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Probabilistic model of integers 1. Kubilius’ model

For primes p, let Xp be independent Bernoulli random variables with

Prob(Xp = 1) =
1
p
, Prob(Xp = 0) = 1− 1

p
.

Each models whether a random integer is divisible by p.

Theorem (Kubilius, 1956. Universal transference principle)

For any ε > 0, the sequence {Xp : p 6 yε} models “within ε” the
prime factors 6 yε of a random integer 6 y.

Roughly speaking, for any theorem about the sequence {Xp : p 6 yε},
the corresponding theorem about prime factors of random integers will
be true with a small error term.
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Example: The Erdős-Kac theorem

Recall Prob(Xp = 1) = 1/p and Prob(Xp = 0) = 1− 1/p.

Example. From EXp = 1/p and VXp = 1/p− 1/p2, get

E

(∑
p6yε

Xp

)
= log log y + Oε(1), V

(∑
p6yε

Xp

)
= log log y + Oε(1).

From the Central Limit Theorem for
∑

p6yε Xp, get

Theorem (Erdős-Kac, 1939)
Let ω(n) be the number of distinct prime factors of n. For each real z,

lim
y→∞

1
y

#

{
n 6 y :

ω(n)− log log y√
log log y

6 z
}

=
1√
2π

∫ z

−∞
e−

1
2 t2 dt.

Hardy-Ramanujan: ω(n) ∼ log log n for almost all n
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Kubilius’ model and random walks
Kubilius, Billingsly (1960s). Connect ω(n, t) = #{p|n : p 6 t} to
Brownian motion.

(Erdős, 1930s–). Prime factors in any interval are Poisson.
Provided I = [exp exp(t), exp exp(u)] isn’t too short,

P (random integer has k prime factors in I) ∼ et−u (u− t)k

k!
.

Normal number of prime factors is ∼ u− t.
Prime divisors in disjoint intervals are independent.

Probabilistic model 2 (Galambos, Maier, DeKoninck 1970s,80s).
By a theorem of Rényi, these properties characterize the Poisson
process: the sequence of (all but the smallest and the largest) prime
factors of a random integer, taken on a log log−scale, behave like a
random walk with exponentially distributed steps.

Recall: X has exponential distribution if P(X > y) = e−y for y > 0.
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Random walks and “Unconventional problems”
Probabilistic model 2: The sequence of prime factors of a random
integer, taken on a log log−scale, behave like a random walk with
exponentially distributed steps.

Theorem (Maier, Tenenbaum (1984); was a 1948 conjecture of Erdős)
Almost all integers have two divisors d1, d2 satisfying d1 < d2 < 2d1.

Multiplication table problem (Erdős, 1955). Let

A(N) = #{de : 1 6 d 6 N, 1 6 e 6 N}.

Equivalently, count integers 6 N2 with a divisor near N.

Easy (Erdős): A(N) = o(N2). Proof: For most pairs (d, e),

ω(de) ≈ ω(d) + ω(e) ≈ log log N + log log N = 2 log log(N2) + O(1).
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Multiplication tables, II
Improved bounds by Erdős (1960) and Tenenbaum (1984).

Theorem (KF, 2008)

A(N) � N2

(log N)c(log log N)3/2 , c = 1− 1 + log log 2
log 2

≈ 0.08607

Key: Fine analysis of the prime factor random walk; small deviations
of the prime factor random walk lead to large discrepancies in the
distribution of divisors.

Open problem. Is there an asymptotic formula?

Generalization. Find the order of

Ak(N1, . . . ,Nk) = #{d1 · · · dk : 1 6 dj 6 Nj (1 6 j 6 k)}.

Order known for all N1, . . . ,Nk for k = 2 (KF, 2008), 3 6 k 6 6
(Koukoulopoulos 2010, 2013). Partial results for k > 6.

K. Ford (Illinois) Multiplicative structure of integers July 2, 2013 6 / 20



Distribution of large prime factors
Notation: P1(n) = largest prime factor of n, P2(n) = 2nd largest, etc.

Distribution of P1(n). Early work of Ramanujan, Dickman, Erdős and
others. Ψ(x, y) = #{n 6 x : P1(n) 6 y} is well understood now.

Joint distribution of P1(n), . . . ,Pk(n). (Billingsly, 1972).
(Donnelly and Grimmett, 1993): It’s the Poisson-Dirichlet distribution
Simple description: Let (x1, x2, . . .) be a random partition of [0, 1]:

0 1

x1

y2

x2

y1

x3

y4

x4

y3

· · ·

Let y1 = largest xi, y2 = the 2nd largest, etc.
Then (y1, y2, . . .) and

(
log P1(n)

log n , log P2(n)
log n , . . .

)
have the same distribution.

Same distribution appears in the cycle lengths of random
permutations, factor sizes of random polynomials in Fq[t], certain
physical processes, etc.
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Anatomy of shifted primes
Sets Pa = {p + a : p prime }, where a 6= 0 fixed.

Used to study arithmetic functions φ, σ, orders in Z/pZ, primality
testing, factorization algorithms, cyclotomic fields, Fermat’s Last
Theorem, etc. Important cases a = −1, 1.

Small and intermediate prime factors. Essentially the same
distibution as for a random integer via sieve methods,
Bombieri-Vinogradov, Gallagher. Ideas originate from 1935 paper of
Erdős.

ω(p + a) has normal order log log p (Erdős, 1935)
ω(p + a) satisfies the same CLT as ω(n) (Halberstam, 1956).
#{d1d2 ∈Pa : 1 6 di 6 N} � A(N)

log N (Koukoulopoulos, 2011)

Large prime factors (> p1/2) of shifted primes largely unknown due to
lack of knowledge of primes in progressions to large moduli.
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Anatomy of values of arithmetic functions
Let Vf = {f (n) : n ∈ N}, Vf (x) = #Vf (x) ∩ [1, x].

Pillai, 1929. Vφ(x) = o(x). Idea: ω(n) ≈ log log x for most n 6 x, and
2ω(n)−1|φ(n).

Erdős, 1935. Vφ(x) = x(log x)−1+o(1). Idea: ω(p− 1) ∼ log log p for
most p|n. Hence, for typical n, ω(φ(n)) is abnormally large.

Improvements by Erdős, Erdős-Hall, Pomerance, Maier-Pomerance.

KF, 1998. exact order of Vφ(x) found:

Vφ(x) � x
log x

exp
{

C1(log log log x− log log log log x)2

+ C2 log log log x + C3 log log log log x
}

.

Same order for Vσ(x) and for the counting function of the semigroup
generated by Pa, a 6= 0.

Open problem. Is there an asymptotic formula?
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Euler’s function. More open problems

Carmichael, 1907. ∀m ∈ Vφ, φ(x) = m has at least 2 solutions x.

Known: such an m, if it exists, exceeds 101010 (KF, 1998).
Known: ∀k > 2,∃m so that φ(x) = m has exactly k sol’s (KF, 1999).

Erdős. ∀C > 1, is there an m ∈ Vφ so that φ(x) = m =⇒ x > Cm ?

KF, 1998. Is there an m ∈ Vφ so that φ(x) = m =⇒ 6|x?
The corresponding question with 6 replaced by 2,3,4,5,7,8 or 9 is
affirmative. I think for 6, the answer is no. Perhaps for 10 also.

Erdős. Are there infinitely many n with φ(n) = φ(n + 1)?
∀ε, are there infinitely many n with |φ(n)− φ(n + 1)| < nε?
Alkan-Ford-Zaharescu (2009). True with ε = 0.84.
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Prime Chains

Definition
Let a ≺ b if b ≡ 1(mod a); that is, a|(b− 1).

Prime chains: p1 ≺ p2 ≺ · · · ≺ pk

Example: 2 ≺ 5 ≺ 11 ≺ 23 ≺ 47 ≺ 283 ≺ 2432669

Prime chain problems arise in the study of iterates of φ and
applications thereof; value distribution of φ, σ, λ; primality certificates
(complexity of the Pratt certificate).

Basic question. Are there arbitrarily long prime chains?
Yes - Infinitely long (Dirichlet, 1837).
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Prime chains with a given starting prime
Prime chains: p1 ≺ p2 ≺ · · · ≺ pk, pj+1 ≡ 1 (mod pj) for each j.

Theorem (Ford-Konyagin-Luca, 2010)

Let N(x; p) be the number of prime chains starting at a prime p and
ending at a prime 6 xp. Then for every ε > 0, N(x; p) 6 C(ε)x1+ε.

Note N(x; p) > π(xp; p, 1) ≈ x/ log x.

An (perhaps unexpected) application to a 1958 conjecture of Erdős.

Theorem (Ford-Luca-Pomerance, 2010)
φ(n) = σ(m) has infinitely many solutions (i.e.,Vφ ∩ Vσ is infinite)

Theorem (Ford-Pollack, 2012)
Almost all values of φ are not values of σ and vice-versa. That is, the
counting function of Vφ ∩ Vσ is o(Vφ(x) + Vσ(x)).
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Pratt trees
The aggregate of all prime chains ending at a given prime p has a tree
structure, the Pratt tree of p (related to the Pratt primality certificates).

2432669

2 7

2 3

2

283

2 3

2

47

2 23

2 11

2 5

2

307

2 3

2

17

2

K. Ford (Illinois) Multiplicative structure of integers July 2, 2013 13 / 20



Pratt tree height
Height H(p), =length of longest prime chain ending at p.
Trivially, H(p) 6 log p

log 2 + 1.

H(p) = 2 for Fermat primes.
Conjecture (Erdős ?): For each k > 3, there are infinitely many
primes with H(p) = k.

Katai, 1968. H(p)� log log p for almost all p.

Ford-Konyagin-Luca, 2010. H(p)� (log p)0.9503 for almost all p.

Assuming the large prime factors of the shifted primes in the Pratt tree
obey the Poisson-Dirichlet distribution, and are all independent of one
another, one can model H(p) be a branching random walk. Fine
analysis of this process leads to the collowing conjecture.

Conjecture (Ford-Konyagin-Luca,2010)

For most primes p, H(p) ≈ e log log p− 3
2 log log log p + “O(1)′′.
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Pratt trees with missing primes

Let Pq be the set of primes p such that the Pratt tree for p doesn’t
contain the prime q. For example,

P3 = {2, 5, 11, 17, 23, 41, 47, 83, 89, 101, 137, 167, 179, 251, . . .}

Sieve methods quickly imply the counting function is O(x/ log2 x).
Numerical comutations of P3 up to 1013 indicate that the counting
function is ≈ x0.62.

Theorem (KF, 2013)

The counting function of Pq is O(x1−c) for some positive c = c(q).

Open problem. Show that Pq is infinite.
Likely extremely hard. P5 infinite (almost) implies Carmichael’s
conjecture.
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Largest prime factors. Open problems.

Expected. P1(n) and P1(n + 1) are independent.

Theorem (Erdős-Pomerance, 1978)
We have

1 P1(n) < P1(n + 1) for a positive proportion of n;
2 P1(n) > P1(n + 1) for a positive proportion of n;
3 certain orderings of P1(n− 1),P1(n),P1(n + 1) occur infinitely

often.

Balog, 2001. Showed P(n− 1) > P(n) > P(n + 1) infinitely often.

Open problem. Does any particular ordering of
P1(n− 1),P1(n),P1(n + 1) occur for a positive proportion of n?

Open problem. Do all patterns (orderings) of P1(n), . . . ,P1(n + 3)
occur infinitely often?
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Large prime factors of shifted primes
Conjecture. (P1(p + a), . . . ,Pk(p + a)) has the same distribution as
(P1(n), . . . ,Pk(n)).

True assuming Elliott-Halberstam conjecture.
Unconditionally, very little known due to lack of knowledge of primes
in arithmetic progressions to large moduli.

Smooth shifted primes. Erdős (1935) showed that P1(p + a) < pc

infinitely often for some c < 1. Baker-Harman, 1998: c = 0.2931.
Applications to φ and Carmichael numbers.

Large prime factors. P1(p + a) > pc infinitely often.
Baker-Harman, 1998: c = 0.677.

Open problem (Buchstab). (i) Are there infinitely many primes p
such that all prime factors of p + a are 3 mod 4?
(ii) Same with 3 mod 4 replaced by an arbitrary a mod q.
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Propinquity of divisors. Hooley’s ∆-function.

Theorem (Maier, Tenenbaum (1984); was a 1948 conjecture of Erdős)
Almost all integers have two divisors d1, d2 satisfying d1 < d2 < 2d1.

Let ∆(n) = maxy #{d|n : y < d 6 ey} (a concentration function).

Normal order (Maier-Tenenbaum, 1984; 2009). For almost all n,

(log n)c−ε < ∆(n) < (log n)log 2+ε, c ≈ 0.33827

They conjecture that the lower bound is closer to the truth.

Average values (Hall-Tenenbaum (lower); Tenenbaum (upper)).

log log x� 1
x

∑
n6x

∆(n)� exp
{

C
√

log log x log log log x
}
.

Twisted ∆−functions (Daniel; de la Bretèche-Tenenbaum):

∆f (n) = max
16y<z6ey

∣∣∣ ∑
d|n,y<d6z

f (d)
∣∣∣, f = µ, χ, . . .

Used to prove Manin’s conjecture for Châtelet surfaces.
K. Ford (Illinois) Multiplicative structure of integers July 2, 2013 18 / 20



Prime chains ending at a given prime

Prime chains: p1 ≺ p2 ≺ · · · ≺ pk, pj+1 ≡ 1 (mod pj) for each j.

Theorem (Ford-Konyagin-Luca,2010)

Let f (p) be he number of prime chains that end at a prime p. Then

1
3 log p 6 f (p) 6 3 log p

for almost all p.

f (p) is also the number of nodes in the Pratt tree for p.

Open Problem. Are there infinitely many p with f (p) = o(log p) ?

Observations: f (p) = 2 for Fermat primes.
f (p) is small if p− 1 is very smooth, e.g. f (p) = 4 if p = 2a3b + 1.
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Miscellaneous problems

D. H. Lehmer, 1930. Is there a composite n with φ(n)|(n− 1) ?
Pomerance (1977): The counting function of such n is
O(n1/2(log n)O(1)).

Open Problem: Prove there are infinitely many chains p1 ≺ p2 ≺ p3

with p3−1
p2

= p2−1
p1

(quasi-geometric progression of primes).
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