Hypergraph covering and small gaps between primes

Kevin Ford

University of Illinois at Urbana-Champaign

May, 2018

Prime gaps and hypergraph covering

Goal: Cover [0, y] with residue classes $a_p \mod p$, $p \leq x$.

Q - a random set of primes in [1, y], size $\gg \frac{y}{\log^2 y}$. (Stage 2) \mathcal{P} - the set of primes in (x/4, x/2] a_p - some residue class modulo p, for each $p \in P$. $e_p = Q \cap (a_p \mod p)$; primes in Q that are $\equiv a_p \mod p$

Goal: choose the a_p so that the sets e_p cover most of Q.

Hypergraph language: Q is the vertex set, e_p are hyperedges

Sieve input: whp, for most $p \in \mathcal{P}$, a_p exist so that $e_p \gg \log_2 y$.

Big question. Can one choose the a_p so that the e_p are both large *and* cover Q efficiently (allowing a larger choice for y)?

Hypergraph covering

- H = (V, E) a hypergraph
- V finite set of vertices
- E collection of nonempty subsets of V (hyperedges)

A covering of H is a subset of E that covers all of VA packing (or matching) is a subset of disjoint elements of EA perfect matching (packing) is both a matching and a covering.

Problems: under what general conditions on H does their exist

- a perfect matching
- + a $(1-\varepsilon)\text{-near perfect matching}$ (a matching that covers all but at most $\varepsilon |V|$ vertices
- a $(1 + \varepsilon)$ -efficient covering (a covering where at most $\varepsilon |V|$ vertices are covered twice)

Pippenger-Spencer

Pippenger-Spencer Theorem (1989). building on earlier work of Pippenger (unpublished) and Frankl-Rödl.

Three basic conditions on H:

- (1-uniformity) |e| = l for all $e \in E$, l fixed;
- **2** (regularity) $\forall v, w \in V$, deg $(v) \sim deg(w)$;
- **3** (small codegrees) $\forall v, w \in V, v \neq w$, codeg $(v, w) = o(\deg(v))$, where codeg $(v, w) = |\{e \in E : v, w, \in e\}|$.

Here o(1) means as $|V| \to \infty$, where we assume that the typical vertex degree is also $\to \infty$.

Conclusion: There is a (1 - o(1))-near perfect matching of *H*.

An inefficient method of covering/matching, I

The naive method of choosing edges randomly and independently is very inefficient for producing (near) matchings/coverings. Why?

- 1 After relative few choices one encounters overlaps
- After many choices the overlapped parts begin to dominate the non-overlapped parts
- Even after a great number of choices, there is still a lot left uncovered

An inefficient method of covering/matching, II

Analysis of the random, uniform choice method:

Assumptions on H: |E| = l; deg $(v) \sim d \quad \forall v \in V$ (regularity)

A (near) perfect matching/covering will use about l/d edges

Suppose we have chosen $J = \lambda l/d$ edges e_1, \ldots, e_J , $\lambda > 0$ fixed. For any vertex v,

$$\mathcal{P}\left(v \notin \bigcup_{j=1}^{J} e_j\right) = \prod_{j=1}^{J} (1 - \mathcal{P}(v \in e_j)) \approx \left(1 - \frac{d}{l}\right)^J \sim e^{-\lambda}.$$

Therefore, we expect about $e^{-\lambda}|V|$ uncovered vertices. That is, no matter how large we take λ , there is a lot left uncovered **and** what is covered is highly overlapped.

An inefficient method of covering/matching, III

Big circle = *V*; small circles = hyperedges

 $\lambda = 0.1389\lambda = 0.2778\lambda = 0.4167\lambda = 0.5556\lambda = 0.6944\lambda = 0.8333\lambda = 0.9722\lambda = 1.1111\lambda = 1.2500\lambda = 1.3889\lambda = 1.5278\lambda = 1.6667\lambda = 1.8056\lambda = 1.9444\lambda = 2.0833$

Better method: The Rödl Nibble

(Nibble # 1). Choose a small number, n_1 ($n_1 = o(l/d)$, say), of edges independently at random: e_1, \ldots, e_{n_1} . With high probability, they are disjoint. Let

$$W_1 = V \setminus \{e_1 \cup \dots \cup e_{n_1}\}$$

(Nibble # 2). Choose a small number, n_2 , of edges at random, $e_{n_1+1}, \ldots, e_{n_1+n_2}$, but only from those edges $\subset W_1$. Let

$$W_2 = W_1 \setminus \{e_{n_1+1} \cup \cdots \cup e_{n_1+n_2}\}$$

Continue for *k* nibbles.

Relaxing the hypotheses

Pippenger-Spencer: WHP (with high probability), get a (1 - o(1))-near perfect matching, assuming uniformity, regularity, small codegrees.

For our prime gap application, our hypergraph is much more irregular:

- The hyperedges have greatly varying sizes (but none are too big);
- The vertices have greatly varying degrees (but none are too large);

Our hypotheses

- **1** $|e| \leq r$ for all $e \in E$; (*r* need not be fixed)
- **2** $\forall v \in V, \deg(v) \leq d;$
- **3** $\forall v, w \in V, v \neq w$, $\operatorname{codeg}(v, w) \leq \delta \operatorname{deg}(v)$ for some small δ .

Rödle nibble under relaxed hypotheses

(Nibble # 1). Choose random edges e_1, \ldots, e_{n_1} . WHP, they are disjoint. Denote $W_1 = V \setminus \{e_1 \cup \cdots \cup e_{n_1}\}$. For all $v \in V$,

$$\mathbb{P}(v \in W_1) = \prod_{i=1}^{n_1} (1 - \mathbb{P}(v \in e_i))$$
$$\sim \exp\left(-\sum_{i=1}^{n_1} \mathbb{P}(v \in e_i)\right) = \exp\left(-\frac{n_1 \deg(v)}{l}\right) =: P_1(v).$$

Note: deg(v) may be highly variable, hence so is $P_1(v)$. However, we have a universal lower bound on $P_1(v)$ from the upper bound on deg(v). $\mathbb{P}(v \in W_1) \sim \exp(-\frac{n_1 \deg(v)}{l}) =: P_1(v)$. Hence $\mathbb{E}|W_1| = \sum_{v \in V} P_1(v)$.

(Nibble # 2). Choose random edges $e_{n_1+1}, \ldots, e_{n_1+n_2} \subset W_1$, but **not** with identical distribution. Choose $e_i = e$ with probability

Main Theorem

 $\exists C_0 \text{ s.t. for } D, r \ge 1, 0 < \kappa < \frac{1}{2}, m \ge 0, n_i \text{ arbitrary,}$

$$0 < \delta \leqslant \left(\frac{\kappa^{2rm+1}}{C_0 \exp\{D(2rm+1)\}}\right)^{10^{m+2}},$$

and the hypergraph satisfies

1
$$|e| \leq r$$
 for all $e \in E$;
2 $\deg(v) \leq \frac{\delta l}{\sqrt{\min(n_i)}}$ for all $v \in V$;
3 $\operatorname{codeg}(v, w) \leq \frac{\delta l}{\min(n_i)}$ for $v \neq w$;
4 $\frac{n_i \deg(v)}{lP_i(v)} \leq D$ for $1 \leq i \leq m$; $P_m(v) \geq \kappa$ ($v \in V$);
Then there are edges $e_1, \ldots, e_N \in E$, $N \leq n_1 + \cdots + n_m$, so that

$$|V \setminus (e_1 \cup \dots \cup e_N)| \ll \sum_{v \in V} P_m(v)$$

Near perfect coverings

Corollary. Let H = (V, E) be a hypergraph satisfying **1** |e| = O(1) for all $e \in E$; **2** $d \leq \deg(v) \leq O(d)$, with d = o(|E|), $d \to \infty$ as $|V| \to \infty$; **3** $\operatorname{codeg}(v, w) = o(d)$ for distinct $v, w \in V$; Then there are $e_1, \ldots, e_N \in E$ with $N \leq (1 + o(1)) \frac{|E|}{d}$ and

$$|e_1 \cup \cdots \cup e_N| = (1 + o(1))|V|.$$

If most vertex degrees are close to *d*, this is an efficient near-covering.