Hypergraph covering and small gaps between primes

Kevin Ford
University of Illinois at Urbana-Champaign

May, 2018

Prime gaps and hypergraph covering

Goal: Cover $[0, y]$ with residue classes $a_{p} \bmod p, p \leqslant x$.
Q - a random set of primes in $[1, y]$, size $\gg \frac{y}{\log ^{2} y}$. (Stage 2)
\mathcal{P} - the set of primes in $(x / 4, x / 2]$
a_{p} - some residue class modulo p, for each $p \in P$.
$e_{p}=Q \cap\left(a_{p} \bmod p\right) ;$ primes in Q that are $\equiv a_{p} \bmod p$
Goal: choose the a_{p} so that the sets e_{p} cover most of Q.
Hypergraph language: Q is the vertex set, e_{p} are hyperedges
Sieve input: whp, for most $p \in \mathcal{P}, a_{p}$ exist so that $e_{p} \gg \log _{2} y$.
Big question. Can one choose the a_{p} so that the e_{p} are both large and cover Q efficiently (allowing a larger choice for y)?

Hypergraph covering

$H=(V, E)$ - a hypergraph
V - finite set of vertices
E - collection of nonempty subsets of V (hyperedges)
A covering of H is a subset of E that covers all of V
A packing (or matching) is a subset of disjoint elements of E
A perfect matching (packing) is both a matching and a covering.
Problems: under what general conditions on H does their exist

- a perfect matching
- a (1- ε)-near perfect matching (a matching that covers all but at most $\varepsilon|V|$ vertices
- a $(1+\varepsilon)$-efficient covering (a covering where at most $\varepsilon|V|$ vertices are covered twice)

Pippenger-Spencer

Pippenger-Spencer Theorem (1989). building on earlier work of Pippenger (unpublished) and Frankl-Rödl.

Three basic conditions on H :
(1) (l-uniformity) $|e|=l$ for all $e \in E$, l fixed;
(2) (regularity) $\forall v, w \in V, \operatorname{deg}(v) \sim \operatorname{deg}(w)$;
(3) (small codegrees) $\forall v, w \in V, v \neq w$, $\operatorname{codeg}(v, w)=o(\operatorname{deg}(v))$, where $\operatorname{codeg}(v, w)=|\{e \in E: v, w, \in e\}|$.

Here $o(1)$ means as $|V| \rightarrow \infty$, where we assume that the typical vertex degree is also $\rightarrow \infty$.

Conclusion: There is a $(1-o(1))$-near perfect matching of H.

An inefficient method of covering/matching, I

The naive method of choosing edges randomly and independently is very inefficient for producing (near) matchings/coverings. Why?
(1) After relative few choices one encounters overlaps
(2) After many choices the overlapped parts begin to dominate the non-overlapped parts
(3) Even after a great number of choices, there is still a lot left uncovered

An inefficient method of covering/matching, II

Analysis of the random, uniform choice method:

Assumptions on $H:|E|=l ; \operatorname{deg}(v) \sim d \forall v \in V$ (regularity)
A (near) perfect matching/covering will use about l / d edges
Suppose we have chosen $J=\lambda l / d$ edges $e_{1}, \ldots, e_{J}, \lambda>0$ fixed. For any vertex v,

$$
\mathcal{P}\left(v \notin \bigcup_{j=1}^{J} e_{j}\right)=\prod_{j=1}^{J}\left(1-\mathcal{P}\left(v \in e_{j}\right)\right) \approx\left(1-\frac{d}{l}\right)^{J} \sim e^{-\lambda} .
$$

Therefore, we expect about $e^{-\lambda}|V|$ uncovered vertices. That is, no matter how large we take λ, there is a lot left uncovered and what is covered is highly overlapped.

An inefficient method of covering/matching, III

Big circle $=V$; small circles $=$ hyperedges

$\lambda=0.1389 \lambda=0.2778 \lambda=0.4167 \lambda=0.5556 \lambda=0.6944 \lambda=$ $0.8333 \lambda=0.9722 \lambda=1.1111 \lambda=1.2500 \lambda=1.3889 \lambda=1.5278 \lambda=$ $16667 \lambda=18056 \lambda=10444 \lambda=20833$

Better method: The Rödl Nibble

(Nibble \# 1). Choose a small number, n_{1} ($n_{1}=o(l / d)$, say), of edges independently at random: $e_{1}, \ldots, e_{n_{1}}$. With high probability, they are disjoint. Let

$$
W_{1}=V \backslash\left\{e_{1} \cup \cdots \cup e_{n_{1}}\right\}
$$

(Nibble \# 2). Choose a small number, n_{2}, of edges at random, $e_{n_{1}+1}, \ldots, e_{n_{1}+n_{2}}$, but only from those edges $\subset W_{1}$. Let

$$
W_{2}=W_{1} \backslash\left\{e_{n_{1}+1} \cup \cdots \cup e_{n_{1}+n_{2}}\right\}
$$

Continue for k nibbles.

Relaxing the hypotheses

Pippenger-Spencer: WHP (with high probability), get a $(1-o(1))$-near perfect matching, assuming uniformity, regularity, small codegrees.

For our prime gap application, our hypergraph is much more irregular:

- The hyperedges have greatly varying sizes (but none are too big);
- The vertices have greatly varying degrees (but none are too large);

Our hypotheses

(1) $|e| \leqslant r$ for all $e \in E$; (r need not be fixed)
(2) $\forall v \in V, \operatorname{deg}(v) \leqslant d$;
(3) $\forall v, w \in V, v \neq w$, $\operatorname{codeg}(v, w) \leqslant \delta \operatorname{deg}(v)$ for some small δ.

Rödle nibble under relaxed hypotheses

Hyp: $|e| \leqslant r ; \quad \operatorname{deg}(v) \leqslant d ; \quad \operatorname{codeg}(v, w) \leqslant \delta \operatorname{deg}(v)) ; \quad|E|=l$.
(Nibble \# 1). Choose random edges $e_{1}, \ldots, e_{n_{1}}$. WHP, they are disjoint. Denote $W_{1}=V \backslash\left\{e_{1} \cup \cdots \cup e_{n_{1}}\right\}$. For all $v \in V$,

$$
\begin{aligned}
\mathbb{P}\left(v \in W_{1}\right) & =\prod_{i=1}^{n_{1}}\left(1-\mathbb{P}\left(v \in e_{i}\right)\right) \\
& \sim \exp \left(-\sum_{i=1}^{n_{1}} \mathbb{P}\left(v \in e_{i}\right)\right)=\exp \left(-\frac{n_{1} \operatorname{deg}(v)}{l}\right)=: P_{1}(v)
\end{aligned}
$$

Note: $\operatorname{deg}(v)$ may be highly variable, hence so is $P_{1}(v)$. However, we have a universal lower bound on $P_{1}(v)$ from the upper bound on $\operatorname{deg}(v) . \mathbb{P}\left(v \in W_{1}\right) \sim \exp \left(-\frac{n_{1} \operatorname{deg}(v)}{l}\right)=: P_{1}(v)$. Hence

$$
\mathbb{E}\left|W_{1}\right|=\sum_{v \in V} P_{1}(v)
$$

(Nibble \# 2). Choose random edges $e_{n_{1}+1}, \ldots, e_{n_{1}+n_{2}} \subset W_{1}$, but not with identical distribution. Choose $e_{i}=e$ with nrobability

Main Theorem

$\exists C_{0}$ s.t. for $D, r \geqslant 1,0<\kappa<\frac{1}{2}, m \geqslant 0, n_{i}$ arbitrary,

$$
0<\delta \leqslant\left(\frac{\kappa^{2 r m+1}}{C_{0} \exp \{D(2 r m+1)\}}\right)^{10^{m+2}}
$$

and the hypergraph satisfies
(1) $|e| \leqslant r$ for all $e \in E$;
(2) $\operatorname{deg}(v) \leqslant \frac{\delta l}{\sqrt{\min \left(n_{i}\right)}}$ for all $v \in V$;
(3) $\operatorname{codeg}(v, w) \leqslant \frac{\delta l}{\min \left(n_{i}\right)}$ for $v \neq w$;
(4) $\frac{n_{i} \operatorname{deg}(v)}{l P_{i}(v)} \leqslant D$ for $1 \leqslant i \leqslant m ; P_{m}(v) \geqslant \kappa(v \in V)$;

Then there are edges $e_{1}, \ldots, e_{N} \in E, N \leqslant n_{1}+\cdots+n_{m}$, so that

$$
\left|V \backslash\left(e_{1} \cup \cdots \cup e_{N}\right)\right| \ll \sum_{v \in V} P_{m}(v)
$$

Near perfect coverings

Corollary. Let $H=(V, E)$ be a hypergraph satisfying
(1) $|e|=O(1)$ for all $e \in E$;
(2) $d \leqslant \operatorname{deg}(v) \leqslant O(d)$, with $d=o(|E|), d \rightarrow \infty$ as $|V| \rightarrow \infty$;
(3) $\operatorname{codeg}(v, w)=o(d)$ for distinct $v, w \in V$;

Then there are $e_{1}, \ldots, e_{N} \in E$ with $N \leqslant(1+o(1)) \frac{|E|}{d}$ and

$$
\left|e_{1} \cup \cdots \cup e_{N}\right|=(1+o(1))|V|
$$

If most vertex degrees are close to d, this is an efficient near-covering.

