Large gaps in sets of primes and other sequences I. Heuristics and basic constructions

Kevin Ford

University of Illinois at Urbana-Champaign

May, 2018

Large gaps between primes

Def:
$$G(x) = \max_{p_n \leq x} (p_n - p_{n-1}), p_n$$
 is the n^{th} prime.

 $2, 3, 5, 7, \ldots, 109, 113, 127, 131, \ldots, 9547, 9551, 9587, 9601, \ldots$

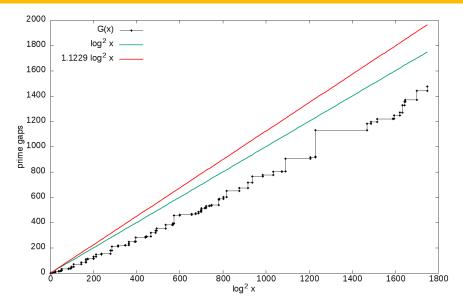
Upper bound: $G(x) \ll x^{0.525}$ (Baker-Harman-Pintz, 2001). Improve to $O(x^{1/2+\varepsilon})$ on RH.

Lower bound: $G(x) \gg (\log x) \frac{\log_2 x \log_4 x}{\log_3 x}$ (F,Green,Konyagin,Maynard,Tao,2018)

Conjectures

Cramér (1936): $\limsup_{x \to \infty} \frac{G(x)}{\log^2 x} = 1.$ **Shanks (1964):** $G(x) \sim \log^2 x.$ **Granville (1995):** $\limsup_{x \to \infty} \frac{G(x)}{\log^2 x} \ge 2e^{-\gamma} = 1.1229...$

Computational evidence, up to 10^{18}



Cramér's model of large prime gaps

Let X_3, X_4, X_5, \ldots be indep. random vars. s.t. $\mathbb{P}(X_n = 1) = \frac{1}{\log n}, \qquad \mathbb{P}(X_n = 0) = 1 - \frac{1}{\log n}.$ Let

$$\mathscr{P} = \{n : X_n = 1\} = \{P_1, P_2, \ldots\},\$$

the set of "probabilistic primes".

Theorem (Cramér, 1936)

With probability 1,

$$\limsup_{N\to\infty}\frac{P_{N+1}-P_N}{\log^2 N}=1.$$

Cramér: "for the ordinary sequence of prime numbers p_n , some similar relation may hold".

Sketch of the proof of Cramér's theorem

$$\mathbb{P}(X_n = 1) = \frac{1}{\log n}, \qquad \mathbb{P}(X_n = 0) = 1 - \frac{1}{\log n}.$$

Suppose that $N^{1-o(1)} \leq k \leq N$. Then

$$\mathbb{P}(X_{k+1} = \dots = X_{k+g} = 0) \approx \left(1 - \frac{1}{\log k}\right)^g \approx e^{-g/\log N}.$$

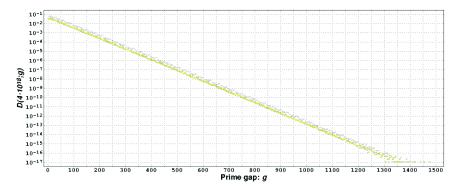
Hence (summing on *k*)

 \mathbb{E} #{gaps of length $\geq g$ below N} $\approx Ne^{-g/\log N}$.

If
$$g > (1 + \varepsilon) \log^2 N$$
, this is $o(1)$.
If $g < (1 - \varepsilon) \log^2 N$, then this is very large.

More predictions of Cramér's model: distribution of gaps

 $(1/N)\mathbb{E}$ #{gaps of length $\geq \lambda \log N$ } $\approx e^{-\lambda}$.



Actual prime gap statistics, $p_n < 4 \cdot 10^{18}$

Gallagher, 1976. Prime k-tuples conjecture \Rightarrow exponential prime gap distribution

General Cramér's-type model: random darts

Choose N random points in [0, 1] (random darts)

Theorem (classical?)

W.h.p., the max. gap is $\sim \frac{\log N}{N}$ *.*

Proof idea (Rényi). The N + 1 gaps have distribution

$$\stackrel{d}{=} \left(\frac{E_1}{S}, \dots, \frac{E_{N+1}}{S}\right), \quad S = E_1 + \dots + E_{N+1},$$

where each E_i has exponential distribution, $\mathbb{P}(E_i \leq x) = 1 - e^{-x}$. W.h.p., $S \sim N$. Also,

$$\mathbb{P}\left(\max E_i \leqslant \log N + u\right) = \left(1 - \frac{e^{-u}}{N}\right)^{N+1} \sim \exp\{-e^{-u}\},$$

the Gumbel extreme value distribution.

Random darts and Cramér's model

Choose *N* random points in [0, x] (random darts)

$$\mathbb{P}\left(\max \operatorname{gap} \leqslant \frac{x(\log N + u)}{N}\right) \approx \exp\{-e^{-u}\}.$$

Probabilistic primes; $N = li(x) + O(x^{1/2+\varepsilon})$

$$\mathbb{P}\bigg(\max_{P_n\leqslant x}P_{n+1}-P_n\leqslant \frac{x(\log\operatorname{li}(x)+u)}{\operatorname{li}(x)}\bigg)\approx \exp\{-e^{-u}\}.$$

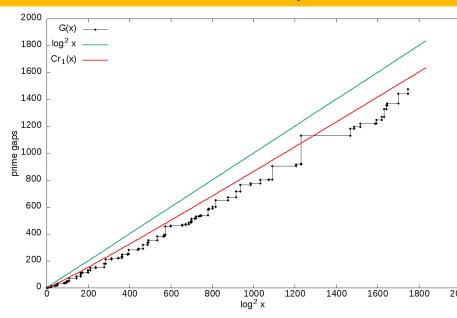
Theorem

For Cramér's probabilistic primes,

$$\max_{P_n \leqslant x} P_n - P_{n-1} \lesssim \operatorname{Cr}_1(x) := \frac{x \log \operatorname{li}(x)}{\operatorname{li}(x)} \approx (\log x) (\log x - \log_2 x).$$

Q1: Does this explain the data for actual primes?

Data vs. refined Cramér conjecture



General Cramér's-type model: random darts

Choose *N* random points in [0, x] (random darts) Expected maximal gap is of size $\approx \frac{x \log N}{N}$

Prime *k***-tuples.** Let f_1, \ldots, f_k be distinct, irreducible polynomials $f_i : \mathbb{Z} \to \mathbb{Z}$ with pos. leading coeff., degrees d_i , and $f_1 \cdots f_k$ has no fixed prime factor.

Conjecture (Bateman-Horn)

$$\#\{n \leq x : f_1(n), \dots, f_k(n) \text{ all prime}\} \sim C \, \operatorname{li}_k(x),$$

here $C = C(f_1, \dots, f_k) > 0$ is constant and $\operatorname{li}_k(x) = \int_2^x \frac{dt}{(\log t)^k}$

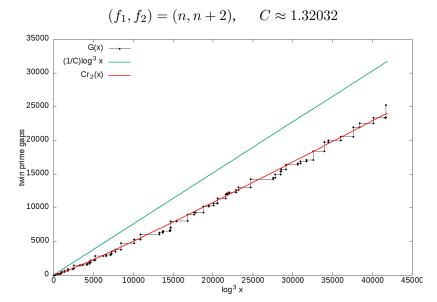
Refined Cramér conjecture

w

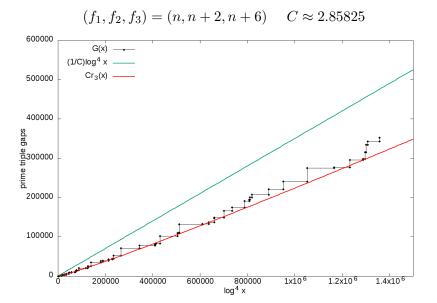
The largest gap in $\{n \leq x : f_1(n), \dots, f_k(n) \text{ all prime}\}$ is

$$\lesssim \operatorname{Cr}_k(x) := \frac{x \log(C \, \operatorname{li}_k(x))}{C \, \operatorname{li}_k(x)} \approx \frac{(\log x)^k}{C} (\log x - k \log_2 x)$$

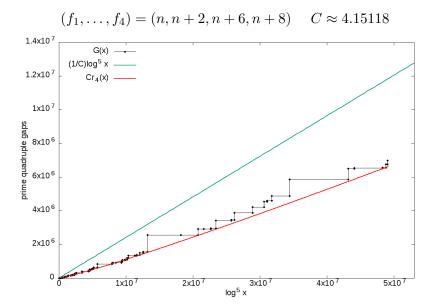
Twin prime gaps



Prime triplet gaps



Prime quadruplet gaps



Cramér's model defect: global distribution of primes

Theorem (Cramér, 1936 ("Probabilistic RH"))

With probability 1, $\Pi(x) := #\{P_n \leq x\} = li(x) + O(x^{1/2+\varepsilon}).$

J. Pintz observed the following:

Theorem

$$\mathbb{E}(\Pi(x) - \operatorname{li}(x))^2 \sim \frac{x}{\log x},$$

contrast with

Theorem (Cramér, 1920)

On R.H.,

$$\frac{1}{x} \int_{x}^{2x} |\pi(t) - \mathrm{li}(t)|^2 \, dt \ll \frac{x}{\log^2 x}$$

Cramér's model defect: small gaps

Theorem. With probability 1,

$$\#\{n:n,n+1\in\mathscr{P}\}=\infty$$

This does not hold for real primes!

Theorem. With probability 1,

$$\#\{n\leqslant x:n,n+2\in\mathscr{P}\}\sim \frac{x}{\log^2 x}.$$

Conjecture (Hardy-Littlewood, 1923).

$$\#\{n\leqslant x:n,n+2 \text{ prime}\}\sim C\frac{x}{\log^2 x}$$

where $C = 2 \prod_{p>2} (1 - 1/(p - 1)^2) \approx 1.3203$

Granville's refinement of Cramér's model

Cramér's model major defect: Cramér primes are equidistributed modulo small primes like 2,3,..., whereas real primes are not.

This shows up in asymptotics for prime *k*-tuples, and for counts of primes in very short intervals: w.h.p.,

$$\Pi(x+y) - \Pi(x) \sim \frac{y}{\log x} \quad (y/\log^2 x \to \infty)$$

By contrast,

Theorem (H. Maier, 1985) $\forall M > 1$, $\limsup_{x \to \infty} \frac{\pi(x + \log^M x) - \pi(x)}{\log^{M-1} x} > 1.$

Granville's refinement of Cramér's model, II

Let
$$T = \varepsilon \log x$$
, $Q_T = \prod_{p \leq T} p = x^{o(1)}$.

Real primes live in

$$\mathcal{S}_T := \{ n \in \mathbb{Z} : (n, Q_T) = 1 \}$$

For $n \in \mathcal{S}_T \cap (x, 2x]$, define the random variables

$$Z_n: \quad \mathbb{P}(Z_n = 1) = \frac{\theta}{\log n}, \quad \mathbb{P}(Z_n = 0) = 1 - \frac{\theta}{\log n}$$

where $1/\theta = \phi(Q_T)/Q_T \sim e^{-\gamma}/\log T$ is the density of \mathcal{S}_T . That is,

 $\frac{\theta}{\log n}$ = conditional prob. that *n* is prime given that $n \in S_T$.

Granville's refinement of Cramér's model, III

$$\mathcal{S}_T := \{ n \in \mathbb{Z} : (n, Q_T) = 1 \}$$

Let $y = c \log^2 x$, take special values of $m \in (x, 2x]$, namely those with with $Q_T | m$. Since $y = T^{2+o(1)}$,

$$\#([m, m+y] \cap \mathcal{S}_T) = \#([0, y] \cap \mathcal{S}_T) \sim \frac{y}{\log y}.$$
 (sp)

By contrast, for a *typical* $m \in \mathbb{Z}$,

$$\#\left([m,m+y]\cap\mathcal{S}_T\right)\sim\theta^{-1}y\sim\frac{2e^{-\gamma}}{\log y}.$$
 (ty)

Note $2e^{-\gamma} = 1.1229... > 1$, so the intervals in (sp) are deficient in sifted numbers.

Granville's refinement of Cramér's model, IV

$$T = \varepsilon \log x, y = c \log^2 x,$$
$$\# \left([m, m+y] \cap \mathcal{S}_T \right) = \# \left([0, y] \cap \mathcal{S}_T \right) \sim \frac{y}{\log y}.$$
 (sp)

Get

$$\mathbb{P}(Z_n = 0 : n \in [m, m+y] \cap \mathcal{S}_T) \approx (1 - \theta / \log x)^{y/\log y} \approx e^{-c(e^{\gamma}/2)\log x}.$$

Therefore, gaps of size $\geq (2e^{-\gamma} + o(1))(\log x)^2$ exist w.h.p.

Computing secondary terms; get gaps of size

$$2e^{-\gamma}(\log x)^2 + A(\varepsilon)\frac{(\log x)^2}{\log_2 x} + \cdots, \qquad A(\varepsilon) \to \infty(\varepsilon \to 0).$$

Project: work out the secondary term; compare with data.

Proving large gaps: Jacobsthal's function

$$\begin{split} \mathcal{S}_T &= \{n \in \mathbb{Z} : (n, Q_T) = 1\}, \quad Q_T = \prod_{p \leqslant T} p. \\ \text{Main goal: Find } J(T), \text{ the largest gap in } \mathcal{S}_T. \\ G(2Q_T) &\geqslant J(T), \qquad G(x) := \max_{p_n \leqslant x} p_{n+1} - p_n. \\ \text{Since } Q_T &\approx e^T, \text{ get } G(x) \gtrsim J(\log x). \end{split}$$

Trivial: Avg. gap is $\sim e^{\gamma} \log T; J(T) \ge T - 2 ([2, T] \cap S_T = \emptyset)$ **Lower bound (FGKMT, 2018).** $J(T) \gg T \frac{\log T \log_3 T}{\log_2 T}$. **Upper bound (Iwaniec, 1978).** $J(T) \ll T^2 (\log T)^2$. **Conjecture (Maier-Pomerance, 1990).** $J(T) = T (\log T)^{2+o(1)}$. Random dart model prediction: $J(T) \sim T \frac{Q_T}{\phi(Q_T)} \sim e^{\gamma}T \log T$.

Finding large gaps in S_T

Covering: J(T) is the largest y so that there are a_2, a_3, a_5, \ldots with

 $\{a_p \mod p: p \leqslant T\} \supseteq [0,y]$

Classical 3-stage-process (Westzynthius's-Erdős-Rankin)

- Take $a_p = 0$ for $p \in (z, x/2] \cap [2, 2y/x]$. Uncovered: *z*-smooth numbers (few for appropriate *z*) and primes; Total $\sim y/\log y$ numbers uncovered. Far better that typical choice, which leaves about $y \prod_{z uncovered numbers$
- **2** Greedy choice for a_p , $p \in (2y/x, z]$; Unconvered: $\leq (y/\log y) \frac{\log z}{\log(2y/x)}$ numbers. Want this to be $\leq \frac{x}{4\log x}$.
- **3** use each a_p for $p \in (x/2, x]$ to cover the remaining uncovered elements of [1, y], one element for each p.

If fewer than $\pi(x) - \pi(x/2) \sim \frac{x}{2\log x}$ elements left after stages 1-2, then succeed!

Lower bounds for J(T): prime *k*-tuples

Lower bound (FGKMT, 2018). $J(T) \gg T \frac{\log T \log_3 T}{\log_2 T}$.

Conjecture (Maier-Pomerance, 1990). $J(T) = T(\log T)^{2+o(1)}$.

Random dart model prediction: $J(T) \sim T \frac{Q_T}{\phi(Q_T)} \sim e^{\gamma} T \log T$.

Maier-Pomerance: In Step 3, show that many $a_p \mod p$ can cover two remining elements; uses "twin-prime on average" results.

FGKMT: Use new prime detecting sieve (GPY-Maynard-Tao) to find $a_p \mod p$ which cover many remaining elements.

Assuming a uniform H-L prime *k*-tuples conjecture: Cover even more remaining elements with a_p 's. Improve lower bound to $J(T) \gg T(\log T)^{1+c}$.

Open Problems

• Select a residue $a_p \in \mathbb{Z}/p\mathbb{Z}$ for each $p \leq x$, let $S = [0, x] \setminus \bigcup_{p \leq x} (a_p \mod p).$

I. When $a_p = 0$ for all p, |S| = 1 (extremal case). II. A random choice yields $|S| \sim x(e^{-\gamma}/\log x)$. III. Another construction (??) gives $|S| \sim x/\log x$. IV. (sieve) Any choice leaves $|S| \ll x/\log x$. Q. Can one do better than III? $|S| \ge (1 + \delta)x/\log x$?

2 For each prime $p \leq \sqrt{x}$, choose a residue $a_p \mod p$, and let

$$\mathcal{S} = [0,x] \setminus \bigcup_{p \leqslant \sqrt{x}} (a_p \mod p).$$

I. When $a_p = 0$ for all p, $|S| \sim x/\log x$. II. A random choice yields $|S| \sim x(2e^{-\gamma}/\log x)$. Q. Are these the extreme cases?

References

- H. Cramér, Some theorems concerning prime numbers, Ark. Mat. Astr. Fys. 15 (1920), 1–33.
- H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arith. **2** (1936), 396–403.
- Andrew Granville, *Harald Cramér and the distribution of prime numbers*, Scandanavian Actuarial J. **1** (1995), 12–28.
- Alexei Kourbatov, The distribution of maximal prime gaps in Cramér's probabilistic model of primes, Inter. J. Stat. Prob. 3, No. 2 (2014), 18–29.
- J. Pintz, Cramér vs. Cramér. On Cramér's Probabilistic Model for primes, Func. Approx. Comment. Math. **37** (2007), 361–376.
- T. Oliveira e Silva, *Gaps between consecutive primes* (web page), http://sweet.ua.pt/tos/gaps.html