The concentration of divisors

Kevin Ford (joint work with Ben Green, Dimitrios Koukoulopoulos)

March 13, 2021

Random integers

How are the **prime factors** of a random integer $n \le x$ distributed ?

(Erdős; Kubilius). Random integer
$$n \leqslant x$$
, $1 < a < b \leqslant \log \log x$. Then

 $\#\{p|n:e^{e^a}< p\leqslant e^{e^b}\}\approx \operatorname{Poisson}(b-a)$

and approx. independent for disjoint intervals
$$(a, b]$$
.

Idea: \forall prime p, $\mathbb{P}(p|n) \approx 1/p$. By Mertens,

$$\sum_{e^{e^a}$$

Divisors of a random integer $n \leq x$

Look at Divisors on a log-scale

- About log log *t* prime factors below *t*;
- About $2^{\log \log t} = (\log t)^{\log 2}$ divisors below t;
- Prime factors p_1, p_2, \ldots, p_k . Then

$$\mathcal{D}_n := \{ \log d : d | n \} = \{ 0, \log p_1 \} + \{ 0, \log p_2 \} + \dots + \{ 0, \log p_k \}.$$

Much more complicated distribution.

Erdős' conjecture (1948)

ments near 0 because $\log 3 > 1$.

Conjecture: Almost all n have two divisors d, d' with $d < d' \le 2d$.

Heuristic: $\mathcal{D}_n - \mathcal{D}_n = \{\log(d'/d) : d|n,d'|n,(d,d') = 1\}$ has $3^k \approx (\log n)^{\log 3}$ elements, all in $[-\log n,\log n]$. There should be ele-

Erdős' conjecture (1948)

Conjecture: Almost all n have two divisors d, d' with $d < d' \le 2d$.

Heuristic: $\mathcal{D}_n - \mathcal{D}_n = \{\log(d'/d) : d|n, d'|n, (d, d') = 1\}$ has $3^k \approx (\log n)^{\log 3}$ elements, all in $[-\log n, \log n]$. There should be elements near 0.

The Erdős-Hooley Delta function

$$\Delta(n) := \max_{u \geqslant 0} |\mathcal{D}_n \cap [u, u+1]| = \max_{u \geqslant 0} |\{d|n : e^u \leqslant d \leqslant e^{u+1}\}|.$$

Erdős' conjecture roughly equivalent to $\Delta(n) \geqslant 2$ for most n.

Hooley (1979 paper): motivated by applications to Diophantine equations; further applications - Vaughan, Browning, la Bretèche, ...

$$\Delta(n) := \max_{u \geqslant 0} |\mathcal{D}_n \cap [u, u+1]| = \max_{u \geqslant 0} |\{d|n : e^u \leqslant d \leqslant e^{u+1}\}|.$$

Work of Maier-Tenenbaum

Maier-Tenenbaum, 1984. Erdős' conjecture is true. Moreover, for most n, $\Delta(n) \ge (\log \log n)^{H_1 - o(1)}$, where

$$H_1 = -\frac{\log 2}{\log(1 - 1/\log 3)} = 0.28754\dots$$

Maier-Tenenbaum, 2009. For almost all n,

$$(\log \log n)^{H_2 + o(1)} \leqslant \Delta(n) \leqslant (\log \log n)^{\log 2 + o(1)},$$

where

where
$$H_2 = rac{\log 2}{\log(rac{1-1/\log 27}{1-1/\log 3})} = 0.33827\dots$$

MT conjectured that $\Delta(n) = (\log \log n)^{H_2 + o(1)}$ for most n.

Maier-Tenenbaum main ideas

1 Focus of prime factors in J = (y', y], where

$$y' = \exp\{(\log y)^{c-\varepsilon}\}, \quad c = 1 - \frac{1}{\log 3} = 0.089760...$$

Let $\mathcal{D}_n(J) := \{ \log d : d | n, p | d \Rightarrow p \in J \}$. Show that $\mathcal{D}_n(J) - \mathcal{D}_n(J)$ nicely distributed in $[-\log n, \log n]$.

- **2** Use a small number of larger primes to fill any gap in $\mathcal{D}_n(J) \mathcal{D}_n(J)$ near 0. Get $n_J = \prod_{p \in J, p \mid n} p$ has two close divisors.
- **3** Apply the above argument to many disjoint intervals $J_i = [y_i', y_i]$ to generate many close divisors of n. Get 1984 bounds.
- **4** 2009: Exploit the "unused primes" in J_j (j < i) to augment the argument in (1), (2). Succeed with shorter intervals

$$(y'', y], \quad y'' = \exp\{(\log y)^{\theta - \varepsilon}\}, \quad \theta = \frac{1 - 1/\log 3}{1 - 1/\log 27} = 0.128857...$$

New model (F, Green, Koukoulopoulos; 2019+)
$$\#\{p|n, e^k$$

Consider a random subset \mathscr{A} of $\{1, 2, ..., N\}$, where

$$\mathbb{P}(k \in \mathscr{A}) = 1/k.$$

$$\mathscr{A} \; \leftrightarrow \; \{\log p : p|n\} \; \text{for random} \; n \leqslant \mathrm{e}^N.$$

$$\Delta(n) \; \leftrightarrow \; F(\mathscr{A}) := \max_m \; \# \bigg\{ A \subset \mathscr{A} : \sum_{i=1}^n a = m \bigg\}$$

Example:
$$\mathscr{A} = \{1, 2, 4, 5, 7\}$$
. Then $F(\mathscr{A}) = 3$, corresponding to $k = 7$ or $k = 12$, e.g. $7 = 7 = 5 + 2 = 4 + 2 + 1$.

 $F(\mathscr{A}) := \max_{m} \ \# \bigg\{ A \subset \mathscr{A} : \sum_{a \in A} a = m \bigg\}$ Corespondence $a \leftrightarrow \log p, \sum a \leftrightarrow \log d$.

(Setup) \mathscr{A} is a random, harmonic weighted, subset of $\{1, \ldots, N\}$.

Thm (FGK, 2019+). Let
$$\zeta = 0.3533227\dots$$
 (a specific number). Then
$$F(\mathscr{A}) \geqslant (\log N)^{\zeta - o(1)} \quad \text{with prob.} \to 1 \text{ as } N \to \infty.$$

Corollary: For almost all n, $\Delta(n) \ge (\log \log n)^{\zeta - o(1)}$.

Compare with MT ('09) :
$$\Delta(n) \geqslant (\log \log n)^{0.33827...-o(1)}$$
.

Conjecture (FGK). For most n, $\Delta(n) = (\log \log n)^{\zeta + o(1)}$.

Theorem (FGK, 2019+). Let

$$\beta_k := \sup \big\{ c : F \big(\mathscr{A} \cap [N^c, N] \big) \geqslant k \text{ with prob.} \to 1 \text{ as } N \to \infty \big\}.$$

Then

$$\limsup_{k \to \infty} \frac{\log k}{\log(1/\beta_k)} \geqslant \zeta = 0.3533\dots$$

This corresponds to: Maximize c so that $n_J = \{d|n: p|d \Rightarrow p \in J\}$ has k close divisors for almost all n, with

$$J = (\exp\{(\log y)^c\}, y].$$

$$\beta_k := \sup \big\{ c : F \big(\mathscr{A} \cap [N^c, N] \big) \geqslant k \text{ with prob.} \to 1 \text{ as } N \to \infty \big\}.$$

Theorem: FGK, 2019+ For each $k \ge 2$, let α_k be the supremum of numbers α so that almost all n have k divisors in

$$\left(y, y + \frac{y}{(\log y)^{\alpha}}\right]$$

for some y. Then, for all k, $\alpha_k \geqslant \frac{\beta_k}{1-\beta_k}$.

Erdős-Hall, Maier-Tenenbaum:
$$\beta_2 = \frac{\log 3 - 1}{\log 3}$$
, $\alpha_2 = \log 3 - 1 \approx 0.0986$

M-T: For
$$2^{m-1} < k \le 2^m$$
, $\frac{\log 2}{k+1} \ge \alpha_k \ge \frac{(\log 3 - 1)^m 3^{m-1}}{(\log 27 - 1)^{m-1}} \approx k^{-1/0.33287}$

Conjecture (FGK):
$$\alpha_k = \frac{\beta_k}{1-\beta_k}$$
.

We have

Theorem (FGK, 2021+)

 $\beta_3 = \frac{\log 3 - 1}{\log 3 + \frac{1}{2}} = 0.02616218... \approx \frac{1}{38.223} \Rightarrow \alpha_3 \geqslant \frac{1}{37.223}$

 $\beta_4 = \frac{\log 3 - 1}{\log 3 + \frac{1}{\alpha} + \frac{1}{\alpha}} = 0.01295186... \approx \frac{1}{77.209} \Rightarrow \alpha_4 \geqslant \frac{1}{76.209}$

$$\log 3 + \frac{\overline{\rho}_1}{\rho_1} + \frac{\overline{\rho}_2}{\rho_1 \rho_2}$$

 $\rho_1 = \frac{\log\left(\frac{2}{\mathsf{e}-1}\right)}{\log(3/2)}, \quad \rho_2 = \frac{\log\left(\frac{2}{\mathsf{e}-1}\right)}{1 + \log\left(\frac{2}{\mathsf{e}-1}\right) - \log(1 + 2^{1-\rho_1})}.$

 $\beta_k, \alpha_k \gtrsim k^{-1/0.3533...}$

Further,

$$\log\left(\frac{2}{1}\right)$$
 $\log\left(\frac{2}{1}\right)$

$$\frac{(-2)}{(-2)} - \log(1 + 2^{1-\rho_1})$$
.

Problem: Find largest c so w.h.p., $\mathscr{A} \cap [N^c, N]$ has k equal subset sums.

Suppose
$$\sum_{a \in A_1} a = \dots = \sum_{a \in A_k} a$$
.

Let B_{ω} , for $\omega \subseteq \{1, \dots, k\}$, be the Venn diagram pieces.

Data to be optimized:

- Threshholds $c = c_{r+1} < c_r < \cdots < c_1 = 1$.
- Measures μ_1, \dots, μ_r where $\mu_j(\omega) = \frac{|B_\omega \cap (N^{c_{j+1}}, N^{c_j}]|}{|\mathscr{A} \cap (N^{c_{j+1}}, N^{c_j}]|}$

Maier-Tenenbaum: Optimal (uniform) measure for k = 2; sub-optimal choices for all k > 2.

Optimal choices for k = 2 (Maier-Tenenbaum, 1984)

$$c_2 = 1 - \frac{1}{\log 3} \approx \frac{1}{11.14}$$

$$c_2$$

$$c_1 = 1$$

Optimal measure μ_1 :

Choices for k = 4 (Maier-Tenenbaum, 2009)

k=3 case, new analysis - FGK

k = 4 case, new analysis - FGK

$$c_4 = 0.012951... \approx \frac{1}{77.2}$$
 $c_3 = 0.147909...$ $c_2 = 0.152555...$ $c_4 = 0.012951... \approx \frac{1}{77.2}$ $c_3 = 0.147909...$ $c_4 = 0.012951... \approx \frac{1}{77.2}$ $c_4 = 0.012951...$

- Identify parts of Venn diagram with $\omega \in \{0,1\}^4 =: \Omega$.
- μ_3 is nonzero on *every piece* of the Venn diagram except $A_1 \cap A_2 \cap A_3 \cap A_4$; that is, $\omega = 1111$.
- μ_2 is supported on $\mathrm{Span}_{\mathbb{Q}}(1111,1010,0001) \cap \Omega$;
- μ_1 is supported on $\operatorname{Span}_{\mathbb{Q}}(1111, 1010) \cap \Omega = (0000, 1111, 1010, 0101)$; mass 1/3 each on 1010, 0101 and 0000.

Linear algebra: some details

$$\sum_{a \in \mathcal{A}_1} a = \dots = \sum_{a \in \mathcal{A}_k} a$$

- **1** Let $V_0 = \operatorname{Span}_{\mathbb{O}}(11 \cdots 1)$. Pieces $V_0 \cap \Omega$ don't matter.
- 2 Let $\omega_1 \in \Omega$ be the piece , not in V_0 , containing the largest element, a_1 , of $S = A_1 \cup \cdots A_k$. Let $V_1 = \operatorname{Span}_{\mathbb{Q}}(11 \cdots 1, \omega_1)$. WHP $a_1 \approx N$.
- 3 Let ω_2 be the piece, not in V_1 with the largest element $a_2=N^{c_2}$; Let $V_2=\operatorname{Span}_{\mathbb{O}}(11\cdots 1,\omega_1,\omega_2)$.
- 4 continue in this way, finishing with a sequence

$$c_{r+1} < c_r < \cdots < c_1 = 1$$

and a flag of vector spaces

$$\mathscr{V}: V_0 \leqslant V_1 \leqslant \cdots \leqslant V_r \leqslant \mathbb{Q}^k.$$

$\mathbb{H}_{\mu}(W) := \sum_x \mu(x) \log rac{1}{\mu(W+x)}$

Definitions: For measure μ , subspace $W \leq \mathbb{Q}^k$, define the *entropy*

We say that $\mathscr{V}': V_0' \leqslant V_1' \leqslant \cdots \leqslant V_r'$ is a *subflag* of \mathscr{V} if $V_j' \leqslant V_j \ \forall j$.

Entropy condition: Given a subflag
$$\mathscr{V}'$$
 of \mathscr{V} , let
$$e(\mathscr{V}') := \sum_{i=1}^r \left[(c_j - c_{j+1}) \mathbb{H}_{\mu_j}(V_j') + c_j \dim(V_j'/V_{j-1}') \right].$$

Def:
$$\gamma_k$$
 is the supremum of $c>0$ such that $\exists \ c_j, \mu_j, \mathscr{V}$ with

 $c_{r+1} = c, \qquad e(\mathcal{V}') \geqslant e(\mathcal{V}) \qquad (\forall \text{ subflags } \mathcal{V}').$

Theorem (FGK, 2019+)

We (almost) have $\beta_k = \gamma_k$.

Where the constant $\zeta = 0.3533...$ comes from

For $k=2^r$ we consider a special binary flag of order r: Identify \mathbb{Q}^k with $\mathbb{Q}^{\mathcal{P}[r]}$, and for $i=1,\ldots,r$ let V_i be the subspace of all $(x_S)_{S\subseteq [r]}$ for which $x_S=x_{S\cap [i]}$ for all $S\subseteq [r]$.

Theorem (FGK, 2019+)

We have $\beta_{2^r} \ge (\rho/2)^{r+o(1)}$, where $\rho = 0.28121134969637466015...$ is the unique solution in (0,1) of the equation

$$\frac{1}{1 - \rho/2} = \log 2 + \sum_{i=1}^{\infty} \frac{1}{2^{j}} \log \left(\frac{a_{j+1} + a_{j}^{\rho}}{a_{j+1} - a_{j}^{\rho}} \right),$$

where the sequence a_j is defined by

$$a_1 = 2$$
, $a_2 = 2 + 2^{\rho}$, $a_j = a_{j-1}^2 + a_{j-1}^{\rho} - a_{j-2}^{2\rho}$ $(j \ge 3)$.