Toward a theory of prime producing sieves

Kevin Ford
(joint work with James Maynard)

July 12, 2023

Sieving for primes in an arbitrary set (the small sieve)

$$
\begin{aligned}
(\mathcal{A} \subset[1, x]): \quad S(\mathcal{A}) & :=\#\{a \in \mathcal{A}:(a, Q)=1\} \quad Q=\prod_{p \leqslant \sqrt{x}} p, \\
& =\sum_{\substack{d \mid Q \\
d \leqslant x}} \mu(d)\left|\mathcal{A}_{d}\right|, \quad \mathcal{A}_{d}=\{a \in \mathcal{A}: d \mid a\} \\
& \geqslant \sum_{d \leqslant D} \lambda_{d}^{-}\left|\mathcal{A}_{d}\right| .
\end{aligned}
$$

Question: If $\left|\mathcal{A}_{d}\right|$ well-behaved for most $d<x^{1-\varepsilon}$, must $S(\mathcal{A})$ be large?

No! Selberg's example:
$\mathcal{A}=\{1 \leqslant n \leqslant x: n$ has an even number of prime factors $\}$,
for which $\left|\mathcal{A}_{d}\right| \sim \frac{x}{2 d}$ for $d<x^{1-\varepsilon}$, yet \mathcal{A} has no primes.

Bombieri's work

Bombieri, 1970s. If \mathcal{A}_{d} is well-behaved up to x^{γ} for every fixed $\gamma<$ 1 (Type-I bounds), and \mathcal{B} is any "sufficiently dense, parity-balanced" set (gives "equal weight" to numbers with an even number of prime factors and those with an odd number of prime factors), then get an asymptotic formula for $|\mathcal{A} \cap \mathcal{B}|$.

This excludes \mathcal{B} being only primes!

Theorem (KF, 2005). The conclusion need not hold if \mathcal{A}_{d} is well-behaved up to x^{γ} for a fixed $\gamma<1$.

Breaking the parity barrier with bilinear sums.

Adding a hypothesis on bilinear sums allows one to break the parity barrier and detect primes in some thin sets \mathcal{A} (the idea goes back to work of Vinogradov in the 1930s).

This led to many successes:

- Friedlander and Iwaniec, 1998. There are infinitely many primes of the form $x^{2}+y^{4}$, with x, y integers.
- Heath-Brown, 2001. There are infinitely many primes of the form $x^{3}+2 y^{3}$, with x, y positive integers.
- Maynard, 2019. Given any $d \in\{0,1, \ldots, 9\}$, there are infinitely many primes that do not have digit d in base-10.

Parity breaking sieves: set-up

Sequence $a_{n} \geqslant 0$ for $x / 2<n \leqslant x$
Normalized to have average value 1 . Set $a_{n}=1+w_{n}$, (simplified model)
Example: a_{n} is constant times indicator function of \mathcal{A}

Three basic parameters: γ, θ, ν.

$$
\sum_{d \leqslant x^{\gamma}}\left|\sum_{d \mid n} w_{n}\right| \ll_{A} \frac{x}{(\log x)^{A}} \quad \text { (Type-I bound) }
$$

For any divisor-bounded complex sequences $\left(\alpha_{n}\right),\left(\beta_{n}\right)$,

$$
\left|\sum_{x^{\theta} \leqslant m \leqslant x^{\theta+\nu}} \alpha_{m} \sum_{x / 2<m n \leqslant x} \beta_{n} w_{m n}\right|<_{A} \frac{x}{(\log x)^{A}} \quad \text { (Type-II bound). }
$$

Parity-breaking sieves: some successes

For certain (γ, θ, ν), if the Type-I / Type-II bounds hold, then

$$
\sum_{p \text { prime }} a_{p} \gg \frac{x}{\log x} .
$$

γ	$[\theta, \theta+\nu]$	Application
$3 / 4$	$[1 / 4,3 / 4]$	Primes of form $x^{2}+y^{4} \quad$ (Friedlander-Iwaniec)
$3 / 4$	$[1 / 4,1 / 3]$	Primes of form $x^{2}+\left(y^{2}+1\right)^{2} \quad$ (Merikoski)
$19 / 28$	$[9 / 28,10 / 28]$	Fractional part of $\alpha p($ Jia $)$
$2 / 3$	$[1 / 3,2 / 3]$	Primes of form $x^{3}+2 y^{3} \quad$ (Heath-Brown)
$16 / 25$	$[9 / 25,17 / 40]$	Primes with a missing digit (Maynard)
$1 / 2$	$[0,1 / 3]$	Solving $x^{2} \equiv a$ (mod $\left.p\right) \quad$ (Duke-Friedlander-Iwaniec)
$1 / 2$	$[0,1 / 5]$	Dynam. systems at prime times (Sarnak-Ubis)

(lower bound) $C(\gamma, \theta, \nu)$ is the supremum of numbers c so that any sequence satisfying the Type-I and Type-II bounds gives

$$
\sum_{p \text { prime }} a_{p} \geqslant \frac{c \cdot(x / 2)}{\log x} \quad(\text { large } x)
$$

(Asymptotic) Hypothesis $A(\gamma, \theta, \nu)$: for any sequence satisfying the Type-I and Type-II bounds,

$$
\sum_{p \text { prime }} a_{p} \sim \frac{x / 2}{\log x} \quad(x \rightarrow \infty)
$$

Main questions
(1) For which (γ, θ, ν) does Hypothesis $A(\gamma, \theta, \nu)$ hold?
(2) For which (γ, θ, ν) is $C(\gamma, \theta, \nu)>0$?
(3) For which (γ, θ, ν) are there sequences a_{n} with $\sum a_{p}=0$?

Comments on existing approaches

Existing results produce some ranges of (γ, θ, ν) so that we have an asymptotic for Σa_{p} (Hypothesis $A(\gamma, \theta, \nu)$ holds) and some ranges where $C(\gamma, \theta, \nu)>0$, i.e., we detect primes.

Tools: identities of Linnik, Vaughan, Heath-Brown (for asymptotics) Buchstab iteration / Harman's sieve (for lower bounds)

The methods are largely ad-hoc and do not shed any light on the optimality or the limitations of these approaches.

When $\nu=0$ (no Type-II information), Selberg's example shows that $C(\gamma, \theta, 0)=0$ for all $\gamma<1$ (in fact there are sequences with $\Sigma a_{p}=0$).

When $\nu>0$, there are no examples in the literature with $\Sigma a_{p}=0$ or showing that $A(\gamma, \theta, \nu)$ does not hold.

A new approach

New approach (KF, James Maynard)

- We replace iterative treatments with direct arguments, deploying all of the Type-I and Type-II information at once.
- In principle, we can to determine $C(\gamma, \theta, \nu)$ exactly, by reducing the problem to a combinatorial optimization problem. This optimization problem is very complex and we have solved it only in some cases.
- We have a general method to construct examples giving upper bounds on $C(\gamma, \theta, \nu)$, and a general, non-iterative, method to obtain lower bounds on $C(\gamma, \theta, \nu)$.
- Our upper bound and lower bound methods are connected, being motivated by the duality principle in linear programming.

Initial reductions

$$
\begin{array}{r}
\sum_{d \leqslant x^{\gamma}}\left|\sum_{d \mid n} w_{n}\right|<_{A} \frac{x}{(\log x)^{A}} \quad \text { (Type-I bound) } \\
\left|\sum_{x^{\theta} \leqslant m \leqslant x^{\nu+\theta}} \alpha_{m} \sum_{x / 2<m n \leqslant x} \beta_{n} w_{m n}\right|<_{A} \frac{x}{(\log x)^{A}} \quad \text { (Type-II bound). }
\end{array}
$$

Initial reductions

WLOG we may assume that

- $0 \leqslant \theta<1 / 2$, since Type-II \Leftrightarrow Type-II in $\left[x^{1-\theta-\nu}, x^{1-\theta}\right]$.
- $\gamma \notin[\theta, \theta+\nu) \cup[1-\theta-\nu, 1-\theta)$, since Type-II \Rightarrow Type-I in the same range $\left[x^{\theta}, x^{\theta+\nu}\right]$;

A warm-up exercise

Initial reductions

WLOG we may assume that
(a) $0 \leqslant \theta<1 / 2$, since Type-II \Leftrightarrow Type-II in $\left[x^{1-\theta-\nu}, x^{1-\theta}\right]$.
(b) $\gamma \notin[\theta, \theta+\nu) \cup[1-\theta-\nu, 1-\theta)$, since Type-II \Rightarrow Type-I in the same range $\left[x^{\theta}, x^{\theta+\nu}\right]$;

Theorem 0. Modulo the initial reductions, $C(\gamma, \theta, \nu)=0$ if $\gamma<1 / 2$. Moreover, there are sequences with $\sum a_{p}=0$.

Proof. There is α with $\gamma<\alpha<1 / 2$ and $\alpha \notin[\theta, \theta+\nu]$. Define

- $a_{n}=0$ on primes;
- $a_{n}=K$ if $n=p_{1} p_{2}, p_{1} \sim x^{\alpha}, p_{2} \sim x^{1-\alpha}$;
- $a_{n}=1$ otherwise.

Type-II is trivial; Type-I nontrivial only for $d=1$.
Choose $K=K(x)$ so that $\sum w_{n}=\sum\left(a_{n}-1\right)=0$.

Asymptotic formulas for primes

Theorem 1 [FM]. Assume reductions (a),(b), $1 / 2 \leqslant \gamma<1$. Hypothesis $A(\gamma, \theta, \nu)$ holds if and only if both of the following hold:
$\left(A_{1}\right)$ For every integer $n \geqslant M+1, \exists a \in \mathbb{N}$ with $\frac{a}{n} \in[\theta, \theta+\nu]$, where

$$
\frac{1}{M+1}<1-\gamma \leqslant \frac{1}{M}, \quad M \in \mathbb{N}
$$

$\left(A_{2}\right)$ For some integer $h \geqslant 1, h(1-\gamma) \in[\theta, \theta+\nu] \cup[1-\theta-\nu, 1-\theta]$. In particular, Hypothesis $A(\gamma, \theta, \nu)$ holds when $\gamma+\nu \geqslant 1$.

The case $\gamma=1 / 2$
Theorem: Hypothesis $A(1 / 2, \theta, \nu)$ iff $\theta=0, \nu \geqslant 1 / 3$.
Proof. The reductions imply $\theta+\nu<1 / 2$.
Then $\theta=0$ by $\left(A_{2}\right): h=1$ not possible, so $h=2$ must work
Then $\nu \geqslant \frac{1}{3}$ by $\left(A_{1}\right)$, since $M=2$.

Special case: $\gamma=1 / 2, \theta=0$

Theorem 2 [FM]. We have

- $C(1 / 2,0, \nu)=0$ for $\nu \leqslant 0.163$;
- $C(1 / 2,0, \nu)>0$ for $\nu \geqslant 0.1676$;
- an exact value of $C(1 / 2,0, \nu)$ for $\nu \geqslant 1 / 5$, e.g.

$$
C(1 / 2,0,1 / 5)=0.362 \ldots
$$

DFI showed $C(1 / 2,0,1 / 5) \geqslant 0.23$.

Special case: $\gamma=1-\theta, \nu=1-3 \theta$

Theorem 3 [FM]. We have

- An exact value of $C(1-\theta, \theta, 1-3 \theta)$ for $\frac{1}{4} \leqslant \theta \leqslant \frac{3}{10}$
- $C(0.7,0.3,0.1) \approx 0.84$; Harman showed $\geqslant 0.80$
- There is a $\theta_{0}<1 / 3$ so that $C(1-\theta, \theta, 1-3 \theta)=0$ for $\theta_{0} \leqslant \theta<1 / 3$. Moreover, there are examples with $a_{p}=0$ for all p.

How much Type-II information is needed to detect primes?

Theorem 4 [FM]. (examples with no primes) For every $\gamma<1$, there is a $\nu_{0}(\gamma)>0$ so that whenever $0 \leqslant \nu \leqslant \nu_{0}(\gamma)$ we have $C(\gamma, \theta, \nu)=0$. In fact, there are sequences with $a_{p}=0$ for all primes p.

We use a function $\tilde{\lambda}$, which is similar to the Liouville function:

- $\tilde{\lambda}$ is completely multiplicative;
- $\tilde{\lambda}$ is supported on integers with no prime factor $\leqslant x^{\delta}, \delta>0$ fixed;
- $\tilde{\lambda}$ satisfies the Type-I bounds up to x^{γ}, i.e.,

$$
\sum_{d \leqslant x^{\gamma}}\left|\sum_{\substack{x / 2<n \leqslant x \\ d \mid n}} \tilde{\lambda}(n)\right|<_{A} \frac{x}{\log ^{A} x}
$$

- $\tilde{\lambda}(p) \approx-1$ for all primes $p \in\left(x^{\delta}, x\right]$.

Linnik's identity

$$
\text { Linnik: } \quad t(n):=\frac{\Lambda(n)}{\log n}=\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} \sum_{\substack{n=d_{1} \cdots d_{j} \\ d_{i} \geqslant 2(1 \leqslant i \leqslant j)}} 1
$$

Proof. $\log \zeta(s)=\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j}(\zeta(s)-1)^{j}$.

Truncated Linnik: $t_{y}(n):=\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} \sum_{\substack{n=d_{1} \cdots d_{j} \\ 2 \leqslant d_{i} \leqslant y(1 \leqslant i \leqslant j)}} 1, y=x^{1-\gamma}$.

Truncated Linnik: $t_{y}(n):=\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} \sum_{n=d_{1} \cdots d_{j}} 1, \quad y=x^{1-\gamma}$.
If n has a prime factor $>y$ then $t_{y}(n)=0$.

$$
\begin{aligned}
\sum_{p} w_{p} & \approx \sum_{n} w_{n} t(n) \\
& \stackrel{(I)}{\approx} \sum_{n} w_{n} t_{y}(n) \\
& \stackrel{(I I)}{\approx} \sum_{n \in U} w_{n} t_{y}(n)
\end{aligned}
$$

where $U=\{x / 2<n \leqslant x: \underbrace{y-\text { smooth }}_{\text {Type-I }}, \underbrace{\text { no divisor in }\left[x^{\theta}, x^{\theta+\nu}\right]}_{\text {Type-II }}\}$.

The asymptotic, revisited.

$$
\text { (*) } \begin{aligned}
\sum_{p} w_{p} & \approx \sum_{n \in U} w_{n} t_{y}(n) \\
U & =\left\{\frac{x}{2}<n \leqslant x: y-\text { smooth, no divisor in }\left[x^{\theta}, x^{\theta+\nu}\right]\right\}
\end{aligned}
$$

Main correspondence: $n=p_{1} \cdots p_{k} \leftrightarrow \mathbf{v}_{n}=\left(\frac{\log p_{1}}{\log n}, \ldots, \frac{\log p_{k}}{\log n}\right)$
Vector analog of U :
$\mathscr{U}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in(0,1-\gamma)^{k}: k \geqslant 1, \Sigma x_{i}=1\right.$, no subsum in $\left.[\theta, \theta+\nu]\right\}$.

Theorem 1 reformulation. Hypothesis $A(\gamma, \theta, \nu)$ holds iff \mathscr{U} is empty.
e.g., if $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right) \in(0,1-\gamma)^{k}$, then the subsums of \mathbf{x} have gaps less than $1-\gamma$. Thus, if $\gamma+\nu \geqslant 1$, then always one such subsum lies in $[\theta, \theta+\nu]$, hence \mathscr{U} is empty.

Analysis when \mathscr{U} is nonempty

- Our analysis when \mathscr{U} is nonempty depends on geometric and combinatorial properties of \mathscr{U}.
- We believe that $C(\gamma, \theta, \nu)$ is some function of the set \mathscr{U}.
- The vectors in \mathscr{U} naturally break into two parts - those components $\leqslant \nu$ and those $>\nu$; the former cannot have a large sum.
- \mathscr{U} nonempty means that either $\left(A_{1}\right)$ fails or $\left(A_{2}\right)$ fails. A state transition (from holding to failing) of $\left(A_{2}\right)$ can lead to sudden infusion of a big mass in \mathscr{U}.

Main Conjecture: $C(\gamma, \theta, \nu)=$ function (U)
Fix $[\theta, \theta+\nu]=[2 / 5+6 \delta, 3 / 5-6 \delta], \delta>0$ small, fixed
Plot $C(\gamma, \theta, \nu)$ with variable γ

Lower bounds on $C(\gamma, \theta, \nu)$ when \mathscr{U} is nonempty

A restricted lower bound sieve

Let $\mathcal{N}=\left\{x / 2<n \leqslant x: n \neq\right.$ prime, no divisor in $\left.\left[x^{\theta}, x^{\theta+\nu}\right]\right\}$.
Let $g:\left[1, x^{\gamma}\right] \rightarrow \mathbb{R}$ satisfy

- $g(1)=1$;
- For all $n \in \mathcal{N}, \sum_{d \mid n} g(d) \leqslant 0$.

$$
\begin{aligned}
\sum_{n \in \mathcal{N}}(1 \star g)(n) & \leqslant-\sum_{n \in \mathcal{N}}(1 \star g)(n) w_{n} \quad\left(\text { since } w_{n} \geqslant-1\right) \\
& =-\sum_{d \leqslant x^{\gamma}} g(d) \sum_{n \in \mathcal{N}, d \mid n} w_{n} \\
& \stackrel{(I I)}{\approx}-\sum_{d \leqslant x^{\gamma}} g(d) \sum_{d \mid n, n \neq \text { prime }} w_{n} \\
& \stackrel{(I)}{\approx} \sum_{p} w_{p}
\end{aligned}
$$

Lower bounds on $C(\gamma, \theta, \nu)$ when \mathscr{U} is nonempty

A restricted lower bound sieve

Let $\mathcal{N}=\left\{x / 2<n \leqslant x: n \neq\right.$ prime, no divisor in $\left.\left[x^{\theta}, x^{\theta+\nu}\right]\right\}$.
Let $g:\left[1, x^{\gamma}\right] \rightarrow \mathbb{R}$ satisfy

- $g(1)=1$;
- For all $n \in \mathcal{N}, \sum_{d \mid n} g(d) \leqslant 0$.

$$
h=-(1 \star g): \quad \sum_{p} w_{p} \approx \sum_{n \in \mathcal{N}} h(n) w_{n} \geqslant-\sum_{n \in \mathcal{N}} h(n) .
$$

Refinement of the method: replace \mathcal{N} with smaller set \mathcal{N}^{\prime}.
The inequality is best possible if there is Optimality if exists $\left(w_{n}\right)$ with $w_{n}=-1$ for all $n \in \operatorname{Supp}(h)$ (this idea comes from linear programming).

Finding $C\left(\frac{5}{7}, \frac{2}{7}, \frac{1}{7}\right)$: lower bound. Vector version

$\mathcal{W}=\left\{\left(x_{1}, \ldots, x_{k}\right): k \geqslant 2, \Sigma x_{i}=1, x_{i} \geqslant \frac{1}{7}(\right.$ all $i)$, no subsum in $\left.\left[\frac{2}{7}, \frac{3}{7}\right]\right\}$.
All components in $\left[\frac{1}{7}, \frac{2}{7}\right] \cup\left[\frac{3}{7}, \frac{4}{7}\right] \cup\left[\frac{5}{7}, \frac{6}{7}\right]$.
Define g by $g(\varnothing)=1$ and

- $g(x)=-\mathbb{1}\left(x \leqslant \frac{1}{2}\right)$;
- $g\left(x_{1}, x_{2}\right)=\mathbb{1}\left(x_{1}+x_{2} \leqslant \frac{1}{2}\right)$.

Then $h=-(1 \star g)\left(\right.$ meaning $\left.h\left(x_{1}, \ldots, x_{k}\right)=-\sum_{A \subseteq[k]} g\left(x_{i}: i \in A\right)\right)$ satisfies $h(\mathbf{x}) \geqslant 0$ on \mathcal{W}. Also, $h(\mathbf{x})=0$ except $h\left(x_{1}, x_{2}, x_{3}\right)=2$ when $x_{1}, x_{2} \in\left[\frac{1}{7}, \frac{2}{7}\right], x_{3} \in\left[\frac{3}{7}, \frac{1}{2}\right)$.

Get

$$
C\left(\frac{5}{7}, \frac{2}{7}, \frac{1}{7}\right) \geqslant 1-K, K=2 \int_{\substack{u_{1}+u_{2}+u_{3}=1 \\ \frac{1}{7} \leqslant u_{1}<u_{2} \leqslant \frac{2}{7} \\ u_{1}+u_{2} \geqslant 1 / 2}} \frac{1}{u_{1} u_{2} u_{3}}=0.0785176 \ldots
$$

Constructions: $\theta=\frac{2}{7}, \gamma=\frac{5}{7}, \nu=\frac{1}{7}$

Set $w_{n}=f\left(\mathbf{v}_{n}\right), f(\mathbf{v}) \geqslant-1 ; \forall k, f\left(v_{1}, \ldots, v_{k}\right)$ symmetric. f supported on \mathbf{v} with no subsum in $[\theta, \theta+\nu] \Rightarrow$ Type-II is trivial. Type-I bounds $\Leftrightarrow f$ satisfies some integral identities.
It turns out that if we define f arbitrarily on vectors with components all $\leqslant 1-\gamma$, Type-I determines f uniquely on all other vectors.
linear programming slackness: We desire $f(\mathbf{v})=-1$ when $h(\mathbf{v}) \neq 0$. For $\beta_{1}+\beta_{2} \geqslant 1 / 2 \geqslant \alpha \geqslant \frac{3}{7}$ we desire

$$
f\left(\beta_{1}, \beta_{2}, \alpha\right)=-1=-\alpha \int_{\substack{\alpha=\beta_{3}+\beta_{4} \\ \beta_{3}<\beta_{4}}} \ldots \int \frac{f\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)}{\beta_{3} \beta_{4}}
$$

We find $f\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right)$ by theory of Volterra integral equations. Get

$$
C\left(\frac{5}{7}, \frac{2}{7}, \frac{1}{7}\right) \leqslant 1-K .
$$

