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Prime gaps and hypergraph covering

Goal: Cover [0, y] with residue classes ap mod p, p 6 x.

Q - a random set of primes in [1, y], size� y
log2 y

. (Stage 2)

P - the set of primes in (x/4, x/2]
ap - some residue class modulo p, for each p ∈ P .
ep = Q ∩ (ap mod p); primes in Q that are ≡ ap mod p

Goal: choose the ap so that the sets ep cover most of Q.

Hypergraph language: Q is the vertex set, ep are hyperedges

Sieve input: whp, for most p ∈ P , ap exist so that ep � log2 y.

Big question. Can one choose the ap so that the ep are both large and
cover Q efficiently (allowing a larger choice for y)?



Hypergraph covering

H = (V,E) - a hypergraph
V - finite set of vertices

E - collection of nonempty subsets of V (hyperedges)

A covering of H is a subset of E that covers all of V
A packing (or matching) is a subset of disjoint elements of E
A perfect matching (packing) is both a matching and a covering.

Problems: under what general conditions on H does their exist

• a perfect matching

• a (1− ε)-near perfect matching (a matching that covers all but at
most ε|V | vertices

• a (1 + ε)-efficient covering (a covering where at most ε|V |
vertices are covered twice)



Pippenger-Spencer

Pippenger-Spencer Theorem (1989). building on earlier work of

Pippenger (unpublished) and Frankl-Rödl.

Three basic conditions on H:

1 (l-uniformity) |e| = l for all e ∈ E, l fixed;

2 (regularity) ∀ v, w ∈ V , deg(v) ∼ deg(w);

3 (small codegrees) ∀ v, w ∈ V , v 6= w, codeg(v, w) = o(deg(v)),
where codeg(v, w) = |{e ∈ E : v, w,∈ e}|.

Here o(1) means as |V | → ∞, where we assume that the typical

vertex degree is also→ ∞.

Conclusion: There is a (1− o(1))-near perfect matching of H .



An inefficient method of covering/matching, I

The naive method of choosing edges randomly and independently is

very inefficient for producing (near) matchings/coverings. Why?

1 After relative few choices one encounters overlaps

2 After many choices the overlapped parts begin to dominate the

non-overlapped parts

3 Even after a great number of choices, there is still a lot left

uncovered



An inefficient method of covering/matching, II

Analysis of the random, uniform choice method:

Assumptions on H: |E| = l; deg(v) ∼ d ∀v ∈ V (regularity)

A (near) perfect matching/covering will use about l/d edges

Suppose we have chosen J = λl/d edges e1, . . . , eJ , λ > 0 fixed.
For any vertex v,

P

v 6∈
J⋃

j=1

ej

 =

J∏
j=1

(1− P(v ∈ ej)) ≈
(
1− d

l

)J

∼ e−λ.

Therefore, we expect about e−λ|V | uncovered vertices. That is, no
matter how large we take λ, there is a lot left uncovered and what is
covered is highly overlapped.



An inefficient method of covering/matching, III

Big circle = V ; small circles = hyperedges

λ = 0.1389λ = 0.2778λ = 0.4167λ = 0.5556λ = 0.6944λ =
0.8333λ = 0.9722λ = 1.1111λ = 1.2500λ = 1.3889λ = 1.5278λ =
1.6667λ = 1.8056λ = 1.9444λ = 2.0833



Better method: The Rödl Nibble

(Nibble # 1). Choose a small number, n1 (n1 = o(l/d), say), of edges
independently at random: e1, . . . , en1 . With high probability, they are

disjoint. Let

W1 = V \{e1 ∪ · · · ∪ en1} W1

(Nibble # 2). Choose a small number, n2, of edges at random,

en1+1, . . . , en1+n2 , but only from those edges ⊂ W1. Let

W2 = W1\{en1+1 ∪ · · · ∪ en1+n2}
W2

Continue for k nibbles.



Relaxing the hypotheses

Pippenger-Spencer: WHP (with high probability), get a

(1− o(1))-near perfect matching, assuming uniformity, regularity,
small codegrees.

For our prime gap application, our hypergraph is much more irregular:

• The hyperedges have greatly varying sizes (but none are too big);

• The vertices have greatly varying degrees (but none are too

large);

Our hypotheses

1 |e| 6 r for all e ∈ E; (r need not be fixed)

2 ∀ v ∈ V , deg(v) 6 d;

3 ∀ v, w ∈ V , v 6= w, codeg(v, w) 6 δ deg(v) for some small δ.



Rödle nibble under relaxed hypotheses

Hyp: |e| 6 r; deg(v) 6 d; codeg(v, w) 6 δ deg(v)); |E| = l.

(Nibble # 1). Choose random edges e1, . . . , en1 . WHP, they are

disjoint. DenoteW1 = V \{e1 ∪ · · · ∪ en1}. For all v ∈ V ,

P(v ∈ W1) =

n1∏
i=1

(1− P(v ∈ ei))

∼ exp

(
−

n1∑
i=1

P(v ∈ ei)

)
= exp

(
−n1 deg(v)

l

)
=: P1(v).

Note: deg(v) may be highly variable, hence so is P1(v). However, we
have a universal lower bound on P1(v) from the upper bound on

deg(v). P(v ∈ W1) ∼ exp(−n1 deg(v)
l ) =: P1(v). Hence

E|W1| =
∑
v∈V

P1(v).

(Nibble # 2). Choose random edges en1+1, . . . , en1+n2 ⊂ W1, but not

with identical distribution. Choose ei = e with probability
proportional to 1/P1(e), where

P1(e) :=
∏
v∈e

P1(v) ∼ P(e ⊂ W1)

(the last relation follows from small codegrees). Get

P(v ∈ W2) ∼ P1(v) exp

(
−n2 deg(v)

lP1(v)

)
=: P2(v).

. Get P(v ∈ W2) ∼ P1(v) exp(−n2 deg(v)
lP1(v)

) =: P2(v).

(Nibble #m). Choose nm random edges. Then

P(v ∈ Wm) ∼ Pm(v), where

Pm(v) = Pm−1(v) exp

(
−nm deg(v)

lPm−1(v)

)
.



Main Theorem

∃C0 s.t. for D, r > 1, 0 < κ < 1
2 ,m > 0, ni arbitrary,

0 < δ 6

(
κ2rm+1

C0 exp{D(2rm+ 1)}

)10m+2

,

and the hypergraph satisfies

1 |e| 6 r for all e ∈ E;

2 deg(v) 6 δl√
min(ni)

for all v ∈ V ;

3 codeg(v, w) 6 δl
min(ni)

for v 6= w;

4
ni deg(v)
lPi(v)

6 D for 1 6 i 6 m; Pm(v) > κ (v ∈ V );

Then there are edges e1, . . . , eN ∈ E, N 6 n1 + · · ·+ nm, so that

|V \(e1 ∪ · · · ∪ eN )| �
∑
v∈V

Pm(v)



Near perfect coverings

Corollary. Let H = (V,E) be a hypergraph satisfying

1 |e| = O(1) for all e ∈ E;

2 d 6 deg(v) 6 O(d), with d = o(|E|), d → ∞ as |V | → ∞;

3 codeg(v, w) = o(d) for distinct v, w ∈ V ;

Then there are e1, . . . , eN ∈ E with N 6 (1 + o(1)) |E|
d and

|e1 ∪ · · · ∪ eN | = (1 + o(1))|V |.

If most vertex degrees are close to d, this is an efficient near-covering.


