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Large gaps between primes

Def: G(x) = max
pn6x

(pn − pn−1), pn is the nth prime.

2, 3, 5, 7, . . . , 109, 113, 127, 131, . . . , 9547, 9551, 9587, 9601, . . .

Upper bound: G(x) � x0.525 (Baker-Harman-Pintz, 2001).

Improve to O(x1/2+ε) on RH.

Lower bound: G(x) � (logx)
log2 x log4 x

log3 x (F,Green,Konyagin,Maynard,Tao,2018)

Conjectures

Cramér (1936): lim sup
x→∞

G(x)

log2 x
= 1.

Shanks (1964): G(x) ∼ log2 x.

Granville (1995): lim sup
x→∞

G(x)

log2 x
> 2e−γ = 1.1229 . . .



Computational evidence, up to 1018



Cramér’s model of large prime gaps

Let X3, X4, X5, . . . be indep. random vars. s.t.

P(Xn = 1) =
1

logn
, P(Xn = 0) = 1− 1

logn
.

Let

P = {n : Xn = 1} = {P1, P2, . . .},
the set of “probabilistic primes”.

Theorem (Cramér, 1936)

With probability 1,

lim sup
N→∞

PN+1 − PN

log2N
= 1.

Cramér: “for the ordinary sequence of prime numbers pn, some
similar relation may hold”.



Sketch of the proof of Cramér’s theorem

P(Xn = 1) =
1

logn
, P(Xn = 0) = 1− 1

logn
.

Suppose that N1−o(1) 6 k 6 N . Then

P(Xk+1 = · · · = Xk+g = 0) ≈
(
1− 1

log k

)g

≈ e−g/ logN .

Hence (summing on k)

E#{gaps of length > g below N} ≈ Ne−g/ logN .

If g > (1 + ε) log2N , this is o(1).
If g < (1− ε) log2N , then this is very large.



More predictions of Cramér’s model: distribtion of gaps

(1/N)E#{gaps of length > λ logN} ≈ e−λ.

Actual prime gap statistics, pn < 4 · 1018

Gallagher, 1976. Prime k−tuples conjecture⇒ exponential prime

gap distribution



General Cramér’s-type model: random darts

Choose N random points in [0, 1] (random darts)

Theorem (classical?)

W.h.p., the max. gap is ∼ logN
N .

Proof idea (Rényi). The N + 1 gaps have distribution

d
=

(
E1

S
, . . . ,

EN+1

S

)
, S = E1 + · · ·+ EN+1,

where each Ei has exponential distribution, P(Ei 6 x) = 1− e−x.

W.h.p., S ∼ N . Also,

P (maxEi 6 logN + u) =

(
1− e−u

N

)N+1

∼ exp{−e−u},

the Gumbel extreme value distribution.



Random darts and Cramér’s model

Choose N random points in [0, x] (random darts)

P
(
max gap 6

x(logN + u)

N

)
≈ exp{−e−u}.

Probabilistic primes; N = li(x) +O(x1/2+ε)

P
(
max
Pn6x

Pn+1 − Pn 6
x(log li(x) + u)

li(x)

)
≈ exp{−e−u}.

Theorem

For Cramér’s probabilistic primes,

max
Pn6x

Pn − Pn−1 . Cr1(x) :=
x log li(x)

li(x)
≈ (logx)(logx− log2 x).

Q1: Does this explain the data for actual primes?



Data vs. refined Cramér conjecture



General Cramér’s-type model: random darts

Choose N random points in [0, x] (random darts)

Expected maximal gap is of size ≈ x logN
N

Prime k-tuples. Let f1, . . . , fk be distinct, irreducible polynomials

fi : Z → Z with pos. leading coeff., degrees di, and f1 · · · fk has no
fixed prime factor.

Conjecture (Bateman-Horn)

#{n 6 x : f1(n), . . . , fk(n) all prime} ∼ C lik(x),

where C = C(f1, . . . , fk) > 0 is constant and lik(x) =
∫ x
2

dt
(log t)k

Refined Cramér conjecture

The largest gap in {n 6 x : f1(n), . . . , fk(n) all prime} is

. Crk(x) :=
x log(C lik(x))

C lik(x)
≈ (logx)k

C
(logx− k log2 x)



Twin prime gaps

(f1, f2) = (n, n+ 2), C ≈ 1.32032



Prime triplet gaps

(f1, f2, f3) = (n, n+ 2, n+ 6) C ≈ 2.85825



Prime quadruplet gaps

(f1, . . . , f4) = (n, n+ 2, n+ 6, n+ 8) C ≈ 4.15118



Cramér’s model defect: global distribution of primes

Theorem (Cramér, 1936 (“Probabilistic RH”))

With probability 1, Π(x) := #{Pn 6 x} = li(x) +O(x1/2+ε).

J. Pintz observed the following:

Theorem

E(Π(x)− li(x))2 ∼ x

logx
,

contrast with

Theorem (Cramér,1920)

On R.H.,
1

x

∫ 2x

x
|π(t)− li(t)|2 dt � x

log2 x



Cramér’s model defect: small gaps

Theorem. With probability 1,

#{n : n, n+ 1 ∈ P} = ∞

This does not hold for real primes!

Theorem. With probability 1,

#{n 6 x : n, n+ 2 ∈ P} ∼ x

log2 x
.

Conjecture (Hardy-Littlewood, 1923).

#{n 6 x : n, n+ 2 prime} ∼ C
x

log2 x
,

where C = 2
∏

p>2(1− 1/(p− 1)2) ≈ 1.3203



Granville’s refinement of Cramér’s model

Cramér’s model major defect: Cramér primes are equidistributed

modulo small primes like 2,3,..., whereas real primes are not.

This shows up in asymptotics for prime k-tuples, and for counts of
primes in very short intervals: w.h.p.,

Π(x+ y)−Π(x) ∼ y

logx
(y/ log2 x → ∞)

By contrast,

Theorem (H. Maier, 1985)

∀M > 1,

lim sup
x→∞

π(x+ logM x)− π(x)

logM−1 x
> 1.



Granville’s refinement of Cramér’s model, II

Let T = ε logx, QT =
∏
p6T

p = xo(1).

Real primes live in

ST := {n ∈ Z : (n,QT ) = 1}

For n ∈ ST ∩ (x, 2x], define the random variables

Zn : P(Zn = 1) = θ/ logn, P(Zn = 0) = 1− θ/ logn,

where 1/θ = φ(QT )/QT ∼ e−γ/ logT is the density of ST . That is,

θ

logn
= conditional prob. that n is prime given that n ∈ ST .



Granville’s refinement of Cramér’s model, III

ST := {n ∈ Z : (n,QT ) = 1}

Let y = c log2 x, take special values ofm ∈ (x, 2x], namely those

with with QT |m. Since y = T 2+o(1),

# ([m,m+ y] ∩ ST ) = # ([0, y] ∩ ST ) ∼
y

log y
. (sp)

By contrast, for a typicalm ∈ Z,

# ([m,m+ y] ∩ ST ) ∼ θ−1y ∼ 2e−γ y

log y
. (ty)

Note 2e−γ = 1.1229 . . . > 1, so the intervals in (sp) are deficient in
sifted numbers.



Granville’s refinement of Cramér’s model, IV

T = ε logx, y = c log2 x,

# ([m,m+ y] ∩ ST ) = # ([0, y] ∩ ST ) ∼
y

log y
. (sp)

Get

P
(
Zn = 0 : n ∈ [m,m+ y] ∩ ST

)
≈ (1− θ/ logx)y/ log y

≈ e−c(eγ/2) log x.

Therefore, gaps of size > (2e−γ + o(1))(logx)2 exist w.h.p.

Computing secondary terms; get gaps of size

2e−γ(logx)2 +A(ε)
(logx)2

log2 x
+ · · · , A(ε) → ∞(ε → 0).

Project: work out the secondary term; compare with data.



Proving large gaps: Jacobsthal’s function

ST = {n ∈ Z : (n,QT ) = 1}, QT =
∏

p6T p.

Main goal: Find J(T ), the largest gap in ST .

G(2QT ) > J(T ), G(x) := max
pn6x

pn+1 − pn.

Since QT ≈ eT , get G(x) & J(logx).

Trivial: Avg. gap is ∼ eγ logT ;J(T ) > T − 2 ([2, T ] ∩ ST = ∅)

Lower bound (FGKMT, 2018). J(T ) � T
log T log3 T

log2 T .

Upper bound (Iwaniec, 1978). J(T ) � T 2(logT )2.

Conjecture (Maier-Pomerance, 1990). J(T ) = T (logT )2+o(1).

Random dart model prediction: J(T ) ∼ T QT

φ(QT ) ∼ eγT logT .



Finding large gaps in ST

Covering: J(T ) is the largest y so that there are a2, a3, a5, . . . with

{ap mod p : p 6 T} ⊇ [0, y]

Classical 3-stage-process (Westzynthius’s-Erdős-Rankin)

1 Take ap = 0 for p ∈ (z, x/2] ∩ [2, 2y/x]. Uncovered: z-smooth

numbers (few for appropriate z) and primes; Total ∼ y/ log y
numbers uncovered.Far better that typical choice, which

leaves about y
∏

z<p6x/2(1− 1/p) ∼ y log x
log z uncovered

numbers

2 Greedy choice for ap, p ∈ (2y/x, z]; Unconvered:

. (y/ log y) log z
log(2y/x) numbers. Want this to be 6 x

4 log x .

3 use each ap for p ∈ (x/2, x] to cover the remaining uncovered

elements of [1, y], one element for each p.

If fewer than π(x)− π(x/2) ∼ x
2 log x elements left after stages 1-2,

then succeed!



Lower bounds for J(T ): prime k-tuples

Lower bound (FGKMT, 2018). J(T ) � T
log T log3 T

log2 T .

Conjecture (Maier-Pomerance, 1990). J(T ) = T (logT )2+o(1).

Random dart model prediction: J(T ) ∼ T QT

φ(QT ) ∼ eγT logT .

Maier-Pomerance: In Step 3, show that many ap mod p can cover
two remining elements; uses “twin-prime on average” results.

FGKMT: Use new prime detecting sieve (GPY-Maynard-Tao) to find

ap mod p which cover many remaining elements.

Assuming a uniform H-L prime k-tuples conjecture: Cover even more

remaining elements with ap’s. Improve lower bound to

J(T ) � T (logT )1+c.



Open Problems

1 Select a residue ap ∈ Z/pZ for each p 6 x, let

S = [0, x] \
⋃
p6x

(ap mod p).

I. When ap = 0 for all p, |S| = 1 (extremal case).

II. A random choice yields |S| ∼ x(e−γ/ logx).
III. Another construction (??) gives |S| ∼ x/ logx.
IV. (sieve) Any choice leaves |S| � x/ logx.
Q. Can one do better than III? |S| > (1 + δ)x/ logx?

2 For each prime p 6
√
x, choose a residue ap mod p, and let

S = [0, x] \
⋃

p6
√
x

(ap mod p).

I. When ap = 0 for all p, |S| ∼ x/ logx.
II. A random choice yields |S| ∼ x(2e−γ/ logx).
Q. Are these the extreme cases?
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