Large gaps in sets of primes and other sequences II. New bounds for large gaps between primes Random methods and weighted sieves

Kevin Ford

University of Illinois at Urbana-Champaign

May, 2018

Large gaps between primes

Def: $G(x):=\max _{p_{n} \leqslant x}\left(p_{n}-p_{n-1}\right), \quad p_{n}$ is the $n^{t h}$ prime.

Theorem (F-Green-Konyagin-Maynard-Tao, 2018)

$$
G(x) \gg \log x \frac{\log _{2} x \log _{4} x}{\log _{3} x}
$$

Chains of gaps:
$G_{k}(x):=\max _{p_{n+k} \leqslant x} \min \left(p_{n+1}-p_{n}, \ldots, p_{n+k}-p_{n+k-1}\right)$

Theorem (F-Maynard-Tao, 2018+)

For every k,

$$
G_{k}(x) \gg_{k} \log x \frac{\log _{2} x \log _{4} x}{\log _{3} x}
$$

Proving large gaps: Jacobsthal's function

$$
\mathcal{S}_{T}=\left\{n \in \mathbb{Z}:\left(n, Q_{T}\right)=1\right\}, \quad Q_{T}=\prod_{p \leqslant T} p .
$$

Main goal: Find $J(T)$, the largest gap in \mathcal{S}_{T}.

Lower bound (FGKMT, 2018). $J(T) \gg T \frac{\log _{2} \log _{3} T}{\log _{2} T}$.
Covering: $J(T)$ is the largest y so that there are $a_{2}, a_{3}, a_{5}, \ldots$ with

$$
\left\{a_{p} \bmod p: p \leqslant T\right\} \supseteq[0, y]
$$

Least prime in an arithmetic progression

Let $p(k, l)=\min \{p: p \equiv l(\bmod k)\}, M(k)=\max _{(l, k)=1} p(k, l)$.
Upper bounds
Linnik, 1944. $M(k) \ll k^{L}$. (Xylouris - $L=5.18$). ERH: $L=2+\varepsilon ; \quad$ Chowla conjecture: $L=1+\varepsilon$.

Lower bounds

Trivial: $M(k) \gg \phi(k) \log k$.
Prachar; Schinzel - 1961/62. For infinitely many k,

$$
\begin{equation*}
M(k) \gg \phi(k) \log k \frac{\log _{2} k \log _{4} k}{\left(\log _{3} k\right)^{2}} \tag{1}
\end{equation*}
$$

Wagstaff (1978) - (1) holds for all prime k.
Pomerance (1980) - (1) holds for almost all k, in fact all k with at most $\exp \left(\log _{2} k / \log _{3} k\right)$ prime factors.

Least prime in an arithmetic progression, II

Pomerance: $M(k) \gg \phi(k) \log k \frac{\log _{2} k \log _{4} k}{\left(\log _{3} k\right)^{2}}$ for almost all k.
Lemma (Pomerance): Let $j(m)$ be the maximal gap between numbers comprime to m. If $0<m \leqslant k / j(k)$ and $(m, k)=1$ then $M(k)>k j(m)$.
Take $m=\prod_{\substack{p \leqslant(1-\delta) \log k \\ p \nmid k}} p \quad$ need a lower bound on $j(m)$.
Corollary (FGKMT, 2018). If k has no prime factor $\leqslant \log k$, then

$$
\begin{equation*}
M(k) \gg \phi(k) \log k \frac{\log _{2} k \log _{4} k}{\log _{3} k} \tag{2}
\end{equation*}
$$

Theorem (J. Li-K. Pratt-G. Shakan, 2017)

Inequality (2) holds for all k with at most $\exp \left\{(1 / 2-\varepsilon) \frac{\log _{2} k \log _{4} k}{\log _{3} k}\right\}$ prime factors.

Least Prime in an A.P. - conjectures

Conjecture (folklore): $M(k) \ll k \log ^{2+\varepsilon} k$.
Conjecture (Wagstaff, 1979): $M(k) \sim \phi(k) \log ^{2} k$ for "most k "
Wagstaff's heuristic:Given $l<k(\log k)^{3},(l, k)=1$, the "probability" that l is prime is $\approx \frac{k / \phi(k)}{\log k}$. So

$$
\begin{aligned}
\mathbb{P}(l, l+k, \ldots, l+\lfloor m \log k\rfloor k \text { all composite }) & \sim\left(1-\frac{k / \phi(k)}{\log k}\right)^{m \log k} \\
& \sim e^{-m / \phi(k)} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathbb{P}(M(k) \leqslant m k \log k) & \sim\left(1-e^{-m k / \phi(k)}\right)^{\phi(k)} \\
& \sim \exp \left\{-\phi(k) e^{-m k / \phi(k)}\right\} .
\end{aligned}
$$

Threshhold value $m \sim \frac{\phi(k)}{k} \log \phi(k)$

Least prime in AP: Refined conjectures

Conjecture (Li-Pratt-Shakan, 2017)

$$
\liminf _{k \rightarrow \infty} \frac{M(k)}{\phi(k) \log ^{2} k}=1, \quad \limsup _{k \rightarrow \infty} \frac{M(k)}{\phi(k) \log ^{2} k}=2 .
$$

Figure: Histogram for $M(k) / \phi(k) \log (\phi(k)) \log k$ for $k \leqslant 10^{6}$

Least prime in AP: Li-Pratt-Shakan conjecture

Rough heuristic argument: "coupon collectors problem"
p_{n} - n-th prime, m_{k} - a param, $a \in \mathbb{Z} / k \mathbb{Z}$
E_{a} - the event that $p_{1}, p_{2}, \ldots, p_{m_{k}} \not \equiv a(\bmod k)$
A_{k} - the event $\left\{M(k)>p_{m_{k}}\right\}=\bigcup_{a} E_{a}$.
We have $\mathbb{P}\left(A_{k}\right) \sim \sum_{a} \mathbb{P}\left(E_{a}\right) \sim \phi(k) e^{-m / \phi(k)}$
If $m=\lambda \phi(k) \log \phi(k)$, this is $\sim \phi(k)^{1-\lambda}$.
(1) If $\lambda \approx 1$, threshhold for being "small". Justifies Wagstaff and liminf.
(2) When $\lambda \approx 2$, threshhold for $\mathbb{P}\left(A_{k}\right)$ holding for infinitely many k (using Borel-Cantelli). Justifies lim sup.

New lower bounds on $J(T)$: outline

$$
y=c x \frac{\frac{\log _{2} \log _{3} x}{\log _{2} x}}{}, z=x^{\frac{\log _{3} x}{\log _{2} x}} \quad \text { Want }\left\{a_{p} \bmod p: p \leqslant x\right\} \supseteq[0, y]
$$

(1) $a_{p}=0$ for $p \in(z, x / 4] \cap\left[2, \log ^{10} x\right]$. Uncovered: z-smooth numbers and primes;
(2) Random, uniform choice of $a_{p}, \log ^{10} x<p \leqslant z$.
(3) Strategic choice of $a_{p}, x / 4<p \leqslant x / 2$ to cover many reminaing elements.
(4) (trivial) Use single a_{p} for each $x / 2<p \leqslant x$ to cover each remaining uncovered element.

Stage 2: random, uniform choice of a_{p}

\mathcal{Q}_{1} - the set of uncovered elements after stage 1 (mainly primes).

$$
\begin{aligned}
\mathcal{Q}_{2}(\mathbf{a}) & :=\text { the set of uncovered elements after stage } 2 \\
& =\mathcal{Q}_{1} \backslash \bigcup_{p \in \mathcal{P}}\left(a_{p} \bmod p\right)
\end{aligned}
$$

where \mathcal{P} is the set of primes in $\left(\log ^{10} x, z\right]$.

Lemma

w.h.p., $\left|\mathcal{Q}_{2}(\mathbf{a})\right| \sim \sigma \pi(y), \sigma:=\prod_{p \in \mathcal{P}}(1-1 / p)$

Proof. Recall $\left|\mathcal{Q}_{1}\right| \sim \pi(y)$. We calculate 1st, 2nd moments:

$$
\begin{aligned}
\mathbb{E}\left|\mathcal{Q}_{2}(\mathbf{a})\right| & =\sum_{n \in \mathcal{Q}_{1}} \mathbb{P}\left(n \in \mathcal{Q}_{2}(\mathbf{a})\right) \\
& =\sum_{n \in \mathcal{Q}_{1}} \prod_{p \in \mathcal{P}} \mathbb{P}\left(n \not \equiv a_{p}(\bmod p)\right)=\sigma\left|\mathcal{Q}_{1}\right| .
\end{aligned}
$$

Lemma

w.h.p., $\left|\mathcal{Q}_{2}(\mathbf{a})\right| \sim \sigma \pi(y), \sigma:=\prod_{p \in \mathcal{P}}(1-1 / p)$

Proof (continued). For the 2nd moment,

$$
\begin{aligned}
\mathbb{E}\left|\mathcal{Q}_{2}(\mathbf{a})\right|^{2} & =\sum_{n_{1}, n_{2} \in \mathcal{Q}_{1}} \mathbb{P}\left(n_{1}, n_{2} \in \mathcal{Q}_{2}(\mathbf{a})\right) \\
& =\mathbb{E}\left|\mathcal{Q}_{2}(\mathbf{a})\right|+\sum_{\substack{n_{1}, n_{2} \in \mathcal{Q}_{1} \\
n_{1} \neq n_{2}}} \prod_{p \in \mathcal{P}} \mathbb{P}\left(n_{i} \not \equiv a_{p}(\bmod p) ; i=1,2\right) .
\end{aligned}
$$

Now $\mathbb{P}\left(n_{i} \not \equiv a_{p}(\bmod p) ; i=1,2\right)=1-2 / p$ unless $p \mid n_{1}-n_{2}$, which occurs for $O(\log x)$ primes p. Get

$$
\begin{aligned}
\mathbb{E}\left|\mathcal{Q}_{2}(\mathbf{a})\right|^{2} & =\sum_{n_{1}, n_{2} \in \mathcal{Q}_{1}} \sigma^{2}\left(1+O\left((\log x)^{-9}\right)\right) \\
& =\left(\sigma\left|\mathcal{Q}_{1}\right|\right)^{2}\left(1+O\left((\log x)^{-9}\right)\right) .
\end{aligned}
$$

The Lemma follows from the 1st, 2nd moment bounds plus Chebyshev’s inequality.

Random residues: higher correlations

Define the random sifted set

$$
\mathcal{S}(\mathbf{a})=\mathbb{Z} \backslash \bigcup_{p \in \mathcal{P}}\left(a_{p} \bmod p\right)
$$

In particular, $\mathcal{Q}_{2}(\mathbf{a})=\mathcal{Q}_{1} \cap \mathcal{S}(\mathbf{a})$.
Lemma ($\mathcal{S}(\mathbf{a})$ correlations)
Let n_{1}, \ldots, n_{t} be distinct integers in $[-y, y]$, with $t \ll \log x$. Then

$$
\mathbb{P}\left(n_{1}, \ldots, n_{t} \in \mathcal{S}(\mathbf{a})\right)=\sigma^{t}\left(1+O\left(t^{2} / \log ^{9} x\right)\right)
$$

Stage 3: Strategic choices

We choose $a_{p}, x / 4<p \leqslant x / 2$ to have two properties:
(a) the sets $e_{p}:=\left(a_{p} \bmod p\right) \cap \mathcal{Q}_{2}(\mathbf{a})$ are large (on average) for $x / 4<p \leqslant x / 2 ;$
(b) the collection of sets $\left\{e_{p}: x / 4<p \leqslant x / 2\right\}$ covers most of $\mathcal{Q}_{2}(\mathbf{a})$ efficiently (little overlap).

Item (a) is accomplished using a weighted, prime detecting sieve. Recall that \mathcal{Q}_{1}, and hence $\mathcal{Q}_{2}(\mathbf{a})$ consists mainly of primes. The average of $\left|e_{p}\right|$, over all choices of a_{p} is

$$
\frac{\left|\mathcal{Q}_{2}(\mathbf{a})\right|}{p} \asymp \frac{\left|\mathcal{Q}_{2}(\mathbf{a})\right|}{x} \sim \frac{\sigma y}{\log x}=o(1)
$$

So a random (uniform) choice for a_{p} is very inefficient!
Item (b) is accomplished using hypergraph covering methods.

Primes in sparse A.P.'s: weighted sieves

Admissible k-tuple h_{1}, \ldots, h_{k} Prime-detecting weight fcn. $w(n)=w(n ; \mathbf{h})$ (GPY-Maynard-Tao)

Goal: Find $w(n)$ which is large when many of the numbers $n+h_{i}$ are prime, and small otherwise, and such that the sums

$$
T_{1}(N)=\sum_{n \asymp N} w(n), \quad T_{2}(N)=\sum_{n \asymp N} \sum_{j=1}^{k} \mathbf{1}\left(n+h_{j} \text { prime }\right) w(n)
$$

can both be evaluated asymptoticlaly. If

$$
T_{2}(N) \geqslant r T_{1}(N)
$$

then there are some values of $n \asymp N$ such that the set $\left\{n+h_{1}, \ldots, n+h_{k}\right\}$ contains at least r primes.

Theorem (Maynard, 2016)

For $k \leqslant(\log N)^{1 / 5}, h_{i} \ll x^{c}, \exists$ weights s.t. (w) holds with $r \sim \log k$.

Sieve weights

Fix an admissible k-tuple $1 \leqslant h_{1}<\cdots<h_{k} \ll k^{2}, k \sim(\log x)^{1 / 5}$. Let $x / 4<p \leqslant x / 2$. Then $\mathbf{h}_{p}:=\left(h_{1} p, \ldots, h_{k} p\right)$ is admissible. Define the weight $w(p, n)$ by

$$
w(p, n)=w\left(n ; \mathbf{h}_{p}\right) ; \quad(0 \leqslant n \leqslant y) .
$$

Two crucial estimates (after suitable notmalization)

Theorem (FGKMT)

(a) $\frac{1}{\pi(y)} \sum_{n \leqslant y} w(p, n) \sim 1 \quad(p \in \mathcal{P}) ;$
(b) $\frac{1}{|\mathcal{P}|} \sum_{p \in \mathcal{P}} \sum_{i=1}^{k} w\left(p, q-h_{i} p\right) \sim \log _{2} x \quad(x<q \leqslant y]$
(a) is a T_{1} sum; (b) is a T_{2}-type sum (with a different k-tuple).

Weighted choice of a_{p} for $x / 4<p \leqslant x / 2$

Select a random number in $\mathbf{n}_{p} \in[0, y]$ with probability proportional to $w(p, n)$; that is

$$
\mathbb{P}\left(\mathbf{n}_{p}=n\right):=\frac{w(p, n)}{\sum_{l} w(p, l)} \quad(0 \leqslant n \leqslant y)
$$

Bigger weight when many of $n+h_{i} p$ are prime.
For each $p \in \mathcal{P}$ and fixed (non-random) vector \vec{a}, let

$$
X_{p}(\vec{a}):=\mathbb{P}\left(\mathbf{n}_{p}+h_{i} p \in \mathcal{S}(a) \text { for all } i=1, \ldots, k\right)
$$

Lemma ($\mathcal{Q}_{2}(\mathbf{a})$ correlations) + Chebyshev $\Rightarrow X_{p}(\mathbf{a}) \sim \sigma^{k}$ w.h.p.
Spse $\overrightarrow{\mathbf{a}}=\vec{a}$. Define r.v. \mathbf{m}_{p} by

$$
\mathbb{P}\left(\mathbf{m}_{p}=m \mid \mathbf{a}=\vec{a}\right):=\frac{Z_{p}(\vec{a} ; m)}{X_{p}(\vec{a})}
$$

$$
Z_{p}(\vec{a} ; m)= \begin{cases}\mathbb{P}\left(\mathbf{n}_{p}=m\right) & \text { if } m+h_{j} p \in \mathcal{S}(\vec{a}) \text { for } j=1, \ldots, k \\ 0 & \text { otherwise }\end{cases}
$$

weights, II

$$
\begin{aligned}
\mathbb{P}\left(\mathbf{m}_{p}=m \mid \mathbf{a}=\vec{a}\right) & :=\frac{Z_{p}(\vec{a} ; m)}{X_{p}(\vec{a})}, \\
Z_{p}(\vec{a} ; m) & = \begin{cases}\mathbb{P}\left(\mathbf{n}_{p}=m\right) & \text { if } m+h_{j} p \in \mathcal{S}(\vec{a}) \text { for } j=1, \ldots, k \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Let $a_{p} \equiv \mathbf{m}_{p}(\bmod p), x / 4<p \leqslant x / 2$. Then
(1) $\mathbf{m}_{p}+h_{i} p \in \mathcal{S}(\mathbf{a})$ for all i;
(2) (on avg) $\left|\mathcal{Q}_{2}(\mathbf{a}) \cap\left(a_{p} \bmod p\right)\right| \gtrsim \log k \gg \log _{2} x$ (the k-tuple contains many primes)

If the sets $e_{p}=\mathcal{Q}_{2}(\mathbf{a}) \cap\left(a_{p} \bmod p\right)$ have little overlap (efficiently chosen), they cover about $\gg x \log _{2} x / \log x$ elements. Good if

$$
\sigma \frac{y}{\log x} \leqslant c \frac{x \log _{2} x}{\log x}
$$

