemma 7.17, and thus complete the proof of the upper bound in
Theorem 7.3.

Let Y1, . . . , Yk be independent, uniformly distributed random variables in [0, 1]. Let ξ1 be the smallest
of the numbers Yi, let ξ2 be the next smallest, etc., so that 0 6 ξ1 6 · · · 6 ξk 6 1. The numbers ξi are the
order statistics for Y1, . . . , Yk. Then k!Uk(v) is the expectation of the random variable

X = min
06j6k

2−j(1 + 2vξ1 + · · ·+ 2vξj ).

Heuristically, we expect that ξi ≈ i/k, and so when k ≈ v we guess that

(7.20) EX � E min
16j6k

2−j+vξj .

It remains to understand the distribution of min16j6k vξj − j. Let Qk(u, v) be the probability that ξi > i−u
v

for every i, that is, vξi − i > −u for all i. In the special case v = k, Smirnov in 1939 showed that

Qk(x
√
k, k) ∼ 1− e−2x2

for each fixed x. The corresponding probability estimate for two-sided bounds on the ξi was established by
Kolmogorov in 1933 and together these limit theorems are the basis of the Kolmogorov-Smirnov goodness-
of-fit statistical tests.

In the next lemma, we prove a uniform estimate for Qk(u, v) from [30]. Stronger asymptotics are known,
e.g. [31]. The remainder of the section is essentially devoted to proving (7.20). The details are complicated,
but the basic idea is that if 2−j(2vξ1 +· · ·+2vξj ) is much large than 2vξj−j , then for some large l, the numbers
ξj−l, . . . , ξj are all very close to one another. As shown below in Lemmas 7.21 and 7.22, this is quite rare.

Lemma 7.18. Let w = u+ v − k. Uniformly in u > 0 and w > 0, we have

Qk(u, v)� (u+ 1)(w + 1)2

k
.

Proof. Without loss of generality, suppose k > 100, u 6 k/10 and w 6
√
k. If min16i6k(ξi− i−u

v ) < 0,
let l be the smallest index with ξl < l−u

v and write ξl = l−u−λ
v , so that 0 6 λ 6 1. Let

Rl(λ) = Vol

{
0 6 ξ1 6 · · · 6 ξl−1 6

l − u− λ
v

: ξi >
i− u
v

(1 6 i 6 l − 1)

}
.

Then we have

Qk(u, v) = 1− k!

v

∫ 1

0

∑
u+λ6l6k

Rl(λ) Vol

{
l − u− λ

v
6 ξl+1 6 · · · 6 ξk 6 1

}
dλ

= 1− k!

v

∫ 1

0

∑
u+λ6l6k

Rl(λ)

(k − l)!

(
k + w + λ− l

v

)k−l
dλ.
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Now suppose that ξk 6 1− 2w+2
v = k−u−w−2

v . Then min16i6k(ξi− i−u
v ) < 0. Defining l and λ as before,

we have (
1− 2w + 2

v

)k
= k! Vol

{
0 6 ξ1 6 · · · 6 ξk 6 1− 2w + 2

v

}
=
k!

v

∫ 1

0

∑
u+λ6l6k−w−2+λ

Rl(λ)

(k − l)!

(
k − l − w − 2 + λ

v

)k−l
dλ.

Thus, for any A > 0, we have

Qk(u, v) = 1−A
(

1− 2w + 2

v

)k
− k!

v

∫ 1

0

∑
k−w−2+λ<l6k

Rl(λ)

(k − l)!

(
k + w + λ− l

v

)k−l
dλ

+
k!

v

∫ 1

0

∑
u+λ6l6k−w−2+λ

Rl(λ)

(k − l)!vk−l
[
A(k − l − w − 2 + λ)k−l − (k − l + w + λ)k−l

]
dλ.

Noting that 2− λ > λ, we have(
k − l − w − 2 + λ

k − l + w + λ

)k−l
=

(
1− w + 2− λ

k − l

)k−l(
1 +

w + λ

k − l

)−(k−l)

= exp

−(2w + 2) +

∞∑
j=2

−(w + 2− λ)j + (−1)j(w + λ)j

j(k − l)j−1


6 e−(2w+2).

Thus, taking A = e2w+2, we conclude that

Qk(u, v) 6 1− e2w+2

(
1− 2w + 2

v

)k
= 1− exp

{
2w + 2

v
(v − k +O(w))

}
= 1− exp

{
−2uw +O(u+ w2 + 1)

v

}
6

2uw +O(u+ w2 + 1)

v
� (u+ 1)(w + 1)2

k
. �

Lemma 7.19 (Abel 1839). Let n ∈ N, a > 0 and b > 0. Then

n∑
k=0

(
n

k

)
(a+ k)k−1(b+ n− k)n−k−1 =

(
1

a
+

1

b

)
(n+ a+ b)n−1.

Proof. From Riordan[60], p. 18–20. Define

An(x, y; p, q) =

n∑
k=0

(
n

k

)
(x+ k)k+p(y + n− k)n−k+q

where p, q ∈ Z, x > 0 and y > 0. The formula in Lemma 7.19 is the case p = q = −1. We first observe that
replacing k with n− k yields

(7.21) An(x, y; p, q) = An(y, x; q, p)
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Next, by the Pascal relation
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
, we get (setting h = k − 1 in the first sum)

An(x, y; p, q) =

n−1∑
h=0

(
n− 1

h

)
(x+ 1 + h)h+p+1(y + (n− 1)− h)n−1−h+q

+

n−1∑
k=0

(
n− 1

k

)
(x+ k)k+p(y + 1 + (n− 1)− k)(n−1)−k+q+1

= An−1(x+ 1, y; p+ 1, q) +An−1(x, y + 1; p, q + 1).

(7.22)

Another identity is obtained by splitting off one factor x+ k, thus

An(x, y; p, q) =

n∑
k=0

(
n

k

)
(x+ k)(x+ k)k−1+p(y + n− k)n−k+q

= xAn(x, y; p− 1, q) + n

n∑
k=1

(
n− 1

k − 1

)
(x+ k)k−1+p(y + n− k)n−k+q

= xAn(x, y; p− 1, q) + nAn−1(x+ 1, y; p, q).

Applying (7.22) to the first term we get

(7.23) An(x, y; p, q) = xAn−1(x, y + 1; p− 1, q + 1) + (x+ n)An−1(x+ 1, y; p, q).

For brevity, write Bn(x, y) = An(x, y;−1, 0). Taking p = 0, q = −1 in (7.23) and applying (7.21) we deduce
that

Bn(x, y) = An(y, x; 0,−1) = yAn−1(y, x+ 1;−1, 0) + (y + n)An(y + 1, x; 0,−1)

= yBn−1(y, x+ 1) + (y + n)Bn−1(x, y + 1).
(7.24)

It follows from (7.24) by an easy induction on n ∈ N that

Bn(x, y) = x−1(x+ y + n)n (n ∈ N, x > 0, y > 0).

Inserting this into (7.22) and using (7.21) we deduce that

An(x, y;−1,−1) = An−1(x+ 1, y; 0,−1) +An−1(x, y + 1;−1, 0)

= Bn−1(y, x+ 1) +Bn−1(x, y + 1)

= (1/x+ 1/y)(x+ y + n)n−1,

and this completes the proof of the lemma. �

Lemma 7.20. If t > 2, b > 0 and t+ a+ b > 0, then∑
16j6t−1
j+a>0

(
t

j

)
(a+ j)j−1(b+ t− j)t−j−1 6 e4(t+ a+ b)t−1.

Proof. Let Ct(a, b) denote the sum in the lemma. We may assume that a > 1−t, otherwise Ct(a, b) = 0.
If a > −1, put A = max(1, a) and B = max(1, b). By Lemma 7.19,

Ct(a, b) 6 Ct(A,B) 6

(
1

A
+

1

B

)
(t+A+B)t−1

6 2(t+ a+ b+ 3)t−1

6 2e
3(t−1)
t+a+b (t+ a+ b)t−1 < e4(t+ a+ b)t−1.

(7.25)

Next assume a < −1. For c > 0, (1− c/x)x is an increasing function for x > c, thus we have

(a+ j)j−1 = (j − 1)j−1

(
1 +

a+ 1

j − 1

)j−1

6 (j − 1)j−1

(
1 +

a+ 1

t− 1

)t−1

.
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Thus, by (7.25),

Ct(a, b) 6

(
t+ a

t− 1

)t−1

Ct(−1, b)

6 e4

(
(t+ a)(t+ b− 1)

t− 1

)t−1

= e4

(
t+ a+ b+

(a+ 1)b

t− 1

)t−1

6 e4(t+ a+ b)t−1. �

We now complete the proof of the upper bound for H(x, y, 2y) in Theorem 7.3. Recall our heuristic that

min
16j6k

2−j
(
2vξ1 + · · ·+ 2vξj

)
≈ min

16j6k
2−j+vξj .

This is violated if the minimum occurs at j = j∗ and there are many ξi clustered near ξj∗ . The next lemma
captures the likelihood of such an event.

Lemma 7.21. Suppose g, k, s, u, v ∈ Z satisfy

1 6 g 6 k − 1, s > 0, v > k/2, u > 0, u+ v > k + 1.

Let R be the set of (ξ1, . . . , ξk) satisfying

(7.26) 0 6 ξ1 6 · · · 6 ξk 6 1, ξi >
i− u
v

(1 6 i 6 k)

and such that, for some l > max(g + 1, u), we have

(7.27)
l − u
v
6 ξl 6

l − u+ 1

v
, ξl−g >

l − u− s
v

.

Then

Vol(R)� g2(2(s+ 1))g

g!

(u+ 1)(u+ v − k)2

(k + 1)!
.

Proof. Fix l satisfying max(u, g + 1) 6 l 6 k. Let Rl be the subset of ξ satisfying (7.26) and (7.27)
for this particular l. We have Vol(Rl) 6 V1V2V3V4, where, by Lemma 7.18,

V1 = Vol{0 6 ξ1 6 · · · 6 ξl−g−1 6 l−u+1
v : ξi > i−u

v ∀i}

=

(
l − u+ 1

v

)l−g−1

Vol{0 6 θ1 6 · · · 6 θl−g−1 6 1 : θi > i−u
l−u+1 ∀i}

=

(
l − u+ 1

v

)l−g−1
Ql−g−1(u, l − u+ 1)

(l − g − 1)!

�
(
l − u+ 1

v

)l−g−1
(u+ 1)g2

(l − g)!
,

V2 = Vol{ l−u−sv 6 ξl−g 6 · · · 6 ξl−1 6 l−u+1
v } =

1

g!

(
s+ 1

v

)g
,

V3 = Vol{ l−uv 6 ξl 6
l−u+1
v } =

1

v
,

V4 = Vol{ξl+1 6 · · · 6 ξk 6 1 : ξi > i−u
v ∀i} (note that ξl+1 > l+1−u

v )

=

(
u+ v − l − 1

v

)k−l
Qk−l(0, u+ v − l − 1)

(k − l)!

�
(
u+ v − l

v

)k−l
(u+ v − k)2

(k − l + 1)!
.
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Thus

Vol(R)� (s+ 1)g(u+ 1)g2(u+ v − k)2

g!vk(k + 1− g)!

∑
l>g+1
l>u

(
k + 1− g
l − g

)
(l − u+ 1)l−g−1(u+ v − l)k−l.

By Lemma 7.20 (with t = k + 1− g, a = g + 1− u, b = u+ v − k − 1, j = l − g), the sum on l is

� (v + 1)k−g � vk−g =
vk

(k + 1)g

(
k + 1

v

)g
� vk2g

(k − g + 1)!

(k + 1)!

and the lemma follows. �

To bound Uk(v), we will bound the volume of the set

T (k, v,m) = {ξ ∈ Rk : 0 6 ξ1 6 · · · 6 ξk 6 1, 2vξ1 + · · ·+ 2vξj > 2j−m (1 6 j 6 k)}.

Lemma 7.22. Suppose k, v,m are integers with 1 6 k 6 2v and m > 0. Set b = k − v. Then

Vol(T (k, v,m))� Y

22b−m(k + 1)!
, Y =

{
b if b > m+ 5

(m+ 5− b)2(m+ 1) if b 6 m+ 4
.

Proof. Let r = max(5, b−m) and ξ ∈ T (k, v,m). Then either

(7.28) ξj >
j−m−r

v (1 6 j 6 k)

or

(7.29) min
16j6k

(ξj − j−m
v ) = ξl − l−m

v ∈ [−hv ,
1−h
v ] for some integers h > r + 1, 1 6 l 6 k.

Let V1 be the volume of ξ ∈ T (k, v,m) satisfying (7.28). If b > m + 5, then (7.28) is not possible since
(7.28) implies that

ξk >
k −m− r

v
=
k − b
v

= 1.

Thus, if (7.28) holds then b 6 m+ 4 and r = 5. By Lemma 7.18,

V1 6
Qk(m+ 5, v)

k!
� (m+ 6)(m+ 5− b)2

(k + 1)!
� Y

22b−m(k + 1)!
.

If (7.29) holds, then there is an integer t satisfying

(7.30) t > h− 3, ξl−2t >
l−m−2t

v .

To see (7.30), suppose such an t does not exist. Then

2vξ1 + · · ·+ 2vξl 6 2h−32vξl +
∑
t>h−3

2t · 2vξl−2t

6 2h−32l−m−h+1 +
∑
t>h−3

2t2l−m−2t

6 2l−m−1,

a contradiction. Let V2 be the volume of ξ ∈ T (k, v,m) satisfying (7.29). Fix h and t satisfying (7.30) and
use Lemma 7.21 with u = m+ h, g = 2t, s = 2t. The volume of such ξ is

� (m+ h+ 1)(m+ h− b)2

(k + 1)!

(4t+ 2)2t22t

(2t)!
� (m+ h+ 1)(m+ h− b)2

22t+3(k + 1)!
.

The sum of 2−2t+3

over t > h− 3 is � 2−2h . Summing over h > r + 1 gives

V2 �
(m+ r + 2)(m− b+ r + 2)2

22r+1(k + 1)!
� Y

22b−m(k + 1)!
. �
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Proof of Lemma 7.17. Assume k > 1, since the lemma is trivial when k = 0. Put b = k − v. For
integers m > 1, consider ξ satisfying

2−m+1 6 min
06j6k

2−j
(
1 + 2vξ1 + · · ·+ 2vξj

)
< 2−m+2.

For such ξ and for 1 6 j 6 k we have

2−j
(
2vξ1 + · · ·+ 2vξj

)
> max(2−j , 21−m − 2−j) > 2−m,

so that ξ ∈ T (k, v,m). By Lemma 7.22,

Uk(v) 6
∑
m>1

22−m Vol(T (k, v,m))� 1

(k + 1)!

∑
m>1

2−mYm

22b−m
,

Ym =

{
b if m 6 b− 5

(m+ 5− b)2(m+ 1) if m > b− 4
.

Next, ∑
m>1

2−mYm

22b−m
�

∑
16m6b−5

b

2m22b−m
+

∑
m>max(1,b−4)

(m+ 5− b)2(m+ 1)

2m
.

The proof is completed by noting that if b > 5, each sum on the right side is � b2−b and if b 6 4, the first
sum is empty and the second is � (5− b)2 � 1 + b2. This completes the proof of Lemma 7.17. �

10. Counting integers with a given number of divisors in an interval

Recall τ(n, y, z) = #{d|n : y < d 6 z} and define

Hr(x, y, z) = {n 6 x : τ(n, y, z) = r}.
Of particular interest is the case r = 1. Similarly, the exact formula

Hr(x, y, z) =
∑
k>r

(−1)k−r
(
k

r

) ∑
y<d1<···<dk6z

⌊
x

lcm[d1, · · · , dk]

⌋
implies the existence of

εr(y, z) = lim
x→∞

Hr(x, y, z)

x
.

for every fixed pair y, z.
In [29], it is proved that for every r > 1,

Hr(x, y, 2y)�r H(x, y, 2y),

that is, a positive proportion of all integers n 6 x with a divisor in (y, 2y] have exactly r such divisors. In
particular, this disproved a 1960 conjecture of Erdős.

11. Exercises

Exercise 7.1. Fix c′ < 1 < c. Suppose that 3 6 y 6
√
x. (a) Show that

#{c′x < n 6 x : µ2(n) = 1, τ(n, y, cy) > 1} �c,c′
1

log2 y

∑
a∈P(y)

L(a)

a
.

(b) Use (a) to prove Theorem 7.4.

Exercise 7.2. If 1 6 y 6 x1/ log2 x, show that
H(x, y, 2y)

x
∼ ε(y, 2y) (x→∞).



CHAPTER 8

Permutations with a fixed set of a given size

1. Introduction and notation

Let k, n be integers with 1 6 k 6 n/2. What is i(n, k), the probability that a random σ ∈ Sn fixes some
set of size k? Equivalently, what is the probability that the cycle decomposition of σ contains disjoint cycles
with lengths summing to k? This is analogous to the problem of bounding H(x, y, 2y) from the previous
Chapter, and we will develop a parallel theory based on the same ideas.

The size of i(n, k) has only recently been at all well understood. The lower bound limn→∞ i(n, k) �
log k/k is contained in a paper of Diaconis, Fulman and Guralnick [11] in 2008, while the upper bound
i(n, k)� k−1/100 is due to Łuczak and Pyber [51] in 1993 (These authors did not make any special effort to
optimise the constant 1/100, but their method does not lead to a sharp bound.) Pemantle, Peres, and Rivin
[57, Theorem 1.7] proved that limn→∞ i(n, k) = k−E+o(1), where as before,

E = 1− 1 + log log 2

log 2
≈ 0.08607.

Theorem 8.1 (Eberhard–Ford–Green[14], 2016). For 1 6 k 6 n/2,

i(n, k) � 1

kE(1 + log k)−3/2
.

Since i(n, n− k) = i(n, k), Theorem 8.1 establishes the order of i(n, k) for all n, k.
Theorem 8.1 has implications for a conjecture of Cameron related to random generation of the sym-

metric group. Cameron conjectured that the proportion of σ ∈ Sn contained in a transitive subgroup not
containing An tends to zero: this was proved by Łuczak and Pyber [51] using their bound i(n, k)� k−1/100.
Cameron further guessed that this proportion might decay as fast as n−1/2+o(1) (see [51, Section 5]). However
Theorem 8.1 has the following corollary.

Corollary 8.2. The proportion of σ ∈ Sn contained in a transitive subgroup not containing An is
� n−E(log n)−3/2, provided that n is even and greater than 2.

Proof. By Theorem 8.1 the proportion of σ ∈ Sn fixing a set B1 of size n/2 is � n−E(log n)−3/2. Such
a permutation σ must also fix the set B2 = {1, . . . , n} \ B1, and thus preserve the partition {B1, B2} of
{1, . . . , n}. Since |B1| = |B2|, the set of all τ preserving this partition is a transitive subgroup not containing
An. �

In [16] by Eberhard, Ford and Koukoulopoulos, it is shown (among other things) that the proportion of
σ ∈ Sn contained in a transitive subgroup not containing An is � n−E(log n)−3/2, provided that n is even
and greater than 2.

Whether or not a permutation σ has a fixed set of size k depends only on the vector

C = (C1(σ), C2(σ), . . . , Ck(σ))

listing the number of cycles of length 1, 2, . . . , k, respectively, in σ. Crucial to our argument is the fact
(e.g., Theorem 4.2) that C has limiting distribution (as n → ∞) equal to Xk = (X1, X2, . . . , Xk), where
the Xi are independent and Xi has Poisson distribution with parameter 1/i (for short, Xi

d
= Pois(1/i)).

91
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A simple corollary is that the limit i(∞, k) = limn→∞ i(n, k) exists for every k. Define, for any finite list
c = (c1, c2, . . . , ck) of non-negative integers, the quantity

(8.1) L (c) = {m1 + 2m2 + · · ·+ kmk : 0 6 mj 6 cj for j = 1, 2, . . . , k
}
.

We immediately obtain that

(8.2) i(∞, k) = P(k ∈ L (Xk)).

This makes it easy to compute i(∞, k) for small values of k. For example we have the extremely well known
result (derangements) that

i(∞, 1) = P(X1 > 1) = 1− 1

e
≈ 0.6321,

and the less well known fact that

i(∞, 2) = 1− P(X1 = X2 = 0)− P(X1 = 1, X2 = 0) = 1− 2e−3/2 ≈ 0.5537.

When k is allowed to grow with n, the vector C is still close to being distributed as Xk, the total
variation distance between the two distributions decaying rapidly as n/k →∞ (Theorem 4.2). This fact is,
however, not strong enough for our application. We must establish an approximate analog of (8.2), showing
that i(n, k) has about the same order as P(k ∈ L (Xk)), uniformly in k 6 n/2.

Instead of directly estimating the probability of a single number lying in L (Xk), however, we apply a
global-to-local principle analogous to Proposition 7.8.

Proposition 8.3. i(n, k) � 1
kE |L (Xk)| uniformly for 40 6 k 6 n/2.

Theorem 8.1 follows immediately from this and the next proposition, when k > 40.

Proposition 8.4. E |L (Xk)| � k1−E(1 + log k)−3/2.

When 1 6 k 6 39, we argue more directly. If n = 2k then Cauchy’s formula (Lemma 1.2) implies that

i(2k, k) > Pσ∈Sn(Ck(σ) = 2) =
1

2k2
� 1.

If n > 2k then Lemma 8.5 gives

i(n, k) > Pσ∈Sn
(
Ck(σ) = 1, Cj(σ) = 0 (j < k)

)
>

1

k(2k + 1)
� 1.

Thus, Theorem 8.1 follows when k 6 39 as well.

Question 1. Is there some constant C such that i(∞, k) ∼ Ck−E(log k)−3/2?

Question 2. Is i(∞, k) monotonically decreasing in k?

Data collected by Britnell and Wildon [8] shows that this is so at least as far as i(∞, 30), and of course
a positive answer is plausible just from the fact that i(∞, k)→ 0.

2. The global-to-local principle

In this section we prove Proposition 8.3.

Lemma 8.5. Let 1 6 m < n and c1, . . . , cm be non-negative integers satisfying

c1 + 2c2 + · · ·+mcm 6 n−m− 1.

Then
1

2m+ 1

m∏
i=1

(1/i)ci

ci!
6 Pσ(C1(σ) = c1, . . . , Cm(σ) = cm) 6

1

m+ 1

m∏
i=1

(1/i)ci

ci!
.

Proof. Let t = c1 + 2c2 + · · ·+mcm. If Cj(σ) = cj for 1 6 j 6 m, write σ = σ1σ2, where all the cycles
in σ1 have length 6 m and all the cycles in σ2 have length > m. Applying Cauchy’s Theorem (Lemma 1.2)
for σ1 and (3.5) for σ2 completes the proof. �
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As in the introduction, letX1, X2, . . . be independent random variables with distributionXj
d
= Pois(1/j).

We record here that

(8.3) E |L (Xk)| =
∑

c1,...,ck>0

|L (c)|P(X1 = c1) · · ·P(Xk = ck) = e−Hk
∑

c1,...,ck>0

|L (c)|∏k
i=1 ci!i

ci
.

Lemma 8.6. Let k ∈ N, c1, . . . , ck > 0, I ⊂ [k] and c′i = ci for i 6∈ I, c′i = 0 for i ∈ I. then

|L (c)| 6 |L (c′)|
∏
i∈I

(ci + 1).

Proof. Clearly, L (c) is the union of
∏
i∈I(ci + 1) translates of L (c′). �

Lemma 8.7. Suppose that `′ 6 `. Then

E |L (X`)| 6
`+ 1

`′ + 1
E |L (X`′)|.

Proof. By Lemma 8.6, |L (X`)| 6 (1 +X`′+1) · · · (1 +X`)|L (X`′)|. Thus by independence,

E |L (X`)| 6
( ∏̀
i=`′+1

E (1 +Xi)

)
E |L (X`′)| =

`+ 1

`′ + 1
E |L (X`′)|. �

Lemma 8.8. For any j 6 k we have

E |L (Xk)|Xj 6
3

j
E |L (Xk)|.

Suppose that j1, . . . , jh 6 k are distinct integers and that a1, . . . , ah are positive integers. Then

E |L (Xk)|Xa1
j1
· · ·Xah

jh
�a1,...,ah

1

j1 . . . jh
E |L (Xk)|.

Proof. Define X′k by putting X ′j1 = · · · = X ′jh = 0 and X ′j = Xj for all other j. By Lemma 8.6, we
have

|L (Xk)| 6 |L (X′k)|(1 +Xj1) · · · (1 +Xjh) 6 |L (Xk)|(1 +Xj1) · · · (1 +Xjh).

Thus by independence

E |L (Xk)|Xa1
j1
· · ·Xah

jh
6 E |L (Xk)|

h∏
i=1

(EXai
ji

+ EXai+1

ji
).

When h = a1 = 1 and j1 = j, we have

EXj +X2
j = 2E

(
X

2

)
+ 2EX =

1

j2
+

2

j
6

3

j
.

In general, for X d
= Pois(λ) with λ 6 1 we have EXm �m λ and the lemma follows. �

We turn now to the proof of Proposition 8.3. In what follows write

S(X`) = X1 + 2X2 + · · ·+ `X` = max L (X`).

We will treat the lower bound and upper bound in Proposition 8.3 separately, the former being somewhat
more straightforward than the latter.

Proof of Proposition 8.3 (Lower bound). When k > 40, let r = bk/20c, so that r > 2, and
consider the permutations σ = ασ1σ2β ∈ Sn, where σ1 and σ2 are cycles, |α| 6 4r < |σ1| < |σ2| < 16r, all
cycles in α have length 6 r, all cycles in β have length at least 16r, and α has a fixed set of size k−|σ1|−|σ2|.
If Ci(α) = ci for 1 6 i 6 r, then the last condition is equivalent to k − |σ1| − |σ2| ∈ L (c). In particular
|σ1|+ |σ2| 6 k, and hence

n− |α| − |σ1| − |σ2| >
4

5
k > k − 4r > 16r.
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Fix c and `1, `2 with 4r < `1 < `2 < 16r such that k − `1 − `2 ∈ L (c). By Proposition 8.5, the probability
that a random σ ∈ Sn has ci cycles of length i (1 6 i 6 r), one cycle each of length `1, `2 and no other cycles
of length < 16r is at least

� 1

r`1`2
∏r
i=1 ci!i

ci
� 1

r3
∏r
i=1 ci!i

ci
.

Now L (c) ⊂ [0, 4r]. Hence, for any `1 satisfying 4r + 1 6 `1 6 8r − 1, there are |L (c)| admissible values of
`2 > `1 for which k − `1 − `2 ∈ L (c). We conclude that

i(n, k)� 1

r2

∑
c1,··· ,cr>0
S(c)64r

|L (c)|
r∏
i=1

(1/i)ci

ci!
.

As in (8.3), the sum above equals eHrE |L (Xr)|1(S(Xr) 6 4r). Hence, by , we see that

i(n, k)� 1

r
E |L (Xr)|1(S(Xr) 6 4r).

To estimate this, we use the inequality

1(S(Xr) 6 4r) > 1− S(Xr)

4r
.

By Lemma 8.8 (first part) we have

E |L (Xr)|S(Xr) =

r∑
j=1

E |L (Xr)|jXj 6 3rE |L (Xr)|.

It follows that

i(n, k)� 1

r
E |L (Xr)|.

Finally, the lower bound in Proposition 8.3 is a consequence of this and Lemma 8.7. �

Proof of Proposition 8.3 (Upper bound). Temporarily impose a total ordering on the set of all
cycles fromed from subsets of [n], first ordering them by length, then imposing an arbitrary ordering of the
cycles of a given length. Let σ ∈ Sn have a divisor of size k. Let k1 = k and k2 = n − k. Then σ = σ1σ2,
where |σ1 = k1 and |σ2| = k2. For some j ∈ {1, 2}, the largest cycle in σ, with respect to our total ordering,
lies in σ3−j . Let δ be the largest cycle in σj , and note that |δ| 6 min(k1, k2) = k. Write σ = αδβ, where α
is the product of all cycles dividing σ which are smaller than δ and β is the product of all cycles which are
larger than σ. In particular |β| > |δ| since β contains the largest cycle in σ, and thus

(8.4) |δ| 6 |β| = n− |δ| − |α|.

By definition of δ and α, α has a divisor of size kj − |δ|. Suppose |δ| = `, Cj(α) = cj for j 6 ` and
c = (c1, c2, . . . , c`). Then kj − ` ∈ L (c). For ` and c satisfying this last condition, we count the number of
possible pairs α, δ using Lemma 1.2 to first count the number of products αδ (noting that C`(αδ) = c` + 1))
and then counting the number of possible ways to choose δ (which equals c` + 1). The total count is(

n

n− |α| − `

)
(|α|+ `)!

∏
i<`

(1/i)ci

ci!
× 1

(c` + 1)!`c`+1
× (c` + 1) =

n!

`(n− |α| − `)!
∏
i6`

(1/i)ci

ci!
.

Given α and δ, (8.4) and (3.5) imply that the number of choices for β is at most (n− |α| − `)!/`. Thus

i(n, k) 6
2∑
j=1

k∑
`=1

1

`2

∑
c1,...,c`>0
kj−`∈L (c)

∏
i6`

(1/i)ci

ci!
=

2∑
j=1

∑
c1,...,ck>0

∏
i6k

(1/i)ci

ci!

∑
m(c)6`6k
kj−`∈L (c)

1

`2
,
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where m(c) = max{i : ci > 0} ∪ {1}. With c fixed, note that ` > max(m(c), kj − S(c)). Also, the number
of ` such that kj − ` ∈ L (c) is at most |L (c)|. Thus, the innermost sum on the right side above is at most

|L (c)|
max

(
m(c), kj − S(c)

)2 .
Like (8.3), using we thus see that

(8.5) i(n, k) 6 2ekE
( |L (Xk)|

max(m(Xk), k − S(Xk))2

)
.

To bound this we use the inequality

1

max(m, k − S)2
6

4

k2

(
1 +

S2

m2

)
,

which can be checked in the cases S > k/2 and S 6 k/2 separately. It follows from this and (8.5) that

(8.6) i(n, k) 6 8e
1

k
E |L (Xk)|+ 8e

1

k
E
|L (Xk)|S(Xk)2

m(Xk)2
.

The first of these two terms is what we want, but the second requires a keener analysis. By conditioning
on m = m(Xk) we have

E
|L (Xk)|S(Xk)2

m(Xk)2
=

k∑
m=1

1

m2

∑
c1,...,cm>0
cm>1

|L (c)|S(c)2P(Xm = c)P(Xm+1 = · · · = Xkj = 0)

=

kj∑
m=1

1

m2
E |L (Xm)|S(Xm)2

1(Xm > 1)eHm−Hk

6
e

k

k∑
m=1

1

m
E |L (Xm)|S(Xm)2Xm.

In the last step we used the crude inequality 1(Xm > 1) 6 Xm. Letting Ym = |L (Xm)|, expanding
S(Xm)2 = (X1 + 2X2 + · · ·+mXm)2 and using (8.6), we arrive at

(8.7) i(n, k)� 1

k
E |L (Xk)|+ 1

k

k∑
m=1

1

m

m∑
i,i′=1

ii′EYmXiXi′Xm.

The innermost sum is estimated using Lemma 8.8, splitting into various cases depending on the set of distinct
values among i, i′,m.

Case 1: i, i′,m all distinct. Then ii′EYmXiXi′Xm � 1
mEYm.

Case 2: i = i′ 6= m. Then ii′EYmXiXi′Xm � i
mEYm � EYm.

Case 3: i = i′ = m. Then ii′EYmXiXi′Xm � mEYm.
Case 4: i 6= i′ = m or i′ 6= i = m. In both cases ii′EYmXiXi′Xm � EYm.

Summing over all cases, it follows that

m∑
i,i′=1

ii′EYmXiXi′Xm � mEYm.

Since clearly EYm 6 EYk for every m 6 k the result follows from this and (8.7). �
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3. The lower bound in Proposition 8.4

We begin by noting that from (8.3) and the inequality Hk 6 1 + log k, it follows

(8.8) E |L (Xk)| > 1

ek

∑
c1,...,ck>0

|L (c)|
k∏
i=1

(1/i)ci

ci!
.

Fix r = c1 + · · ·+ ck. We claim that

(8.9)
∑

c1+···+ck=r

|L (c)|
k∏
i=1

(1/i)ci

ci!
=

1

r!

k∑
a1,...,ar=1

|L ∗(a)|
a1 · · · ar

,

where

(8.10) L ∗(a) =
{∑
i∈I

ai : I ⊆ [r]
}
.

To see (8.9), we start from the right side and set ci = |{j : aj = i}| for each i. Then L (c) = L ∗(a),∏k
i=1 i

ci = a1 · · · ak, and each c = (c1, . . . , ck) comes from r!
c1!···ck! different choices of a1, . . . , ak.

Now let J =
⌊

log k
log 2

⌋
and suppose that b1, . . . , bJ are arbitrary non-negative integers with sum r. Consider

the part of the sum on the right side of (8.9) in which

bi = #{j : 2i−1 6 aj 6 2i − 1} (i = 1, 2, . . . , J), aj 6 2J − 1 (∀ j).

Writing

D(b) =

J∏
i=1

{2i−1, . . . , 2i − 1}bi ,

we have

(8.11)
1

r!

2J−1∑
a1,...,ar=1

|L ∗(a)|
a1 · · · ar

=
∑

b1+···+bJ=J

1

b1! · · · bJ !

∑
d∈D(b)

|L ∗(d)|
d1 · · · dr

.

To see this, fix b1, . . . , bJ and observe that there are r!
b1!···bJ ! ways to choose which bi of the variables a1, . . . , ar

lie in [2i−1, 2i − 1] for 1 6 i 6 J .
We now take only the terms with r = J . Combining (8.8), (8.9) and (8.11) gives

(8.12) E |L (Xk)| � 1

k

∑
b1+···+bJ=J

1

b1! · · · bJ !

∑
d∈D(b)

|L ∗(d)|
d1 · · · dJ

.

Lemma 8.9. For any b = (b1, . . . , bJ) with b1 + · · ·+ bJ = J we have∑
d∈D(b)

|L ∗(d)|
d1 · · · dJ

� (2 log 2)J∑J
i=1 2b1+···+bi−i

.

Proof. Given ` > 0, let R(d, `) be the number of I ⊆ [J ] with ` =
∑
i∈I di. Also, define

λi =

2i−1∑
j=2i−1

1

j
.

Since 1
j >

1
2j + 1

2j+1 for all j, λi > λi+1. Also, limi→∞ λi = log 2. Thus we conclude that

log 2 6 λi 6 1 (1 6 i 6 J).
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Since
∑
`R(d, `) = 2J , By Cauchy-Schwarz,

22J
J∏
j=1

λ
2bj
j =

( ∑
d∈D(b)

1

d1 · · · dJ

∑
`

R(d, `)

)2

=

( ∑
d∈D(b)

1

d1 · · · dJ

∑
`∈L ∗(d)

R(d, `)

)2

6

( ∑
d∈D(b),`

R(d, `)2

d1 · · · dJ

)( ∑
d∈D(b)

|L ∗(d)|
d1 · · · dJ

)
.

(8.13)

Our next aim is to establish an upper bound for the first sum on the right side. We have

(8.14)
∑

d∈D(b),`

R(d, `)2

d1 · · · dJ
=

∑
Y,Z⊂[J]

S(Y,Z), S(Y,Z) =
∑

d∈D(b)∑
i∈Y di=

∑
i∈Z di.

1

d1 · · · dJ
.

If Y = Z, then evidently S(Y, Z) = λb11 · · ·λ
bJ
J . If Y and Z are distinct, let j = max(Y4Z) be the

largest coordinate at which Y and Z differ. With all of the quantities di fixed except for dj , we see that dj
is uniquely determined by the relation

∑
i∈Y di =

∑
i∈Z di. If we define e(j) ∈ [J ] uniquely by

b1 + · · ·+ be(j)−1 + 1 6 j 6 b1 + · · ·+ be(j),

then dj > 2e(j)−1, regardless of the choice of d1, . . . , dj−1, dj+1, . . . , dJ and thus

S(Y,Z) 6
J∏
i=1
i6=j

(∑
di

1

di

)
· 1

2e(j)−1
=
λb11 · · ·λ

bJ
J λ
−1
e(j)

2e(j)−1
�

λb11 · · ·λ
bJ
J

2e(j)
.

(Here, the sums over di are over the appropriate dyadic intervals required so that d ∈ D(b).)
Since the number of pairs of subsets Y,Z ⊂ [J ] with max(Y4Z) = j is exactly 2J+j−1, we get from this

and (8.14) that
J∏
j=1

λ
−bj
j

∑
d∈D(b),`

R(d, `)2

d1 · · · dJ
� 2J + 2J

J∑
j=1

2j−e(j) = 2J + 2J
J∑
i=1

2−i
∑

j:e(j)=i

2j

� 2J + 2J
J∑
i=1

2b1+···+bi−i

� 2J
J∑
i=1

2b1+···+bi−i.

Comparing with (8.13), and using again that λi > log 2, completes the proof. �

Combining Lemma 8.9 and (8.12), we obtain

E |L (Xk)| � (2 log 2)J

k

∑
b1+···+bJ=J

1

b1! · · · bJ !
∑J
i=1 2b1+···+bi−i

.

Applying the Lemma 7.14 with xi = 2bi−1, 1 6 i 6 J , the multiple sum over b1, . . . , bJ equals

1

J

∑
b1+···+bJ=J

1

b1! · · · bJ !
=

1

J
· J

J

J !
� eJ

J3/2
,

using the multinomial theorem and Stirling’s formula. Recalling that J = log k
log 2 + O(1), the lower bound in

Proposition 8.4 now follows.
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4. The upper bound in Proposition 8.4

Recall from (8.10) the definition of L ∗(a). From (8.3), the bound Hk > log k and (8.9) we obtain

(8.15) E |L (Xk)| 6 1

k

∑
r

1

r!

k∑
a1,...,ar=1

|L ∗(a)|
a1 · · · ar

.

Let ã1, ã2, . . . be the increasing rearrangement of the sequence a, so that ã1 6 ã2 6 · · · . For 0 6 j 6 r,

L ∗(a) ⊂

{
m+

∑
i∈I

ãi : 0 6 m 6
j∑
i=1

ãi, I ⊂ {j + 1, . . . , r}

}
,

from which it follows immediately that
|L ∗(a)| 6 G(ã),

where, for any real t1, . . . , tr, we define

(8.16) G(t) = min
06j6r

2r−j (t1 + · · ·+ tj + 1) .

As in the previous chapter, we replace the sum in (8.15) with an integral, using that G(a) is increasing in
each coordinate.

Lemma 8.10. For any r > 1, we have

1

r!

k∑
a1,...,ar=1

|L ∗(a)|
a1 · · · ar

� (2Hk)r
∫

Ωr

min
06j6r

2−j(kξ1 + · · ·+ kξj + 1)dξ,

where Ωr = {(ξ1, . . . , ξr) : 0 6 ξ1 6 ξ2 6 . . . 6 ξr 6 1}.

Proof. Motivated by the fact that
1

a
=

∫ exp(Ha)

exp(Ha−1)

dt

t
,

for each a define the product sets

R(a) =

r∏
i=1

[exp (Hai−1) , exp (Hai)] .

By (8.16), we have
k∑

a1,...,ar=1

|L ∗(a)|
a1 · · · ar

6
k∑

a1,...,ar=1

G(ã)

a1 · · · ar
=

k∑
a1,...,ar=1

G(ã)

∫
R(a)

dt

t1 · · · tr
.

Consider some t ∈ R(a), so that exp{Hai−1} 6 ti 6 exp{Hai} for 1 6 i 6 r. Let t̃1 6 · · · 6 t̃r be the
increasing rearrangement of t. From Hm > log(m+ 1) we have t̃i > ãi for all i. Hence

G(ã) 6 min
06j6r

2r−j(t̃1 + · · ·+ t̃j + 1) = G(̃t) for all t ∈ R(a).

This yields
k∑

a1,...,ar=1

G(ã)

∫
R(a)

dt

t1 · · · tr
6

k∑
a1,...,ar=1

∫
R(a)

G(t̃)

t1 · · · tr
dt =

∫ exp(Hk)

1

· · ·
∫ exp(Hk)

1

G(t̃)

t1 · · · tr
dt.

The integrand on the right is symmetric in t1, . . . , tr. Making the change of variables ti = eξiHk yields
k∑

a1,...,ar=1

|L ∗(a)|
a1 · · · ar

6 (2Hk)rr!

∫
Ωr

min
06j6r

2−j
(
eξ1Hk + · · ·+ eξjHk + 1

)
dξ.

The lemma follows from the upper bound Hk 6 1 + log k. �
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In the notation of Lemma 7.17, we have by Lemma 8.10 the bound

(8.17) E |L (Xk)| � 1

k

∑
r

(2Hk)rUr(v), v =
log k

log 2
.

Now Lemma 7.17 provides the bound

Ur(v)� 1 + |v − r|2

(r + 1)!(2r−v + 1)
,

uniformly for 0 6 r 6 2v. Set
r∗ = bvc.

In what follows, we will use the observation that an/(n + 1)! is increasing for n 6 a − 2 and decreasing
thereafter. If r = r∗ +m with 0 6 m 6 v, then we have

(2Hk)rUr(v)� (2Hk)r

(r + 1)!
· 1 +m2

2m

� (2Hk)r∗

(r∗ + 1)!
·
(

2Hk

r∗

)m
· 1 +m2

2m

� k2−E(log k)−3/2 · (1 +m2)(log 2 + 0.1)m,

the log 2 + 0.1 coming from the assumption that k > 40. Summed over m, this gives a total of �
k2−E(log k)−3/2.

Next suppose that r = r∗ −m, m ∈ N. Then we have

(2Hk)rUr(v)� (2Hk)r

(r + 1)!
· (1 +m2)

� (2Hk)r∗

(r∗ + 1)!
·
(

r∗
2Hk

)m
· (1 +m2)

� k2−E(log k)−3/2 · 1 +m2

(2 log 2)m
.

Summed over m, we again get a total of � k2−E(log k)−3/2.
There remains the range r > 2v. Here, we use the trivial bound Ur(v) 6 1/r! and thus∑

r>2v

(2Hk)rUr(v)�
∑
r>2v

(2Hk)r

r!
� e2Hk(1−Q(1/ log 2)) � k2−2E .

We conclude that ∑
r

(2Hk)rUv(r)� k2−E(log k)−3/2.

Combined with (8.17), this proves the upper bound in Proposition 8.4.

5. Exercises

Exercise 8.1. If 1 6 k 6 n/ log n, show that

i(n, k) ∼ i(∞, k) (n→∞).



CHAPTER 9

Sets of permutations with equal sized divisors

1. Equal sized divisors of several permutations

Let σ1, . . . , σr be random permutations in Sn, chosen independently. By Theorem 8.1, the probability
that they all have a divisor of size k is

i(n, k)r �r
1

(kE(1 + log k))r
(1 6 k 6 n/2).

For σ ∈ Sn define
D(σ) = {|β| : β|σ}, the set of sizes of divisors of σ.

We note that {0, n} ⊆ D(σ) always. We wish to also bound the probability that D(σ1)∩· · ·∩D(σr) contains
an element in [k, n/2]. Crudely, from the above and the fact that 12E > 1 this is at most

(9.1)
∑

k6m6n/2

i(n, k)r �r
k1−rE

(1 + log k)(3/2)r
(r > 12).

This estimate is wasteful, since the events m1 ∈ D(σ1) ∩ · · · ∩D(σr) and m2 ∈ D(σ1) ∩ · · · ∩D(σr) are not
independent. In fact, if r > 4 then it is rare for D(σ1) ∩ · · · ∩D(σr) to have a large element, but this is not
true for r = 3. This ultimately depends on the inequalities

3(1− log 2) < 1 < 4(1− log 2).

Theorem 9.1 (Pemantle-Peres-Rivin [57]; 2016). Let σ1, . . . , σ4 be random permutations in
Sn, chosen independently. There is a real number α > 0 so that

P
(
D(σ1) ∩ · · · ∩D(σ4) = {0, n}

)
> α.

The authors if [15] gave a proof of 9.1 which is much simpler than the original proof in [57], and we
given an even simpler proof below.

Theorem 9.2 (Eberhard-Ford-Green [15]; 2017). With probability → 1 as n→∞, we have

|D(σ1) ∩D(σ2) ∩D(σ3)| → ∞

as n→∞.

Lemma 9.3. (a) Suppose that h,m are integers with h < m < n− h. Then

Pσ
(
m ∈ D(σ), C[h](σ) = 0

)
� h−2.

(b) If 1 6 λ 6 2, 1 6 h 6 k 6 n/2 and k < m < n− k then

Pσ
(
m ∈ D(σ), C[h](σ) = 0, C(h,k](σ) 6 λ log(k/h)

)
� h−2(k/h)−2Q(λ/2).

Proof. For (a), factor each such σ as σ = σ1σ2 where |σ1| = m and |σ2| = n−m. By By Theorem 1.9,
the number of such σ is

�
(
n

m

)
· m!

h
· (n−m)!

h
� n!

h2
,

100
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For (b), WLOG k > 10. Fix ` 6 λ log(k/h) and consider permutations σ with C[h](σ) = 0, C(h,k](σ) = `
and such that m ∈ D(σ). Write σ = σ1σ2 with |σ1| = m, |σ2| = n − m. Then C(h,k](σ1) = `1 and
C(h,k](σ2) = `2, where `1 + `2 = `. By Theorem 1.9, the number of such σ, for a given choice of `1, `2, is

�
(
n

m

)
(Hk −Hh)`1

h · (k/h)`1!
m! · (Hk −Hh)`2

h · (k/h)`2!
(n−m)! = n!

(1 + log(k/h))`

k2`1!`2!
.

Summing over `1 + `2 = `, we see that

Pσ
(
m ∈ D(σ), C[h](σ) = 0, C(h,k](σ) = `)� (2 log(k/h) + 2)`

k2`!
.

We sum over ` 6 λ log(k/h), using the bound for Poisson tails (Prop. 0.3) and noting that (2 log(k/h)+2)` �
(2 log(k/h))`. We get

Pσ
(
m ∈ D(σ), C[k](σ) 6 (1 + ε) log k

)
� h−2e−(2 log(k/h))Q(λ/2) = h−2(k/h)−2Q(λ/2). �

Lemma 9.4. Let 1 6 h 6 n/10. There is a real number c > 0 so that with probability � h−4−c,
C[h](σi) = 0 for 1 6 i 6 4 and D(σ1) ∩ · · · ∩D(σ4) contains an element other than 0 and n.

Proof. Fix 0 < ε 6 1
2 , to be determined later. WLOG h > 10. Let k = 2rh 6 n/2 for a non-negative

integer r. Let σ1, σ2, σ3, σ4 be random permutations of Sn.
Let Fk be the event that C[h](σi) = 0 (1 6 i 6 4), and for some i, C(h,k](σi) > (1 + ε) log(k/h).

Let Gk be the event that C[h](σi) = 0 (1 6 i 6 4), and that for some m ∈ (k, 2k] ∩ (h, n/2], we have
m ∈ D(σ1)∩ · · · ∩D(σ4). Let Hk be the event that Gk holds and that C(h,k](σi) 6 (1 + ε) log(k/h) for each
i. Evidently, the probability in the lemma is at most

(9.2)
∑

h6k6n/2

PGk 6
∑

h6k6h3

PGk +
∑

h3<k6n/2

(PFk + PHk).

By Theorem 1.11, if k > h3 then

P Fk �
1

h4(k/h)Q(1+ε)
.

By Lemma 9.3 (a), we have

P Gk �
k

h8
.

Now suppose that h3 < k 6 n/2 and consider the event Hk. By Lemma 9.3 (b), we get that

P Hk �
k

h8(k/h)8Q( 1+ε
2 )

.

Choose ε so 1 − 8Q( 1+ε
2 ) = −Q(1 + ε); the solution is ε = 0.08895343 · · · . Inserting our bounds for Fk, Gk

and Hk into (9.2), we see that the probability in the lemma is

� h3

h8
+

1

h4+2Q(1+ε)
+

1

h5+16Q( 1+ε
2 )
� 1

h4+2Q(1+ε)
. �

Proof of Theorem 9.1. Let h be a sufficiently large constant and n0 = 3h. If n 6 n0, the probability
in question is at least the probability that σ1 is an n-cycle, which is 1/n > 1/n0. Now suppose that n > n0,
in particular n > 3h. By (3.5) and Lemma 9.4,

P
(
C[h](σi) = 0 (1 6 i 6 4);D(σ1) ∩ · · · ∩D(σ4) = {0, n}

)
>

1

(2h+ 1)4
−O

(
1

h4+c

)
.

Taking h large enough proves the theorem. �
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2. Application: Invariable generation of Sn
By Dixon’s theorem [12], two random elements σ1, σ2 of Sn generate at least the whole alternating group

An with probability tending to 1 as n→∞. It is less clear how large the group generated by σ′1, σ′2 must be
when σ′1 and σ′2 are allowed to be arbitrary conjugates of σ1 and σ2. Following Dixon [13] we say that a list
σ1, . . . , σr ∈ Sn has a property P invariably if σ′1, . . . , σ′r has property P whenever σ′i is conjugate to σi for
every i. How many random elements of Sn must we take before we expect them to invariably generate Sn?

This problem is connected with computational Galois theory. Given a polynomial f ∈ Z[x] of degree n
with no repeated factors, information about the Galois group can be gained by reducing f modulo various
primes p and factorizing the reduced polynomial fp over Z/pZ. By classical Galois theory, if fp has irreducible
factors of degrees n1, . . . , nr then the Galois group G of f over Q has an element with cycle lengths n1, . . . , nr.
Moreover by Frobenius’s density theorem, if G = Sn then the frequency with which a given cycle type arises
is equal to the proportion of elements in Sn with that cycle type. Thus if we suspect that G = Sn then the
number of times we expect to have to iterate this procedure before proving that G = Sn is controlled by the
expected number of random elements required to invariably generate Sn.

Łuczak and Pyber [51] were the first to prove the existence of a constant C such that C random
permutations σ1, . . . , σC ∈ Sn invariably generate Sn with probability bounded away from zero. Their
method does not directly yield a reasonable value of C, but recently Pemantle, Peres, and Rivin [57] proved
that we may take C = 4. The key to their proof is Theorem 9.1.

Theorem 9.5 (Pemantle-Peres-Rivin [57]; 2016). For some α > 0, the probability that
random σ1, . . . , σ4 invariably generate Sn is at least α, for any n.

Theorem 9.6 (Eberhard-Ford-Green [15]; 2017). With probability → 1 as n→∞, random
σ1, σ2, σ3 do not invarably generate Sn.

The connection between common size fixed sets of σ1, . . . , σr and invariable generation is clear: if m ∈
D(σ1)∩ · · · ∩D(σr), 0 < m < n, then there are conjugates σ′1, . . . , σ′r each mapping {1, 2, · · · ,m} to itself (a
fixed set). In this case, it is clear that σ′1, . . . , σ′r do not generate Sn.

What if D(σ1) ∩ · · · ∩ D(σr) = {0, n}? It is simple to see that σ′1, . . . , σ′r generate some transitive
subgroup of Sn; a subgroup H of Sn is transitive if for every pair i, j ∈ [n] there is some element of H which
maps i to j. Examples of transitive subgroups include Sn, An as well as imprimitive transitive subgroups
such as this example when n = 2k is even: Let I1 = {1, 2, . . . , k} and I2 = {k + 1, . . . , 2k} amd let

G = {σ : either σ(I1) = I1, σ(I2) = I2 or σ(I1) = I2, σ(I2) = I1}.

Lemma 9.7. Suppose that D(σ1)∩· · ·∩D(σr) = {0, n}. Then σ1, . . . , σr generate a transitive subgroup
of Sn.

Proof. Let G be the group generated by σ1, . . . , σr . Define a relation ∼ on [n] by a ∼ b if there is a
σ ∈ G with σ(a) = b. This is clearly an equivalence relation, and thus partitions [n]. If G is not a transitive
subgroup, then there is a non-trivial equivalence class I, ∅ 6= I 6= [n], and clearly I is a fixed set of each
σj . �

From Lemma 9.7, Theorem 9.6 now follows from Theorem 9.2. Also, from Theorem 9.1, it follows that
for some α′ > 0, with probability at least α′ four random permutations σ1, . . . , σ4 generate a transitive
subgroup of Sn. It is known (a Theorem of Łuczak-Pyber [51], which also uses the theory of permutations)
that the probability that a random σ ∈ Sn lies in a transitive subgroup of Sn other than Sn or An is o(1)
as n → ∞. We will not prove this here. For the latest estimates, see [16]. Note that if σ does not lie
in a transitive subgroup, then neither do any of its conjugates σ̃, since σ and σ̃ are indistinguishable in
a group-theoretic sense. It follows then that for some α′′ > 0, with probability at least α′′ four random
permutations σ1, . . . , σ4 generate either An or Sn.

To distinguish An from Sn, it suffices to choose σ1 to be an odd permutation (a permutation which
is the product of an odd number of transpositions (ab)) in order to conclude that σ′1, . . . , σ′4 generates Sn.
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Recalling the proof of Theorem 9.1 from the previous section, it suffices to show that if σ is a random odd
permutation, then Pσ(C[h](σ) = 0)� 1/h, i.e., an analog of the lower bound in (3.5).

Lemma 9.8. Let n be sufficiently large and 1 6 h 6 n1/3. Then

P(C[h](σ) = 0, σ odd)� 1

h
.

We first establish a general result about random odd permutations.

Lemma 9.9 (Random odd permutations). Let τ ∈ Sn be a random odd permutation, and
1 6 k 6 n. Then dTV (C1(τ), . . . , Ck(τ),Zk)� k/n, where

Zk = (Z1, . . . , Zk), Zi
d
= Pois(1/i) (1 6 i 6 k), Zi independent.

Proof. WLOG k 6 n/10. Choose σ ∈ Sn uniformly at random, and define ρ by putting ρ = 1 if σ is
odd and ρ = (12) if σ is even. Then τ = σρ is uniformly distributed over odd permutations. We will show
that with high probability,

(9.3) (C1(σ), . . . , Ck(σ)) = (C1(σρ), . . . , Ck(σρ)).

In particular, (9.3) holds provided that neither of the following holds:
(i) 1 and 2 are in different cycles, each of length 6 k; or
(ii) 1 and 2 are in the same cycle of σ and there are fewer than k elements in between them (in either

direction).
To see this, observe that for any strings of numbers A,B (including the empty strings), if σ has cycles (1A)
and (2B) and ρ = (12) then σρ has a cycle (1A2B). Also, if σ has a cycle (1A2B) and ρ = (12), then σρ
has cycles (1A) and (2B).

We will show that the probability that (9.3) fails is O( kn ). Then, by the Poisson distribution of Small
Cycles (Theorem 4.3), dTV (C1(σ), . . . , Ck(σ),Zk)� e−n/5k � k/n and the lemma follows.

Consider (i). Given positive a, b 6 k, the probability that (1A) and (2B) are cycles in σ with |A| =
a, |B| = b, equals

1

n!
· (n− 2)!

a!b!(n− a− b− 2)!
a!b!(n− a− b− 2)! =

1

n(n− 1)
.

Thus, the probability that (i) holds is O(k2/n2).
Now consider the probability that 1 and 2 are both contained in the same cycle of σ and are close

together. Let this cycle be (1A2B), where |A| = a and |B| = b with min(a, b) 6 k − 1. The probability of
having such a cycle with a, b fixed equals 1

n(n−1) by the same logic. Hence, the probability that (ii) holds is
O(k/n). �

Proof of Lemma 9.8. By Lemma 9.3,

Pσ(C[h](σ) = 0, σ odd) =
1

2
Pτ∈Sn\An(C[h](τ) = 0)

=
1

2
P(Z1 = · · · = Zh = 0) +O(h/n)

= (1/2)e−Hh +O(1/n2/3)� 1/h

if n is large enough. �
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3. Application: Irreducibility of polynomials over Q

A famous conjecture of Odlyzko and Poonen states that a random polynomial

(9.4) xn + an−1x
n−1 + · · ·+ a1x+ 1,

where each ai ∈ {0, 1} is randomly chosen, is irreducible with probability → 1 as n→∞. Variations on this
problem put the coefficients aj in other finite sets, e.g. {−1, 1}. Here are some highlights of what’s known.

• Almost all polynomials of shape (9.4) with an ∈ {0, 1} have no irreducible factor 6 cn/ log n, for
some c > 0 (Konyagin [49], 1999). This was improved in Bary-Soroker, Koukoulopoulos and Kozma
[4] in 2022, where the conclusion is that with probability → 1 as n → ∞, the polynomial has no
irreducible factor 6 cn, for some c > 0.

• Almost all polynomials of shape (9.4) with an ∈ {1, 2, . . . , 210} are irreducible (Bary-Soroker and
Kozma [5], 2020). The methods were refined in work of Bary-Soroker, Koukoulopoulos and Kozma
[4] in 2022, where they show the same conclusion with an ∈ {1, 2, . . . , 35} and other finite sets.

• Assuming the GRH for Dedekind zeta-functions, almost all polynomials of shape (9.4) with an ∈
{0, 1} are irreducible (Bruillard, Varju [7], 2019).

Here we discuss the proof of Bary-Soroker and Kozma’s “210” theorem, because of its connection to
random permutations. The authors consider polynomials

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

with each ai ∈ {1, 2, . . . , 210} chosen uniformly at random. We sketch the proof of

Theorem 9.10. Let ξ(n) → ∞ as n → ∞. With probability → 1 as n → ∞, f(x) has no factor of
degree in [ξ(n), n− 1].

The key idea is that 210 = 2 · 3 · 5 · 7, and there is a natural bijection between such f and the vector
(f2, f3, f5, f7) of its reduction modulo 2, 3, 5 and 7. Moreover, each fp is a random polynomial over Fp and
(this is crucial!) the Chinese Remainder Theorem implies that the random polynomials f2, f3, f5, f7 are
independent. Also, if f has a factor or degree k, then so do f2, f3, f5, f7 (these need not be irreducible!).

The second key idea is the well-known fact that the distribution of the sizes of the irreducible factors of
a random polynomial of degree n over Fp is roughly the same as the distribution of the sizes of cycles of a
random permutation σ ∈ Sn. This is relatively easy to establish since we have exact formulas in both cases.

Lemma 9.11. Let f be a random monic polynomial of degree n over Fq, where q is a prime power. Let
If (r) be the number of irreducible factors of f of degree r. Then, if m1 + 2m2 + · · ·+ nmn = n,

P
(
If (1) = m1, . . . , If (n) = mn

)
=

n∏
i=1

α(i,mi),

where

α(i, 1) =
1

i

∑
j|i

µ(i/j)qj−i, α(i,m) =
(α(i, 1) + q−i(m− 1))(α(i, 1) + q−i(m− 2)) · · ·α(i, 1)

m!

Proof. The main task is to show that α(i,m)qim is the number of m-tuples (duplicates allowed) of
monic, irreducible polynomials of degree i over Fq. Once this is established, we follow the idea of Lemma
1.1, getting

E
(
If (1)

m1

)
· · ·
(
If (n)

mn

)
=

n∏
i=1

α(i,mi)

and then noticing that if m1 +2m2 + · · ·+nmn = n, the product of binomials on the left equals 1 if and only
if If (r) = mr for all r. We begin with the interpretation of α(i, 1). Let πq(d) be the number of irreducible
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polynomials of degree d (all polynomials will be monic and over Fq). Let I denote a generic irreducible
polynomial of any degree. Then

nqn =
∑

degF=n

∑
Iv|F

deg(I)

=
∑

v·deg I6n

deg(I) · |{F : deg(F ) = n, Iv|F}|

=
∑

v·deg I6n

deg(I) · qn−v·deg(I)

= qn
n∑

m=1

q−m
∑
d|m

dπq(d).

Divide by qn, then apply this at n and n− 1 and take the difference. This gives

qn =
∑
d|n

dπq(d).

By Möbius inversion,
nπq(n) =

∑
d|n

µ(d)qn/d =
∑
d|n

µ(n/d)qd,

and therefore
α(d, 1) = q−dπq(d),

as desired.
Finally, the number of ways one can choose m irreducible polynomials of degree d is(

πq(d) +m− 1

m

)
= qdmα(d,m).

�

For large i we have

α(i, 1) =
1

i
+O(q−i/2) ≈ 1

i
and

α(i,m) ≈ α(i,m)i

m!
≈ (1/i)m

m!
.

Thus, the distribution of (If (1), . . . , If (k)) is about the same as the distribution of (C1(σ), . . . , Ck(σ)). For
precise statements, see [1].

Heuristically, the probability that f2, . . . , f7 all have a factor of the same degree in [ξ(n), n− 1] should
be approximately the same as the probability that four random permutations each have a divisor of size k
for some k ∈ [ξ(n), n − 1]. This latter probability is → 0 as n → ∞, essentially the proof of Theorem 9.4.
See Exercise 9.1 below.

4. Exercises

Exercise 9.1. Show that for some constant c > 0, the probability that D(σ1) ∩ · · · ∩D(σ4) contains
an element in [K,n−K] is O(K−c).
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