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Sieving for primes in an arbitrary set (the small sieve)
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(Acl,z]): S(A) :=#{ae A:(a,Q) =1} Q= H D,
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Question: If | 4| well-behaved for most d < x'~¢, must S(A) be large?

r

No! Selberg’s example:
= {1 < n < z : n has an even number of prime factors},

for which [Ag4| ~ 35 for d < 2'7¢, yet A has no primes.




Bombieri’s work

e D

Bombieri, 1970s. If A, is well-behaved up to 27 for every fixed 7 <
1 (Type-I bounds), and B is any “sufficiently dense, parity-balanced” set
(gives “equal weight” to numbers with an even number of prime factors
and those with an odd number of prime factors), then get an asymptotic
formula for | A N B|.

This excludes B being only primes!

Theorem (KF, 2005). The conclusion need not hold if A is well-behaved
up to 27 for a fixed v < 1.




Breaking the parity barrier with bilinear sums.

7 )

Adding a hypothesis on bilinear sums allows one to break the parity bar-
rier and detect primes in some thin sets A (the idea goes back to work of
Vinogradov in the 1930s).

\ J

This led to many successes:

® Friedlander and Iwaniec, 1998. There are infinitely many primes
of the form 22 + y*, with z, y integers.

* Heath-Brown, 2001. There are infinitely many primes of the form
x3 + 2y3, with z,y positive integers.

® Maynard, 2019. Given any d € {0, 1,. .., 9}, there are infinitely
many primes that do not have digit d in base-10.




Parity breaking sieves: set-up
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Sequence a, = 0forz/2 <n <=z
Normalized to have average value 1. Set a,, = 1 +w,,, (simplified model)
Example: a,, is constant times indicator function of A

\.

Three basic parameters: 7, 0, v.
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For any divisor-bounded complex sequences (), (8n),
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KA Togz)2 (Type-1I bound)




Parity-breaking sieves: some successes
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For certain (v, 8, v), if the Type-I/ Type-II bounds hold, then

Z ap» ——
P loga”

p prime

vy 60,0+ v] Application

3/4 [1/4,3/4] | Primes of form 22 4+ y* (Friedlander-Iwaniec)

3/4 [1/4,1/3] | Primes of form 22 + (y? + 1)? (Merikoski)
19/28 | [9/28,10/28] | Fractional part of ap (Jia)

2/3 [1/3,2/3] Primes of form 2% + 2y® (Heath-Brown)
16/25 | [9/25,17/40] | Primes with a missing digit (Maynard)

1/2 [0,1/3] Solving 22 = a (mod p) (Duke-Friedlander-Iwaniec)

1/2 [0,1/5] Dynam. systems at prime times (Sarnak-Ubis)




(lower bound) C(~, 0, v) is the supremum of numbers ¢ so that any se-
quence satisfying the Type-I and Type-II bounds gives

c-(z/2)

2 T = logw (large x).
p prime

(Asymptotic) Hypothesis A(7,6,v): for any sequence satisfying the

Type-I and Type-II bounds,

Z Qp ~ logx (x — OO).

p prime

Main questions

© For which (v, 0, v) does Hypothesis A(vy, 0, v) hold?
® For which (v,6,v) is C(v,6,v) > 0?
@® For which (v, 0, ) are there sequences a,, with )’ a, = 0?




Comments on existing approaches

Existing results produce some ranges of (v,6,v) so that we have an
asymptotic for Xa, (Hypothesis A(7, 0, ) holds) and some ranges where
C(v,0,v) > 0, ie., we detect primes.

Tools: identities of Linnik, Vaughan, Heath-Brown (for asymptotics)
Buchstab iteration / Harman’s sieve (for lower bounds)

The methods are largely ad-hoc and do not shed any light on the optimality
or the limitations of these approaches.

When v = 0 (no Type-II information), Selberg’s example shows that
C(v,60,0) =0 for all ¥ < 1 (in fact there are sequences with 3a, = 0).

When v > 0, there are no examples in the literature with Ya, = 0 or

showing that A(~, 0, v) does not hold.




A new approach

s A

New approach (KF, James Maynard)

® We replace iterative treatments with direct arguments,
deploying all of the Type-I and Type-II information at once.

* In principle, we can to determine C(7, 6, ) exactly, by reducing
the problem to a combinatorial optimization problem. This
optimization problem is very complex and we have solved it
only in some cases.

® We have a general method to construct examples giving upper
bounds on C(v, 0, v), and a general, non-iterative, method to
obtain lower bounds on C(7, 0, v).

® Our upper bound and lower bound methods are connected,
being motivated by the duality principle in linear programming.




Initial reductions

Z Z Wp| €4 — (Type-Ibound)
d<z? 'd|n log .CC)
Z Qm Z BrnWmn| €A 17 (Type-1I bound).
20 <m<avto z/2<mn<z ( 08 l‘)

Initial reductions

WLOG we may assume that
0 <6 < 1/2, since Type-II < Type-Il in [¢' 0= 2179),
* v¢[0,0+v)u[l—0—v,1—80),since Type-Il = Type-lin
the same range [2%, 297];




A warm-up exercise

Initial reductions

WLOG we may assume that
(a) 0 <6 < 1/2, since Type-Il < Type-Il in [¢' 07 2179).

(b) v¢1[0,0+v)u[l—0—v,1—0),since Type-ll = Type-lin
the same range [27, 297];

Theorem 0. Modulo the initial reductions, C(v,0,v) = 0if v < 1/2.
Moreover, there are sequences with » a, = 0.
Proof. There is a withy < o < 1/2 and « ¢ [0, 0 + v]. Define

® a, = 0 on primes;

* ay = Kifn=pips,p1 ~ 2% py ~ 2" 7%

® g, = 1 otherwise.

Type-II is trivial; Type-I nontrivial only for d = 1.
Choose K = K(x) so that >, w,, = > (a, — 1) = 0.




Asymptotic formulas for primes

Theorem 1 [FM]. Assume reductions (a),(b), 1/2 < v < 1. Hypothesis
A(7,6,v) holds if and only if both of the following hold:

(A1) For every integer n > M + 1, 3a € N with & € [0, 0 + v], where

1—v< — M e N;
Mt+1 -7 <

(A2) For some integer h = 1, h(1 —v) e [0,0 +v] U [l —0 —v,1—0).
In particular, Hypothesis A(~, 6, v) holds when v + v > 1.

The case vy = 1/2

Theorem: Hypothesis A(1/2,0,v)iff 6 =0,v > 1/3.

Proof. The reductions imply 6 + v < 1/2.
Then 6 = O by (A2): h = 1 not possible, so h = 2 must work
Then v > 1 by (4;), since M = 2.




Special case: v =1/2,0 =0

f Theorem 2 [FM]. We have
* C(1/2,0,v) = 0for v < 0.163;
* C(1/2,0,v) > 0 for v > 0.1676;
* an exact value of C'(1/2,0,v) forv > 1/5, e.g.

<
>

C(1/2,0,1/5) = 0.362. ..

DFI showed C(1/2,0,1/5) > 0.23.




Special case: y =1—-0,v =1 — 36

Theorem 3 [FM]. We have

* An exact value of C(1 — 0,0,1 — 30) for 1 <0 < 1%

* ((0.7,0.3,0.1) ~ 0.84; Harman showed > 0.80

® Thereisafly < 1/3sothat C(1—0,0,1—36) =0forfy <0 < 1/3.
Moreover, there are examples with a;, = 0 for all p.




How much Type-II information is needed to detect primes?

e )

Theorem 4 [FM]. (examples with no primes) For every v < 1, there
isavp(y) > 0 so that whenever 0 < v < vy(7y) we have C(v,0,v) = 0.
In fact, there are sequences with a;,, = 0 for all primes p.

\. J

e D

We use a function X, which is similar to the Liouville function:

o \is completely multiplicative;
o \is supported on integers with no prime factor < x%, § > 0 fixed;
o ) satisfies the Type-I bounds up to 27, i.e.,

2| 2 Am

d<z? 'z/2<n<z
dn

LKA —5—
log z’

)

 X(p) ~ —1 for all primes p € (27, z].




Linnik’s identity

A S (—1)9+1
Linnik:  ¢(n) := l(n) = Z ( ) Z 1.
ogn o J n=dp-d;
d;>2 (1<i<y)
Proof. log((s) = 7, EU(((s) — 1)
" .
—1)i+1
Truncated Linnik: ¢,(n) := Z ( ) Z 1, y=z'
j=1 J n:dl---dj
2<d; <y (1<i<j)




& (—1)itt
Truncated Linnik: ¢,(n) := 2 22 Z 1, y=z'~
i=1

= ] n dl"'dj
Y

2
If n has a prime factor > y then t,(n) = 0.

Z wp ~ Z wpt(n)
P n
& Z Wnty(n)

II
(%) Z wnty(n)7
nel

where U = {z/2 <n < xz: y— smoot}}, no divisor in [:ve, $0+VJ}.

i g
Type-I Type-1II




The asymptotic, revisited.

(%) pr ~ 2 wnty(n),

nelU

U ={§ <n <z :y— smooth, no divisor in [xg, x(””]},

. It It
Main correspondence: n =py ---pp < Vp = ( ﬁ)ggz;l e foggﬁ“)

Vector analog of U:

U ={(v1,...,25) € (0,1—4)" 1 k > 1,52, = 1, no subsum in [0, 0 +v/]}.

Theorem 1 reformulation. Hypothesis A(+y, 0, v) holds iff 7 is empty.

eg.,if x = (z1,...,21) € (0,1 — 7)¥, then the subsums of x have gaps
less than 1 — . Thus, if v + v > 1, then always one such subsum lies in
[0,0 4 v], hence % is empty.




Analysis when %/ is nonempty

® Our analysis when % is nonempty depends on geometric and
combinatorial properties of % .

* We believe that C' (v, , ) is some function of the set %/ .

¢ The vectors in % naturally break into two parts - those components
< v and those > v; the former cannot have a large sum.

® 7 nonempty means that either (A;) fails or (A2) fails. A state
transition (from holding to failing) of (A2) can lead to sudden
infusion of a big massin % .




Main Conjecture: C(¥,6,4) = function(U)

Fix [0,0+v7= [*/5+68, Y5-68], 370 swall, fixed
Plot C(Y,8,v) with variable. "y

U-F > Asgmptotic
Jump —_—A—
4 W—constant \.__
A
TMMP \ /
J—

' ’ i : Y

5438 P Faas




Lower bounds on C'(vy, #, v) when % is nonempty

A restricted lower bound sieve

Let N = {x/2 < n < & : n # prime, no divisor in [2%, 207¥]}.
Let g : [1,27] — R satisfy
*9()=1
. ForallneN,Zg(d} <0.
din

dYAxg)n) <= D (Ixg)(n)wy (sincew, > —1)

neN neN

:_Zg(d) Z Wn,

d<z™ neN . d|n

d<zx? d|n,nsprime



Lower bounds on C'(vy, #, v) when % is nonempty

A restricted lower bound sieve

Let N = {x/2 < n < x : n # prime, no divisor in [2%, 207*]}.
Let g : [1,27] — R satisfy
*g9(1)=1
o Forall’rLGN,Zg(d) <0.
d|n

h=—(1xg): pr ~ 2 h(n)w, = — 2 h(n).

neN neN
Refinement of the method: replace A with smaller set \/”.

\.

The inequality is best possible if there is Optimality if exists (wy,) with
wy, = —1 for all n € Supp(h) (this idea comes from linear programming).




Finding C' (%, 2 %) lower bound. Vector version

7
W={(z1,...,25)  k=>2,80; =1, 2; > % (all 7), no subsum in [%, %]}
All components in [, 2] U [2, 2] U [2, &),

Define g by g(J) = 1 and
* g(z) = —1(z < 3);

* g(z1,22) = L(z1 + 22 < 3).
Then h = —(1 * g) (meaning h(z1,...,2k) = — X sy 9(@i 1 i € A))
satisfies A(x) = 0 on W. Also, h(x ) = 0 except h(x1,x2,x3) = 2 when
X1,T2 € [% %] T3 € [%,%)
Get

= 0.0785176 .

C(,21)>1-K, K_zj f

u1+u2+u3 1
7<u1<u2< z
u1+u2>1/2

Uijugu3



Constructions: § = % v = g V=

=

~

Set wy, = f(vy), f(v) = —1; Yk, f(v1,...,v) symmetric.
f supported on v with no subsum in [0, 0 + v| = Type-1l is trivial.

Type-Ibounds < f satisfies some integral identities.
It turns out that if we define f arbitrarily on vectors with components all
< 1 — v, Type-I determines f uniquely on all other vectors.

linear programming slackness We desire f(v) = —1 when h(v) # 0
For 1+ B2 > 1/2 > 7 we desire
f 617 /827 537 /84)
9 ) = —1l=—«
des |- |5
a=fB3+p4
B3<pBa4

We find f(f1, B2, B3, B4) by theory of Volterra integral equations. Get

C( )

~Jlot

h<1-K.

=0



