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Prime gaps and hypergraph covering

Goal: Cover [0, y] with residue classes a, mod p, p < x.

/—. (Stage 2)

y
log® y "

@ - a random set of primes in [1, y|, size >
P - the set of primes in (z/4, z/2]

a, - some residue class modulo p, for each p € P.

ep = QN (a, mod p); primes in () that are = a;,, mod p

Goal: choose the a), so that the sets e, cover most of ().
Hypergraph language: () is the vertex set, e, are hyperedges

Sieve input: whp, for most p € P, a,, exist so that e, > log, .

Big question. Can one choose the a,, so that the e, are both large and
cover () efficiently (allowing a larger choice for )?



Hypergraph covering

H = (V, E) - a hypergraph
V' - finite set of vertices
E - collection of nonempty subsets of V' (hyperedges)

A covering of H is a subset of E that covers all of V'
A packing (or matching) is a subset of disjoint elements of £
A perfect matching (packing) is both a matching and a covering.

Problems: under what general conditions on H does their exist

+ a perfect matching

+ a (1 — e)-near perfect matching (a matching that covers all but at
most £|V/| vertices

* a (1 4+ e)-efficient covering (a covering where at most ¢|V/|
vertices are covered twice)



Pippenger-Spencer

Pippenger-Spencer Theorem (1989). building on earlier work of
Pippenger (unpublished) and Frankl-Rédl.

Three basic conditions on H:
@ ([-uniformity) |e| = forall e € E, [ fixed;
@ (regularity) Vv, w € V, deg(v) ~ deg(w);
@® (small codegrees) ¥V v, w € V, v # w, codeg(v, w) = o(deg(v)),
where codeg(v,w) = [{e € E : v,w, € e}|.

Here o(1) means as |V'| — oo, where we assume that the typical
vertex degree is also — co.

Conclusion: There is a (1 — o(1))-near perfect matching of H.



An inefficient method of covering/matching, I

The naive method of choosing edges randomly and independently is
very inefficient for producing (near) matchings/coverings. Why?

@ After relative few choices one encounters overlaps

® After many choices the overlapped parts begin to dominate the
non-overlapped parts

© Even after a great number of choices, there is still a lot left
uncovered



An inefficient method of covering/matching, I1

Analysis of the random, uniform choice method:
Assumptions on H: |E| = [; deg(v) ~ d Vv € V (regularity)
A (near) perfect matching/covering will use about //d edges

Suppose we have chosen J = A\l /d edges ey, ...,es, A > 0 fixed.
For any vertex v,

J

P vgte] =[] P(v€€j))%<1—cli>J~e_’\.

7=1

Therefore, we expect about ¢ ~*|V/| uncovered vertices. That is, no
matter how large we take ), there is a lot left uncovered and what is
covered is highly overlapped.



An inefficient method of covering/matching, III

Big circle = V; small circles = hyperedges

A =0.1389\ = 0.2778\ = 0.4167\ = 0.5556\ = 0.6944\ =

0.8333A = 0.9722\ = 1.1111) = 1.2500\ = 1.3889\ = 1.5278\ =
1 CERETY — 1 OEEY — 1 OAAAN — 9 Q22



Better method: The Rodl Nibble

(Nibble # 1). Choose a small number, n1 (n; = o(l/d), say), of edges
independently at random: e, ..., ey,,. With high probability, they are
disjoint. Let

O 0O
Wy — . O O
1 V\{61 U U €n1} o W

(Nibble # 2). Choose a small number, ns, of edges at random,
€ni+1s - -+ 5 Eni+ny, Dut only from those edges C ;. Let

Wy = Wl\{em-i-l U---u €n1+n2}

Continue for k nibbles.



Relaxing the hypotheses

Pippenger-Spencer: WHP (with high probability), get a
(1 — o(1))-near perfect matching, assuming uniformity, regularity,
small codegrees.

For our prime gap application, our hypergraph is much more irregular:

* The hyperedges have greatly varying sizes (but none are too big);

» The vertices have greatly varying degrees (but none are too
large);

Our hypotheses
@ |c| < rforall e € F; (r need not be fixed)
@ VeV, deg(v) < d;
@ Vou,weV,v#w,codeg(v,w) < ddeg(v) for some small 6.



Rdodle nibble under relaxed hypotheses
Hyp: le|] < r; deg(v) < d; codeg(v,w) < ddeg(v)); |E|=1I.

(Nibble # 1). Choose random edges ey, . .., e,,. WHP, they are
disjoint. Denote W7 = V\{e; U---Uey, }. Forallv e V,
ny

Pve W) =[] (1 -Pee))

=1

~ exp ( - gﬂ”(v e ei)> — exp (J“djg(”)) — P ().

Note: deg(v) may be highly variable, hence so is P; (v). However, we
have a universal lower bound on P; (v) from the upper bound on
deg(v). P(v € Wy) ~ exp(—"2%80) —. Py (). Hence

E[Wi| =Y Pi(v).
veV
(Nibble # 2). Choose random edges ey, 41, - - - , €n,+n, C W1, but not

with identical dictvibiition Chonce o0 — 2 with nrobability



Main Theorem

dCyst.forD,r > 1,0< k < 2, m > 0, n; arbitrary,

10m+2

2rm—+1
5 < :
0< (C’o exp{D(2rm + 1)})

and the hypergraph satisfies
@ |e¢| <rforalle € E;

Qdeg(v)g\/n%forallvev;
® codeg(v,w) < m for v #£ w;
9%(%}(;})<Dforl i <m; Pp(v) 2 K@eV)

Then there are edges e1,...,exy € B, N <ny + -+ + nny, so that

V\(e1 U+ Uen)| < Y Prn(v)
veV



Near perfect coverings

Corollary. Let H = (V, E) be a hypergraph satisfying
@ |e|]=0(1)foralle € E;
@ d < deg(v) < O(d), withd = o(|E|), d — oo as |V| — oo
® codeg(v, w) = o(d) for distinct v, w € V;

Then there are ey, ...,exy € Ewith N < (1 + 0(1))ﬂ and

d

letU---Uen| = (1+0(1))|V].

If most vertex degrees are close to d, this is an efficient near-covering.



