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Sieving for primes in an arbitrary set (the small sieve)

(A Ă [1, x]) : S(A) := #ta P A : (a,Q) = 1u Q =
ź

pď
?
x

p,

=
ÿ

d|Q
dďx

µ(d)|Ad|, Ad = ta P A : d|au

ě
ÿ

dďD

λ´
d |Ad|.

Question: If |Ad| well-behaved for most d ă x1´ε, must S(A) be large?

No! Selberg’s example:

A = t1 ď n ď x : n has an even number of prime factorsu,

for which |Ad| „ x
2d for d ă x1´ε, yet A has no primes.



Bombieri’s work

Bombieri, 1970s. If Ad is well-behaved up to xγ for every fixed γ ă

1 (Type-I bounds), and B is any “sufficiently dense, parity-balanced” set
(gives “equal weight” to numbers with an even number of prime factors
and those with an odd number of prime factors), then get an asymptotic
formula for |A X B|.

This excludes B being only primes!

Theorem (KF, 2005). The conclusion need not hold ifAd is well-behaved
up to xγ for a fixed γ ă 1.



Breaking the parity barrier with bilinear sums.

Adding a hypothesis on bilinear sums allows one to break the parity bar-
rier and detect primes in some thin sets A (the idea goes back to work of
Vinogradov in the 1930s).

This led to many successes:

‚ Friedlander and Iwaniec, 1998. There are infinitely many primes
of the form x2 + y4, with x, y integers.

‚ Heath-Brown, 2001. There are infinitely many primes of the form
x3 + 2y3, with x, y positive integers.

‚ Maynard, 2019. Given any d P t0, 1, . . . , 9u, there are infinitely
many primes that do not have digit d in base-10.



Parity breaking sieves: set-up

Sequence an ě 0 for x/2 ă n ď x
Normalized to have average value 1. Set an = 1+wn, (simplified model)
Example: an is constant times indicator function of A

Three basic parameters: γ, θ, ν.

ÿ

dďxγ

ˇ

ˇ

ˇ

ˇ

ÿ

d|n

wn

ˇ

ˇ

ˇ

ˇ

!A
x

(logx)A
(Type-I bound).

For any divisor-bounded complex sequences (αn), (βn),
ˇ

ˇ

ˇ

ˇ

ÿ

xθďmďxθ+ν

αm

ÿ

x/2ămnďx

βnwmn

ˇ

ˇ

ˇ

ˇ

!A
x

(logx)A
(Type-II bound).



Parity-breaking sieves: some successes

For certain (γ, θ, ν), if the Type-I / Type-II bounds hold, then
ÿ

p prime
ap "

x

logx
.

γ [θ, θ + ν] Application
3/4 [1/4, 3/4] Primes of form x2 + y4 (Friedlander-Iwaniec)
3/4 [1/4, 1/3] Primes of form x2 + (y2 + 1)2 (Merikoski)

19/28 [9/28, 10/28] Fractional part of αp (Jia)
2/3 [1/3, 2/3] Primes of form x3 + 2y3 (Heath-Brown)

16/25 [9/25, 17/40] Primes with a missing digit (Maynard)
1/2 [0, 1/3] Solving x2 ” a (mod p) (Duke-Friedlander-Iwaniec)

1/2 [0, 1/5] Dynam. systems at prime times (Sarnak-Ubis)



(lower bound) C(γ, θ, ν) is the supremum of numbers c so that any se-
quence satisfying the Type-I and Type-II bounds gives

ÿ

p prime
ap ě

c ¨ (x/2)

logx
(large x).

(Asymptotic) Hypothesis A(γ, θ, ν): for any sequence satisfying the
Type-I and Type-II bounds,

ÿ

p prime
ap „

x/2

logx
(x Ñ 8).

Main questions

1 For which (γ, θ, ν) does Hypothesis A(γ, θ, ν) hold?
2 For which (γ, θ, ν) is C(γ, θ, ν) ą 0?
3 For which (γ, θ, ν) are there sequences an with

ř

ap = 0?



Comments on existing approaches

Existing results produce some ranges of (γ, θ, ν) so that we have an
asymptotic for Σap (Hypothesis A(γ, θ, ν) holds) and some ranges where
C(γ, θ, ν) ą 0, i.e., we detect primes.

Tools: identities of Linnik, Vaughan, Heath-Brown (for asymptotics)
Buchstab iteration / Harman’s sieve (for lower bounds)

Themethods are largely ad-hoc and do not shed any light on the optimality
or the limitations of these approaches.

When ν = 0 (no Type-II information), Selberg’s example shows that
C(γ, θ, 0) = 0 for all γ ă 1 (in fact there are sequences with Σap = 0).

When ν ą 0, there are no examples in the literature with Σap = 0 or
showing that A(γ, θ, ν) does not hold.



A new approach

New approach (KF, James Maynard)

‚ We replace iterative treatments with direct arguments,
deploying all of the Type-I and Type-II information at once.

‚ In principle, we can to determine C(γ, θ, ν) exactly, by reducing
the problem to a combinatorial optimization problem. This
optimization problem is very complex and we have solved it
only in some cases.

‚ We have a general method to construct examples giving upper
bounds on C(γ, θ, ν), and a general, non-iterative, method to
obtain lower bounds on C(γ, θ, ν).

‚ Our upper bound and lower bound methods are connected,
being motivated by the duality principle in linear programming.



Initial reductions

ÿ

dďxγ

ˇ

ˇ

ˇ

ˇ

ÿ

d|n

wn

ˇ

ˇ

ˇ

ˇ

!A
x

(logx)A
(Type-I bound)

ˇ

ˇ

ˇ

ˇ

ÿ

xθďmďxν+θ

αm

ÿ

x/2ămnďx

βnwmn

ˇ

ˇ

ˇ

ˇ

!A
x

(logx)A
(Type-II bound).

Initial reductions

WLOG we may assume that
‚ 0 ď θ ă 1/2, since Type-II ô Type-II in [x1´θ´ν , x1´θ].
‚ γ R [θ, θ + ν) Y [1 ´ θ ´ ν, 1 ´ θ), since Type-II ñ Type-I in

the same range [xθ, xθ+ν ];



A warm-up exercise

Initial reductions

WLOG we may assume that
(a) 0 ď θ ă 1/2, since Type-II ô Type-II in [x1´θ´ν , x1´θ].
(b) γ R [θ, θ + ν) Y [1 ´ θ ´ ν, 1 ´ θ), since Type-II ñ Type-I in

the same range [xθ, xθ+ν ];

Theorem 0. Modulo the initial reductions, C(γ, θ, ν) = 0 if γ ă 1/2.
Moreover, there are sequences with

ř

ap = 0.

Proof. There is α with γ ă α ă 1/2 and α R [θ, θ + ν]. Define
‚ an = 0 on primes;
‚ an = K if n = p1p2, p1 „ xα, p2 „ x1´α;
‚ an = 1 otherwise.

Type-II is trivial; Type-I nontrivial only for d = 1.
Choose K = K(x) so that

ř

wn =
ř

(an ´ 1) = 0.



Asymptotic formulas for primes

Theorem 1 [FM]. Assume reductions (a),(b), 1/2 ď γ ă 1. Hypothesis
A(γ, θ, ν) holds if and only if both of the following hold:
(A1) For every integer n ě M + 1, D a P N with a

n P [θ, θ + ν], where

1

M + 1
ă 1 ´ γ ď

1

M
, M P N;

(A2) For some integer h ě 1, h(1 ´ γ) P [θ, θ + ν] Y [1 ´ θ ´ ν, 1 ´ θ].
In particular, Hypothesis A(γ, θ, ν) holds when γ + ν ě 1.

The case γ = 1/2

Theorem: Hypothesis A(1/2, θ, ν) iff θ = 0, ν ě 1/3.
Proof. The reductions imply θ + ν ă 1/2.
Then θ = 0 by (A2): h = 1 not possible, so h = 2 must work
Then ν ě 1

3 by (A1), since M = 2.



Special case: γ = 1/2, θ = 0

Theorem 2 [FM]. We have
‚ C(1/2, 0, ν) = 0 for ν ď 0.163;
‚ C(1/2, 0, ν) ą 0 for ν ě 0.1676;
‚ an exact value of C(1/2, 0, ν) for ν ě 1/5, e.g.

C(1/2, 0, 1/5) = 0.362 . . .

DFI showed C(1/2, 0, 1/5) ě 0.23.



Special case: γ = 1 ´ θ, ν = 1 ´ 3θ

Theorem 3 [FM]. We have
‚ An exact value of C(1 ´ θ, θ, 1 ´ 3θ) for 1

4 ď θ ď 3
10

‚ C(0.7, 0.3, 0.1) « 0.84; Harman showed ě 0.80

‚ There is a θ0 ă 1/3 so that C(1´ θ, θ, 1´ 3θ) = 0 for θ0 ď θ ă 1/3.
Moreover, there are examples with ap = 0 for all p.



How much Type-II information is needed to detect primes?

Theorem 4 [FM]. (examples with no primes) For every γ ă 1, there
is a ν0(γ) ą 0 so that whenever 0 ď ν ď ν0(γ) we have C(γ, θ, ν) = 0.
In fact, there are sequences with ap = 0 for all primes p.

We use a function rλ, which is similar to the Liouville function:
‚ rλ is completely multiplicative;

‚ rλ is supported on integers with no prime factor ď xδ , δ ą 0 fixed;

‚ rλ satisfies the Type-I bounds up to xγ , i.e.,

ÿ

dďxγ

ˇ

ˇ

ˇ

ˇ

ÿ

x/2ănďx
d|n

rλ(n)

ˇ

ˇ

ˇ

ˇ

!A
x

logA x
;

‚ rλ(p) « ´1 for all primes p P (xδ, x].



Linnik’s identity

Linnik: t(n) :=
Λ(n)

logn
=

8
ÿ

j=1

(´1)j+1

j

ÿ

n=d1¨¨¨dj
diě2 (1ďiďj)

1.

Proof. log ζ(s) =
ř8

j=1
(´1)j+1

j (ζ(s) ´ 1)j .

Truncated Linnik: ty(n) :=
8
ÿ

j=1

(´1)j+1

j

ÿ

n=d1¨¨¨dj
2ďdiďy (1ďiďj)

1, y = x1´γ .



Truncated Linnik: ty(n) :=
8
ÿ

j=1

(´1)j+1

j

ÿ

n=d1¨¨¨dj
2ďdiďy (1ďiďj)

1, y = x1´γ .

If n has a prime factor ą y then ty(n) = 0.

ÿ

p

wp «
ÿ

n

wnt(n)

(I)
«

ÿ

n

wnty(n)

(II)
«

ÿ

nPU

wnty(n),

where U = tx/2 ă n ď x : y ´ smooth
looooomooooon

Type-I

, no divisor in [xθ, xθ+ν ]
looooooooooooomooooooooooooon

Type-II

u.



The asymptotic, revisited.

(˚)
ÿ

p

wp «
ÿ

nPU

wnty(n),

U = tx
2 ă n ď x : y ´ smooth, no divisor in [xθ, xθ+ν ]u.

Main correspondence: n = p1 ¨ ¨ ¨ pk Ø vn =
( log p1

logn , . . . , log pk
logn

)
Vector analog of U :

U =
 

(x1, . . . , xk) P (0, 1´γ)k : k ě 1,Σxi = 1, no subsum in [θ, θ+ν]
(

.

Theorem 1 reformulation. Hypothesis A(γ, θ, ν) holds iff U is empty.

e.g., if x = (x1, . . . , xk) P (0, 1 ´ γ)k, then the subsums of x have gaps
less than 1 ´ γ. Thus, if γ + ν ě 1, then always one such subsum lies in
[θ, θ + ν], hence U is empty.



Analysis when U is nonempty

‚ Our analysis when U is nonempty depends on geometric and
combinatorial properties of U .

‚ We believe that C(γ, θ, ν) is some function of the set U .

‚ The vectors in U naturally break into two parts - those components
ď ν and those ą ν; the former cannot have a large sum.

‚ U nonempty means that either (A1) fails or (A2) fails. A state
transition (from holding to failing) of (A2) can lead to sudden
infusion of a big mass in U .





Lower bounds on C(γ, θ, ν) when U is nonempty

A restricted lower bound sieve
Let N = tx/2 ă n ď x : n ‰ prime, no divisor in [xθ, xθ+ν ]u.
Let g : [1, xγ ] Ñ R satisfy

‚ g(1) = 1;
‚ For all n P N ,

ÿ

d|n

g(d) ď 0.

ÿ

nPN
(1 ‹ g)(n) ď ´

ÿ

nPN
(1 ‹ g)(n)wn (since wn ě ´1)

= ´
ÿ

dďxγ

g(d)
ÿ

nPN ,d|n

wn

(II)
« ´

ÿ

dďxγ

g(d)
ÿ

d|n,n‰prime

wn

(I)
«

ÿ

p

wp.



Lower bounds on C(γ, θ, ν) when U is nonempty

A restricted lower bound sieve
Let N = tx/2 ă n ď x : n ‰ prime, no divisor in [xθ, xθ+ν ]u.
Let g : [1, xγ ] Ñ R satisfy

‚ g(1) = 1;
‚ For all n P N ,

ÿ

d|n

g(d) ď 0.

h = ´(1 ‹ g) :
ÿ

p

wp «
ÿ

nPN
h(n)wn ě ´

ÿ

nPN
h(n).

Refinement of the method: replace N with smaller set N 1.

The inequality is best possible if there is Optimality if exists (wn) with
wn = ´1 for all n P Supp(h) (this idea comes from linear programming).



Finding C(57 ,
2
7 ,

1
7): lower bound. Vector version

W = t(x1, . . . , xk) : k ě 2,Σxi = 1, xi ě 1
7 (all i), no subsum in [27 ,

3
7 ]u.

All components in [17 ,
2
7 ] Y [37 ,

4
7 ] Y [57 ,

6
7 ].

Define g by g(H) = 1 and
‚ g(x) = ´1(x ď 1

2);
‚ g(x1, x2) = 1(x1 + x2 ď 1

2).

Then h = ´(1 ‹ g) (meaning h(x1, . . . , xk) = ´
ř

AĎ[k] g(xi : i P A))
satisfies h(x) ě 0 on W . Also, h(x) = 0 except h(x1, x2, x3) = 2 when
x1, x2 P [17 ,

2
7 ], x3 P [37 ,

1
2).

Get

C(57 ,
2
7 ,

1
7) ě 1 ´ K, K = 2

ż

¨ ¨ ¨

ż

u1+u2+u3=1
1
7

ďu1ău2ď 2
7

u1+u2ě1/2

1

u1u2u3
= 0.0785176 . . . .



Constructions: θ = 2
7 , γ = 5

7 , ν = 1
7

Set wn = f(vn), f(v) ě ´1; @k, f(v1, . . . , vk) symmetric.

f supported on v with no subsum in [θ, θ + ν] ñ Type-II is trivial.

Type-I bounds ô f satisfies some integral identities.
It turns out that if we define f arbitrarily on vectors with components all
ď 1 ´ γ, Type-I determines f uniquely on all other vectors.

linear programming slackness: We desire f(v) = ´1 when h(v) ‰ 0.
For β1 + β2 ě 1/2 ě α ě 3

7 we desire

f(β1, β2, α) = ´1 = ´α

ż

¨ ¨ ¨

ż

α=β3+β4
β3ăβ4

f(β1, β2, β3, β4)

β3β4

We find f(β1, β2, β3, β4) by theory of Volterra integral equations. Get

C(57 ,
2
7 ,

1
7) ď 1 ´ K.


