Large gaps in sets of primes and other sequences I. Heuristics and basic constructions

Kevin Ford

University of Illinois at Urbana-Champaign

May, 2018

Large gaps between primes

Def: $G(x)=\max _{p_{n} \leqslant x}\left(p_{n}-p_{n-1}\right), \quad p_{n}$ is the $n^{t h}$ prime.

$$
2,3,5,7, \ldots, 109,113,127,131, \ldots, 9547,9551,9587,9601, \ldots
$$

Upper bound: $G(x) \ll x^{0.525} \quad$ (Baker-Harman-Pintz, 2001). Improve to $O\left(x^{1 / 2+\varepsilon}\right)$ on RH.

Lower bound: $G(x) \gg(\log x) \frac{\log _{2} x \log _{4} x}{\log _{3} x} \quad$ (F,Green,Konyagin,Maynard,Tao,2018)

Conjectures

Cramér (1936): $\limsup _{x \rightarrow \infty} \frac{G(x)}{\log ^{2} x}=1$.
Shanks (1964): $G(x) \sim \log ^{2} x$.
Granville (1995): $\limsup _{x \rightarrow \infty} \frac{G(x)}{\log ^{2} x} \geqslant 2 e^{-\gamma}=1.1229 \ldots$

Computational evidence, up to 10^{18}

Cramér's model of large prime gaps

Let $X_{3}, X_{4}, X_{5}, \ldots$ be indep. random vars. s.t.

$$
\mathbb{P}\left(X_{n}=1\right)=\frac{1}{\log n}, \quad \mathbb{P}\left(X_{n}=0\right)=1-\frac{1}{\log n}
$$

Let

$$
\mathscr{P}=\left\{n: X_{n}=1\right\}=\left\{P_{1}, P_{2}, \ldots\right\},
$$

the set of "probabilistic primes".

Theorem (Cramér, 1936)

With probability 1,

$$
\limsup _{N \rightarrow \infty} \frac{P_{N+1}-P_{N}}{\log ^{2} N}=1
$$

Cramér: "for the ordinary sequence of prime numbers p_{n}, some similar relation may hold".

Sketch of the proof of Cramér's theorem

$$
\mathbb{P}\left(X_{n}=1\right)=\frac{1}{\log n}, \quad \mathbb{P}\left(X_{n}=0\right)=1-\frac{1}{\log n}
$$

Suppose that $N^{1-o(1)} \leqslant k \leqslant N$. Then

$$
\mathbb{P}\left(X_{k+1}=\cdots=X_{k+g}=0\right) \approx\left(1-\frac{1}{\log k}\right)^{g} \approx e^{-g / \log N}
$$

Hence (summing on k)
$\mathbb{E} \#\{$ gaps of length $\geqslant g$ below $N\} \approx N e^{-g / \log N}$.

If $g>(1+\varepsilon) \log ^{2} N$, this is $o(1)$.
If $g<(1-\varepsilon) \log ^{2} N$, then this is very large.

More predictions of Cramér’s model: distribtion of gaps

$$
(1 / N) \mathbb{E} \#\{\text { gaps of length } \geqslant \lambda \log N\} \approx e^{-\lambda} .
$$

Actual prime gap statistics, $p_{n}<4 \cdot 10^{18}$
Gallagher, 1976. Prime k-tuples conjecture \Rightarrow exponential prime gap distribution

General Cramér’s-type model: random darts

Choose N random points in $[0,1]$ (random darts)

Theorem (classical?)

W.h.p., the max. gap is $\sim \frac{\log N}{N}$.

Proof idea (Rényi). The $N+1$ gaps have distribution

$$
\stackrel{d}{=}\left(\frac{E_{1}}{S}, \ldots, \frac{E_{N+1}}{S}\right), \quad S=E_{1}+\cdots+E_{N+1}
$$

where each E_{i} has exponential distribution, $\mathbb{P}\left(E_{i} \leqslant x\right)=1-e^{-x}$. W.h.p., $S \sim N$. Also,

$$
\mathbb{P}\left(\max E_{i} \leqslant \log N+u\right)=\left(1-\frac{e^{-u}}{N}\right)^{N+1} \sim \exp \left\{-e^{-u}\right\}
$$

the Gumbel extreme value distribution.

Random darts and Cramér's model

Choose N random points in $[0, x]$ (random darts)

$$
\mathbb{P}\left(\max \operatorname{gap} \leqslant \frac{x(\log N+u)}{N}\right) \approx \exp \left\{-e^{-u}\right\} .
$$

Probabilistic primes; $N=\operatorname{li}(x)+O\left(x^{1 / 2+\varepsilon}\right)$

$$
\mathbb{P}\left(\max _{P_{n} \leqslant x} P_{n+1}-P_{n} \leqslant \frac{x(\log \operatorname{li}(x)+u)}{\operatorname{li}(x)}\right) \approx \exp \left\{-e^{-u}\right\} .
$$

Theorem

For Cramér's probabilistic primes,

$$
\max _{P_{n} \leqslant x} P_{n}-P_{n-1} \lesssim \operatorname{Cr}_{1}(x):=\frac{x \log \operatorname{li}(x)}{\operatorname{li}(x)} \approx(\log x)\left(\log x-\log _{2} x\right)
$$

Q1: Does this explain the data for actual primes?

Data vs. refined Cramér conjecture

General Cramér’s-type model: random darts

Choose N random points in $[0, x]$ (random darts)
Expected maximal gap is of size $\approx \frac{x \log N}{N}$
Prime k-tuples. Let f_{1}, \ldots, f_{k} be distinct, irreducible polynomials $f_{i}: \mathbb{Z} \rightarrow \mathbb{Z}$ with pos. leading coeff., degrees d_{i}, and $f_{1} \cdots f_{k}$ has no fixed prime factor.

Conjecture (Bateman-Horn)

$$
\#\left\{n \leqslant x: f_{1}(n), \ldots, f_{k}(n) \text { all prime }\right\} \sim C \operatorname{li}_{k}(x)
$$

where $C=C\left(f_{1}, \ldots, f_{k}\right)>0$ is constant and $\operatorname{li}_{k}(x)=\int_{2}^{x} \frac{d t}{(\log t)^{k}}$

Refined Cramér conjecture

The largest gap in $\left\{n \leqslant x: f_{1}(n), \ldots, f_{k}(n)\right.$ all prime $\}$ is

$$
\lesssim \operatorname{Cr}_{k}(x):=\frac{x \log \left(C \operatorname{li}_{k}(x)\right)}{C \operatorname{li}_{k}(x)} \approx \frac{(\log x)^{k}}{C}\left(\log x-k \log _{2} x\right)
$$

Twin prime gaps

$$
\left(f_{1}, f_{2}\right)=(n, n+2), \quad C \approx 1.32032
$$

Prime triplet gaps

$$
\left(f_{1}, f_{2}, f_{3}\right)=(n, n+2, n+6) \quad C \approx 2.85825
$$

Prime quadruplet gaps

$$
\left(f_{1}, \ldots, f_{4}\right)=(n, n+2, n+6, n+8) \quad C \approx 4.15118
$$

Cramér's model defect: global distribution of primes

Theorem (Cramér, 1936 ("Probabilistic RH"))

With probability $1, \Pi(x):=\#\left\{P_{n} \leqslant x\right\}=\operatorname{li}(x)+O\left(x^{1 / 2+\varepsilon}\right)$.
J. Pintz observed the following:

Theorem

$$
\mathbb{E}(\Pi(x)-\operatorname{li}(x))^{2} \sim \frac{x}{\log x}
$$

contrast with

Theorem (Cramér,1920)

On R.H.,

$$
\frac{1}{x} \int_{x}^{2 x}|\pi(t)-\operatorname{li}(t)|^{2} d t \ll \frac{x}{\log ^{2} x}
$$

Cramér's model defect: small gaps

Theorem. With probability 1 ,

$$
\#\{n: n, n+1 \in \mathscr{P}\}=\infty
$$

This does not hold for real primes!

Theorem. With probability 1 ,

$$
\#\{n \leqslant x: n, n+2 \in \mathscr{P}\} \sim \frac{x}{\log ^{2} x}
$$

Conjecture (Hardy-Littlewood, 1923).

$$
\#\{n \leqslant x: n, n+2 \text { prime }\} \sim C \frac{x}{\log ^{2} x}
$$

where $C=2 \prod_{p>2}\left(1-1 /(p-1)^{2}\right) \approx 1.3203$

Granville's refinement of Cramér's model

Cramér's model major defect: Cramér primes are equidistributed modulo small primes like 2,3,..., whereas real primes are not.

This shows up in asymptotics for prime k-tuples, and for counts of primes in very short intervals: w.h.p.,

$$
\Pi(x+y)-\Pi(x) \sim \frac{y}{\log x} \quad\left(y / \log ^{2} x \rightarrow \infty\right)
$$

By contrast,
Theorem (H. Maier, 1985)
$\forall M>1$,

$$
\limsup _{x \rightarrow \infty} \frac{\pi\left(x+\log ^{M} x\right)-\pi(x)}{\log ^{M-1} x}>1
$$

Granville's refinement of Cramér's model, II

$$
\text { Let } T=\varepsilon \log x, \quad Q_{T}=\prod_{p \leqslant T} p=x^{o(1)} \text {. }
$$

Real primes live in

$$
\mathcal{S}_{T}:=\left\{n \in \mathbb{Z}:\left(n, Q_{T}\right)=1\right\}
$$

For $n \in \mathcal{S}_{T} \cap(x, 2 x]$, define the random variables

$$
Z_{n}: \quad \mathbb{P}\left(Z_{n}=1\right)=\theta / \log n, \quad \mathbb{P}\left(Z_{n}=0\right)=1-\theta / \log n,
$$

where $1 / \theta=\phi\left(Q_{T}\right) / Q_{T} \sim e^{-\gamma} / \log T$ is the density of \mathcal{S}_{T}. That is,

$$
\frac{\theta}{\log n}=\text { conditional prob. that } n \text { is prime given that } n \in \mathcal{S}_{T} \text {. }
$$

Granville's refinement of Cramér's model, III

$$
\mathcal{S}_{T}:=\left\{n \in \mathbb{Z}:\left(n, Q_{T}\right)=1\right\}
$$

Let $y=c \log ^{2} x$, take special values of $m \in(x, 2 x]$, namely those with with $Q_{T} \mid m$. Since $y=T^{2+o(1)}$,

$$
\begin{equation*}
\#\left([m, m+y] \cap \mathcal{S}_{T}\right)=\#\left([0, y] \cap \mathcal{S}_{T}\right) \sim \frac{y}{\log y} \tag{sp}
\end{equation*}
$$

By contrast, for a typical $m \in \mathbb{Z}$,

$$
\begin{equation*}
\#\left([m, m+y] \cap \mathcal{S}_{T}\right) \sim \theta^{-1} y \sim 2 e^{-\gamma} \frac{y}{\log y} . \tag{ty}
\end{equation*}
$$

Note $2 e^{-\gamma}=1.1229 \ldots>1$, so the intervals in (sp) are deficient in sifted numbers.

Granville's refinement of Cramér's model, IV

$$
\begin{align*}
& T=\varepsilon \log x, y=c \log ^{2} x \\
& \quad \#\left([m, m+y] \cap \mathcal{S}_{T}\right)=\#\left([0, y] \cap \mathcal{S}_{T}\right) \sim \frac{y}{\log y} . \tag{sp}
\end{align*}
$$

Get

$$
\begin{aligned}
\mathbb{P}\left(Z_{n}=0: n \in[m, m+y] \cap \mathcal{S}_{T}\right) & \approx(1-\theta / \log x)^{y / \log y} \\
& \approx e^{-c\left(e^{\gamma} / 2\right) \log x} .
\end{aligned}
$$

Therefore, gaps of size $\geqslant\left(2 e^{-\gamma}+o(1)\right)(\log x)^{2}$ exist w.h.p.
Computing secondary terms; get gaps of size

$$
2 e^{-\gamma}(\log x)^{2}+A(\varepsilon) \frac{(\log x)^{2}}{\log _{2} x}+\cdots, \quad A(\varepsilon) \rightarrow \infty(\varepsilon \rightarrow 0)
$$

Project: work out the secondary term; compare with data.

Proving large gaps: Jacobsthal's function

$$
\mathcal{S}_{T}=\left\{n \in \mathbb{Z}:\left(n, Q_{T}\right)=1\right\}, \quad Q_{T}=\prod_{p \leqslant T} p
$$

Main goal: Find $J(T)$, the largest gap in \mathcal{S}_{T}.

$$
\begin{gathered}
G\left(2 Q_{T}\right) \geqslant J(T), \quad G(x):=\max _{p_{n} \leqslant x} p_{n+1}-p_{n} . \\
\text { Since } Q_{T} \approx e^{T}, \text { get } G(x) \gtrsim J(\log x) .
\end{gathered}
$$

Trivial: Avg. gap is $\sim e^{\gamma} \log T ; J(T) \geqslant T-2\left([2, T] \cap \mathcal{S}_{T}=\emptyset\right)$
Lower bound (FGKMT, 2018). $J(T) \gg T \frac{\log T \log _{3} T}{\log _{2} T}$.
Upper bound (Iwaniec, 1978). $J(T) \ll T^{2}(\log T)^{2}$.
Conjecture (Maier-Pomerance, 1990). $J(T)=T(\log T)^{2+o(1)}$.
Random dart model prediction: $J(T) \sim T \frac{Q_{T}}{\phi\left(Q_{T}\right)} \sim e^{\gamma} T \log T$.

Finding large gaps in \mathcal{S}_{T}

Covering: $J(T)$ is the largest y so that there are $a_{2}, a_{3}, a_{5}, \ldots$ with

$$
\left\{a_{p} \quad \bmod p: p \leqslant T\right\} \supseteq[0, y]
$$

Classical 3-stage-process (Westzynthius's-Erdős-Rankin)

(1) Take $a_{p}=0$ for $p \in(z, x / 2] \cap[2,2 y / x]$. Uncovered: z-smooth numbers (few for appropriate z) and primes; Total $\sim y / \log y$ numbers uncovered.Far better that typical choice, which leaves about $y \prod_{z<p \leqslant x / 2}(1-1 / p) \sim y \frac{\log x}{\log z}$ uncovered numbers
(2) Greedy choice for $a_{p}, p \in(2 y / x, z]$; Unconvered:
$\lesssim(y / \log y) \frac{\log z}{\log (2 y / x)}$ numbers. Want this to be $\leqslant \frac{x}{4 \log x}$.
(3) use each a_{p} for $p \in(x / 2, x]$ to cover the remaining uncovered elements of $[1, y]$, one element for each p.
If fewer than $\pi(x)-\pi(x / 2) \sim \frac{x}{2 \log x}$ elements left after stages 1-2, then succeed!

Lower bounds for $J(T)$: prime k-tuples

Lower bound (FGKMT, 2018). $J(T) \gg T \frac{\log ^{2} \log _{3} T}{\log _{2} T}$.
Conjecture (Maier-Pomerance, 1990). $J(T)=T(\log T)^{2+o(1)}$.
Random dart model prediction: $J(T) \sim T \frac{Q_{T}}{\phi\left(Q_{T}\right)} \sim e^{\gamma} T \log T$.
Maier-Pomerance: In Step 3, show that many a_{p} mod p can cover two remining elements; uses "twin-prime on average" results.

FGKMT: Use new prime detecting sieve (GPY-Maynard-Tao) to find $a_{p} \bmod p$ which cover many remaining elements.

Assuming a uniform H-L prime k-tuples conjecture: Cover even more remaining elements with a_{p} 's. Improve lower bound to $J(T) \gg T(\log T)^{1+c}$.

Open Problems

(1) Select a residue $a_{p} \in \mathbb{Z} / p \mathbb{Z}$ for each $p \leqslant x$, let

$$
S=[0, x] \backslash \bigcup_{p \leqslant x}\left(a_{p} \quad \bmod p\right) .
$$

I. When $a_{p}=0$ for all $p,|S|=1$ (extremal case).
II. A random choice yields $|S| \sim x\left(e^{-\gamma} / \log x\right)$.
III. Another construction (??) gives $|S| \sim x / \log x$.
IV. (sieve) Any choice leaves $|S| \ll x / \log x$.
Q. Can one do better than III? $|S| \geqslant(1+\delta) x / \log x$?
(2) For each prime $p \leqslant \sqrt{x}$, choose a residue $a_{p} \bmod p$, and let

$$
\mathcal{S}=[0, x] \backslash \bigcup_{p \leqslant \sqrt{x}}\left(a_{p} \quad \bmod p\right) .
$$

I. When $a_{p}=0$ for all $p,|S| \sim x / \log x$.
II. A random choice yields $|S| \sim x\left(2 e^{-\gamma} / \log x\right)$.
Q. Are these the extreme cases?

References

囯 H．Cramér，Some theorems concerning prime numbers，Ark．Mat． Astr．Fys． 15 （1920），1－33．
H．Cramér，On the order of magnitude of the difference between consecutive prime numbers，Acta Arith． 2 （1936），396－403．
© Andrew Granville，Harald Cramér and the distribution of prime numbers，Scandanavian Actuarial J． 1 （1995），12－28．

圊 Alexei Kourbatov，The distribution of maximal prime gaps in Cramér＇s probabilistic model of primes，Inter．J．Stat．Prob．3，No． 2 （2014），18－29．

圊 J．Pintz，Cramér vs．Cramér．On Cramér＇s Probabilistic Model for primes，Func．Approx．Comment．Math． 37 （2007），361－376．

䍰 T．Oliveira e Silva，Gaps between consecutive primes（web page）， http：／／sweet．ua．pt／tos／gaps．html

