Multiplicative structure of integers, shifted primes and arithmetic functions

Kevin Ford

http://www.math.uiuc.edu/~ford/erdos100.pdf

University of Illinois at Urbana-Champaign

July 2, 2013

Probabilistic model of integers 1. Kubilius' model

For primes p, let X_p be *independent* Bernoulli random variables with

$$Prob(X_p = 1) = \frac{1}{p}, \quad Prob(X_p = 0) = 1 - \frac{1}{p}.$$

Each models whether a random integer is divisible by *p*.

Theorem (Kubilius, 1956. Universal transference principle)

For any $\varepsilon > 0$, the sequence $\{X_p : p \leq y^{\varepsilon}\}$ models "within ε " the prime factors $\leq y^{\varepsilon}$ of a random integer $\leq y$.

Roughly speaking, for any theorem about the sequence $\{X_p : p \leq y^{\varepsilon}\}$, the corresponding theorem about prime factors of random integers will be true with a small error term.

Example: The Erdős-Kac theorem

Recall $Prob(X_p = 1) = 1/p$ and $Prob(X_p = 0) = 1 - 1/p$. **Example.** From $EX_p = 1/p$ and $VX_p = 1/p - 1/p^2$, get

$$\mathbf{E}\left(\sum_{p\leqslant y^{\varepsilon}}X_{p}\right) = \log\log y + O_{\varepsilon}(1), \quad \mathbf{V}\left(\sum_{p\leqslant y^{\varepsilon}}X_{p}\right) = \log\log y + O_{\varepsilon}(1).$$

From the Central Limit Theorem for $\sum_{p \leq y^{\varepsilon}} X_p$, get

Theorem (Erdős-Kac, 1939)

Let $\omega(n)$ be the number of distinct prime factors of n. For each real z,

$$\lim_{y\to\infty}\frac{1}{y}\#\left\{n\leqslant y:\frac{\omega(n)-\log\log y}{\sqrt{\log\log y}}\leqslant z\right\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{z}e^{-\frac{1}{2}t^{2}}\,dt.$$

Hardy-Ramanujan: $\omega(n) \sim \log \log n$ for almost all n

Kubilius' model and random walks

Kubilius, Billingsly (1960s). Connect $\omega(n, t) = \#\{p|n : p \leq t\}$ to Brownian motion.

• (Erdős, 1930s–). Prime factors in any interval are Poisson. Provided $I = [\exp \exp(t), \exp \exp(u)]$ isn't too short,

P (random integer has k prime factors in I) ~ $e^{t-u} \frac{(u-t)^k}{k!}$.

Normal number of prime factors is $\sim u - t$.

• Prime divisors in disjoint intervals are independent.

Probabilistic model 2 (Galambos, Maier, DeKoninck 1970s,80s). By a theorem of Rényi, these properties characterize the Poisson process: the *sequence* of (all but the smallest and the largest) prime factors of a random integer, taken on a log log – scale, behave like a random walk with exponentially distributed steps.

Recall: *X* has *exponential distribution* if $\mathbf{P}(X \ge y) = e^{-y}$ for y > 0.

Random walks and "Unconventional problems"

Probabilistic model 2: The sequence of prime factors of a random integer, taken on a log log – scale, behave like a random walk with exponentially distributed steps.

Theorem (Maier, Tenenbaum (1984); was a 1948 conjecture of Erdős)

Almost all integers have two divisors d_1, d_2 satisfying $d_1 < d_2 < 2d_1$.

Multiplication table problem (Erdős, 1955). Let

$$A(N) = \#\{de: 1 \leqslant d \leqslant N, 1 \leqslant e \leqslant N\}.$$

Equivalently, count integers $\leq N^2$ with a divisor near *N*.

Easy (Erdős): $A(N) = o(N^2)$. **Proof:** For most pairs (d, e),

 $\omega(de) \approx \omega(d) + \omega(e) \approx \log \log N + \log \log N = 2 \log \log(N^2) + O(1).$

Multiplication tables, II

Improved bounds by Erdős (1960) and Tenenbaum (1984).

Theorem (KF, 2008)

$$A(N) \asymp \frac{N^2}{(\log N)^c (\log \log N)^{3/2}}, \quad c = 1 - \frac{1 + \log \log 2}{\log 2} \approx 0.08607$$

Key: Fine analysis of the prime factor random walk; small deviations of the prime factor random walk lead to large discrepancies in the distribution of divisors.

Open problem. Is there an asymptotic formula?

Generalization. Find the order of

$$A_k(N_1,\ldots,N_k) = \#\{d_1\cdots d_k : 1 \leqslant d_j \leqslant N_j \ (1 \leqslant j \leqslant k)\}.$$

Order known for all N_1, \ldots, N_k for k = 2 (KF, 2008), $3 \le k \le 6$ (Koukoulopoulos 2010, 2013). Partial results for k > 6.

Distribution of large prime factors

Notation: $P_1(n) =$ largest prime factor of n, $P_2(n) =$ 2nd largest, etc.

Distribution of $P_1(n)$. Early work of Ramanujan, Dickman, Erdős and others. $\Psi(x, y) = \#\{n \le x : P_1(n) \le y\}$ is well understood now.

Joint distribution of $P_1(n), \ldots, P_k(n)$. (Billingsly, 1972). (Donnelly and Grimmett, 1993): It's the Poisson-Dirichlet distribution Simple description: Let (x_1, x_2, \ldots) be a random partition of [0, 1]:

Let $y_1 = \text{largest } x_i, y_2 = \text{the 2nd largest, etc.}$ Then $(y_1, y_2, ...)$ and $\left(\frac{\log P_1(n)}{\log n}, \frac{\log P_2(n)}{\log n}, ...\right)$ have the same distribution.

Same distribution appears in the cycle lengths of random permutations, factor sizes of random polynomials in $\mathbb{F}_q[t]$, certain physical processes, etc.

Anatomy of shifted primes

Sets $\mathscr{P}_a = \{p + a : p \text{ prime }\}$, where $a \neq 0$ fixed.

Used to study arithmetic functions ϕ , σ , orders in $\mathbb{Z}/p\mathbb{Z}$, primality testing, factorization algorithms, cyclotomic fields, Fermat's Last Theorem, etc. Important cases a = -1, 1.

Small and intermediate prime factors. Essentially the same distibution as for a random integer via sieve methods, Bombieri-Vinogradov, Gallagher. Ideas originate from 1935 paper of Erdős.

- $\omega(p+a)$ has normal order $\log \log p$ (Erdős, 1935)
- $\omega(p+a)$ satisfies the same CLT as $\omega(n)$ (Halberstam, 1956).
- $\#\{d_1d_2 \in \mathscr{P}_a : 1 \leq d_i \leq N\} \asymp \frac{A(N)}{\log N}$ (Koukoulopoulos, 2011)

Large prime factors $(> p^{1/2})$ of shifted primes largely unknown due to lack of knowledge of primes in progressions to large moduli.

Anatomy of values of arithmetic functions

Let $\mathcal{V}_f = \{f(n) : n \in \mathbb{N}\}, \quad V_f(x) = \#\mathcal{V}_f(x) \cap [1, x].$

Pillai, 1929. $V_{\phi}(x) = o(x)$. Idea: $\omega(n) \approx \log \log x$ for most $n \leq x$, and $2^{\omega(n)-1} | \phi(n)$.

Erdős, 1935. $V_{\phi}(x) = x(\log x)^{-1+o(1)}$. Idea: $\omega(p-1) \sim \log \log p$ for most p|n. Hence, for typical n, $\omega(\phi(n))$ is abnormally large.

Improvements by Erdős, Erdős-Hall, Pomerance, Maier-Pomerance. **KF, 1998.** exact order of $V_{\phi}(x)$ found:

$$V_{\phi}(x) \asymp \frac{x}{\log x} \exp \left\{ C_1 (\log \log \log x - \log \log \log \log x)^2 + C_2 \log \log \log x + C_3 \log \log \log \log x \right\}.$$

Same order for $V_{\sigma}(x)$ and for the counting function of the semigroup generated by $\mathscr{P}_a, a \neq 0$.

Open problem. Is there an asymptotic formula?

Carmichael, 1907. $\forall m \in \mathcal{V}_{\phi}, \phi(x) = m$ has at least 2 solutions *x*. Known: such an *m*, if it exists, exceeds $10^{10^{10}}$ (KF, 1998). Known: $\forall k \ge 2, \exists m \text{ so that } \phi(x) = m$ has exactly *k* sol's (KF, 1999).

Erdős. $\forall C > 1$, is there an $m \in \mathcal{V}_{\phi}$ so that $\phi(x) = m \implies x > Cm$?

KF, 1998. Is there an $m \in \mathcal{V}_{\phi}$ so that $\phi(x) = m \implies 6|x$? The corresponding question with 6 replaced by 2,3,4,5,7,8 or 9 is affirmative. I think for 6, the answer is no. Perhaps for 10 also.

Erdős. Are there infinitely many *n* with $\phi(n) = \phi(n+1)$? $\forall \varepsilon$, are there infinitely many *n* with $|\phi(n) - \phi(n+1)| < n^{\varepsilon}$? **Alkan-Ford-Zaharescu (2009).** True with $\varepsilon = 0.84$.

Definition

Let $a \prec b$ if $b \equiv 1 \pmod{a}$; that is, $a \mid (b-1)$.

Prime chains: $p_1 \prec p_2 \prec \cdots \prec p_k$

Example: $2 \prec 5 \prec 11 \prec 23 \prec 47 \prec 283 \prec 2432669$

Prime chain problems arise in the study of iterates of ϕ and applications thereof; value distribution of ϕ , σ , λ ; primality certificates (complexity of the Pratt certificate).

Basic question. Are there arbitrarily long prime chains? Yes - Infinitely long (Dirichlet, 1837).

Prime chains with a given starting prime

Prime chains: $p_1 \prec p_2 \prec \cdots \prec p_k$, $p_{j+1} \equiv 1 \pmod{p_j}$ for each *j*.

Theorem (Ford-Konyagin-Luca, 2010)

Let N(x; p) be the number of prime chains starting at a prime p and ending at a prime $\leq xp$. Then for every $\varepsilon > 0$, $N(x; p) \leq C(\varepsilon)x^{1+\varepsilon}$.

Note $N(x; p) \ge \pi(xp; p, 1) \approx x/\log x$.

An (perhaps unexpected) application to a 1958 conjecture of Erdős.

Theorem (Ford-Luca-Pomerance, 2010)

 $\phi(n) = \sigma(m)$ has infinitely many solutions (i.e., $\mathcal{V}_{\phi} \cap \mathcal{V}_{\sigma}$ is infinite)

Theorem (Ford-Pollack, 2012)

Almost all values of ϕ are not values of σ and vice-versa. That is, the counting function of $\mathcal{V}_{\phi} \cap \mathcal{V}_{\sigma}$ is $o(V_{\phi}(x) + V_{\sigma}(x))$.

Pratt trees

The aggregate of all prime chains ending at a given prime *p* has a *tree structure*, the **Pratt tree** of *p* (related to the Pratt primality certificates).

Pratt tree height

Height H(p), =length of longest prime chain ending at p. Trivially, $H(p) \leq \frac{\log p}{\log 2} + 1$.

H(p) = 2 for Fermat primes.

Conjecture (Erdős ?): For each $k \ge 3$, there are infinitely many primes with H(p) = k.

Katai, 1968. $H(p) \gg \log \log p$ for almost all p.

Ford-Konyagin-Luca, 2010. $H(p) \ll (\log p)^{0.9503}$ for almost all p.

Assuming the large prime factors of the shifted primes in the Pratt tree obey the Poisson-Dirichlet distribution, and are all independent of one another, one can model H(p) be a *branching random walk*. Fine analysis of this process leads to the collowing conjecture.

Conjecture (Ford-Konyagin-Luca,2010)

For most primes p, $H(p) \approx e \log \log p - \frac{3}{2} \log \log \log p + "O(1)"$.

Pratt trees with missing primes

Let \mathscr{P}_q be the set of primes p such that the Pratt tree for p doesn't contain the prime q. For example,

 $\mathscr{P}_3 = \{2, 5, 11, 17, 23, 41, 47, 83, 89, 101, 137, 167, 179, 251, \ldots\}$

Sieve methods quickly imply the counting function is $O(x/\log^2 x)$. Numerical comutations of \mathscr{P}_3 up to 10^{13} indicate that the counting function is $\approx x^{0.62}$.

Theorem (KF, 2013)

The counting function of \mathscr{P}_q is $O(x^{1-c})$ for some positive c = c(q).

Open problem. Show that \mathscr{P}_q is infinite. Likely extremely hard. \mathscr{P}_5 infinite (almost) implies Carmichael's conjecture.

Largest prime factors. Open problems.

Expected. $P_1(n)$ and $P_1(n+1)$ are independent.

Theorem (Erdős-Pomerance, 1978)

We have

- $P_1(n) < P_1(n+1)$ for a positive proportion of n;
- 2 $P_1(n) > P_1(n+1)$ for a positive proportion of n;
- certain orderings of $P_1(n-1)$, $P_1(n)$, $P_1(n+1)$ occur infinitely often.

Balog, 2001. Showed P(n-1) > P(n) > P(n+1) infinitely often.

Open problem. Does any particular ordering of $P_1(n-1), P_1(n), P_1(n+1)$ occur for a positive proportion of *n*?

Open problem. Do all patterns (orderings) of $P_1(n), \ldots, P_1(n+3)$ occur infinitely often?

Large prime factors of shifted primes

Conjecture. $(P_1(p+a), \ldots, P_k(p+a))$ has the same distribution as $(P_1(n), \ldots, P_k(n))$.

True assuming Elliott-Halberstam conjecture.

Unconditionally, very little known due to lack of knowledge of primes in arithmetic progressions to large moduli.

Smooth shifted primes. Erdős (1935) showed that $P_1(p + a) < p^c$ infinitely often for some c < 1. **Baker-Harman, 1998**: c = 0.2931. Applications to ϕ and Carmichael numbers.

Large prime factors. $P_1(p + a) > p^c$ infinitely often. **Baker-Harman, 1998:** c = 0.677.

Open problem (Buchstab). (i) Are there infinitely many primes p such that all prime factors of p + a are $3 \mod 4$? (ii) Same with $3 \mod 4$ replaced by an arbitrary $a \mod q$.

Propinquity of divisors. Hooley's Δ -function.

Theorem (Maier, Tenenbaum (1984); was a 1948 conjecture of Erdős)

Almost all integers have two divisors d_1, d_2 satisfying $d_1 < d_2 < 2d_1$.

Let $\Delta(n) = \max_y \#\{d|n : y < d \leq ey\}$ (a concentration function).

Normal order (Maier-Tenenbaum, 1984; 2009). For almost all n,

 $(\log n)^{c-\varepsilon} < \Delta(n) < (\log n)^{\log 2+\varepsilon}, \quad c \approx 0.33827$

They conjecture that the lower bound is closer to the truth.

Average values (Hall-Tenenbaum (lower); Tenenbaum (upper)).

$$\log \log x \ll \frac{1}{x} \sum_{n \leqslant x} \Delta(n) \ll \exp\left\{C\sqrt{\log \log x \log \log \log x}\right\}$$

Twisted $\Delta-$ functions (Daniel; de la Bretèche-Tenenbaum):

$$\Delta_f(n) = \max_{1 \leqslant y < z \leqslant ey} \Big| \sum_{d \mid n, y < d \leqslant z} f(d) \Big|, \quad f = \mu, \chi, \dots$$

Prime chains ending at a given prime

Prime chains: $p_1 \prec p_2 \prec \cdots \prec p_k$, $p_{j+1} \equiv 1 \pmod{p_j}$ for each *j*.

Theorem (Ford-Konyagin-Luca, 2010)

Let f(p) be he number of prime chains that end at a prime p. Then

 $\frac{1}{3}\log p \leqslant f(p) \leqslant 3\log p$

for almost all p.

f(p) is also the number of nodes in the Pratt tree for p.

Open Problem. Are there infinitely many p with $f(p) = o(\log p)$?

Observations: f(p) = 2 for Fermat primes. f(p) is small if p - 1 is very smooth, e.g. f(p) = 4 if $p = 2^a 3^b + 1$. **D. H. Lehmer, 1930.** Is there a *composite* n with $\phi(n)|(n-1)$? Pomerance (1977): The counting function of such n is $O(n^{1/2}(\log n)^{O(1)})$.

Open Problem: Prove there are infinitely many chains $p_1 \prec p_2 \prec p_3$ with $\frac{p_3-1}{p_2} = \frac{p_2-1}{p_1}$ (quasi-geometric progression of primes).