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RIP matrices

Definition

An n × N matrix (with n < N) Φ has the Restricted Isometry
Property (RIP) of order k with constant δ if, for all x with at most
k nonzero coordinates, we have

(1− δ)‖x‖2
2 6 ‖Φx‖2

2 6 (1 + δ)‖x‖2
2.

Application: sparse signal recovery

x ∈ CN is a signal with at most k nonzero components

Φx is a lower dimensional linear measurement

Candès, Romberg and Tao (2005-6) showed that given Φx,
one can effectively recover x by linear programming;

It suffices, for sparse signal recovery, that Φ satisfies RIP with
fixed constant δ <

√
2− 1 (Candès, 2008).
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Fundamental Problem

Given N, n (fix δ = 1
3 , say), find a RIP matrix Φ with maximal k

(Alternatively, minimize n given N, k).

Theorem (Kashin (1977); Garnaev-Gluskin (1984))

Suppose n 6 N/2. Choose entries of Φ as independent random
variables. With positive probability, Φ will satisfy RIP of order k,

for k =
cn

log(N/n)
.

Remarks: Baraniuk, Davenport, DeVore and Wakin (2008) gave a
proof using the Johnson-Lindenstrauss lemma.

Other random constructions given by Candès - Tao (2005),
Rudelson/Vershinin (2008), Mendelson, Pajor and
Tomczak-Jaegermann (2007).

The problem is closely related to the Gel’fand width problems.
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limitations of RIP matrices

Theorem (Candès - Tao, 2005)

For all RIP matrices Φ, k = O

(
n

log(N/n)

)
.

The proof uses the lower bound for the Gel’fand width problem
due to Garnaev and Gluskin (1984):

dn(U(`N1 ), `2)�
√

log(N/n)

n
,

where, U(`N1 ) is the unit `1-ball in RN , and for a set K ,

dn(K , `2) := inf
subspaceY of RN

codim(Y )6n

sup{‖x‖2 : x ∈ K ∩ Y }.
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Coherence

Definition

The coherence µ of unit vectors u1, . . . ,uN ∈ Cn is

µ := max
r 6=s
|〈ur ,us〉|.

Sets of vectors with small coherence are spherical codes

Proposition

Suppose that u1, . . . ,uN are the columns of Φ with coherence µ.
For all k, Φ satisfies RIP of order k with constant δ = kµ.
Cor: Φ satisfies RIP of order k = 1/(3µ) and δ = 1

3 .

Proof: For a k-sparse vector x,

|‖Φx‖2
2 − ‖x‖2

2| =
∑
r 6=s

|xrxs〈ur ,us〉| 6 µ
(∑

|xr |
)2

6 kµ‖x‖2
2.
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Explicit constructions of RIP matrices: coherence

Many explicit contructions of vectors u1, . . . ,uN satisfying

µ = O

(
log N√
n log n

)
,

e.g. Kashin (1975), Alon-Goldreich-Håstad-Peralta (1992), DeVore
(2007), Andersson (2008), and Nelson-Temlyakov (2010). All
based on the arithmetic in finite fields.

Corollary: Such Φ with columns uj satisfies RIP with δ = 1
3 and

all k = c
√
n log n

log N .
Limitation: (Levenshtein, 1983) For all u1, . . . ,uN ,

µ > c
( log N

n log(n/ log N)

)1/2
>

c√
n
,

With coherence, we cannot deduce RIP of order larger than
√

n.
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Explicit constructions: Kashin

Kashin (1977): prime p, n = p, r > 1,

A ⊆ {(a1, . . . , ar ) : 0 6 a1 < · · · < ar < p}, N = |A| 6
(p
r

)
.

For a ∈ A, let

ua =
1√

p − r

((
(j + a1) · · · (j + ar )

p

)
: j ∈ Fp

)T

.

Here

(
a

p

)
=


0 p|a
1 p - a and x2 ≡ a (mod p) has a solution

−1 p - a and x2 ≡ a (mod p) has no solution.

Coherence: By Weil’s bound, for a 6= a′,

|〈ua,ua′〉| =
1

p − r

∣∣∣∣∣∣
p−1∑
j=0

(
(j + a1) · · · (j + a′r )

p

)∣∣∣∣∣∣
6

2r
√

p

p − r
� r
√

p
� log N√

n log n
.
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Explicit constructions: DeVore

DeVore (2007): prime p, n = p2, r > 1

Pr = a rich subset of the polynomials over Fp of degree 6 r ,
N = |Pr | 6 pr+1. Say Pr = {f1, . . . , fN}.

For 1 6 j 6 N, a, b ∈ {0, 1, . . . , p − 1}, let

uj(ap + b) =

{
1√
p (a, b) = (x , fj(x)) for some x

0 else.

Coherence: If f 6= g and N ≈ pr+1, then

〈uf ,ug 〉 =
1

p
#{x ∈ Fp : f (x) = g(x)}

6
r

p
=

r√
n
� log N√

n log n
.
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Explicit constructions: Nelson-Temlyakov

Nelson-Temlyakov (2010):
Pr = a rich subset of the polynomials over Fp of degree 6 r ,
N = |Pr | 6 pr+1.

Same Pr , but now n = p and

uf =
1
√

p

(
e2πif (x)/p : x ∈ Fp

)
.

By Weil’s bounds again, for f 6= g ,

|〈uf ,ug 〉| =
1

p

∣∣∣∣∣ ∑
x∈Fp

e2πi(f (x)−g(x))/p

∣∣∣∣∣ 6 r − 1
√

p
� log N√

n log n
.
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Breaking the
√
n barrier with explicit constructions

Theorem (BDFKK, 2010)

For some constants α > 0 and β > 0, large N and N1−α 6 n 6 N,
the N × n matrix below satisfies RIP of order k = n1/2+β.

The construction: Take m a large integer, p a large prime,

A =
{

1, 2, . . . , bp1/mc
}

,

M = 22m−1, r =
⌊

log p
2m log 2

⌋
,

B =
{r−1∑

j=0

xj(2M)j : 0 6 xj 6 M − 1
}
⊂ {1, . . . , p − 1}

matrix columns u(a,b) = 1√
p

(
e2πi(ax2+bx)/p

)
16x6p

;

a ∈ A, b ∈ B.

N = |A| · |B| � p1+1/(2m), n = p.
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Some ideas of the proof

A =
{

1, 2, . . . , bp1/mc
}

, B =
{r−1∑

j=0

xj(2M)j : 0 6 xj 6 M − 1
}

.

matrix columns u(a,b) = p−1/2
(

e2πi(ax2+bx)/p
)
x∈Fp

; a ∈ A, b ∈ B.

|B| � p1− 1
2m , N = |A| · |B|, n = p.

(1) 〈ua,b,ua′,b′〉 = 0 if a = a′, b 6= b′ and otherwise

〈ua,b,ua′,b′〉 =
σp√

p

(
a− a′

p

)
e−2πi(b−b′)2[4(a−a′)]−1/p

by Gauss’ formula. Here c−1 means inverse in Fp, σp ∈ {−1, 1}.

(2) The game is to capture cancellations among the exponentials.
This is done using additive combinatorics. A key: adding elements
of B involves no “carries” in base-2M.
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Flat-RIP

Let u1, . . . ,uN be the columns of an n × N matrix Φ, ‖uj‖2 = 1.

It is more convenient to work with 0-1 vectors x (“flat” vectors). If
the RIP property holds when restricted to flat vectors, then it holds
with all vectors with an increase in δ.

Lemma (BDFKK, 2010)

Let k > 210 and s be a positive integer. Suppose that the
coherence of vectos uj is 6 1/k and, for any disjoint
J1, J2 ⊂ {1, . . . ,N} with |J1| 6 k , |J2| 6 k, we have∣∣∣∣∣∣

〈∑
j∈J1

uj ,
∑
j∈J2

uj

〉∣∣∣∣∣∣ 6 δk .

Then Φ satisfies RIP of order 2sk with constant 44s
√
δ log k.

We show this “flat-RIP” property in the lemma with k =
√

p =
√

n
and δ = p−ε for some fixed ε > 0. Then take m ≈ pε/3.
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Further issues

Matrix columns u(a,b) = p−1/2
(

e2πi(ax2+bx)/p
)
x∈Fp

; a ∈ A, b ∈ B.

|B| � p1− 1
2m , N = |A| · |B|, n = p.

1 Our Φ have complex entries. However, for any RIP matrix Φ,
replacing each entry a + ib with the 2× 2 matrix ( a b

−b a ) yields
a 2n × 2N real matrix having identical RIP parameters.

2 We are able to prove the RIP property for these matrices
provided m is very large (approximately 108). This comes
from the use of some results in additive combinatorics which
are believed to be sub-optimal. Consequently, n > N1−β for
some very small β > 0 is required for our proofs to work. It is
likely that our matrices satisfy RIP for much smaller m.

3 Can we generalize our construction, using cubic or higher
degree polynomials in place of quadratics (as in the
constructions of DeVore and Nelson-Temlyakov)? Problem:
there is no analog of Gauss’ formula. Such matrices may still
satisfy RIP (and would allow us to take smaller n).
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Preview of talk # 2

We give a brief introduction to the field of additive combinatorics,
and describe some results that are needed in our argument: these
include

1 Bounds for sumsets with subsets of B
2 A version of the Balog-Szemeredi-Gowers lemma

3 Bounds for the number of solutions of equations of the
formula

1

a1
+ · · ·+ 1

ak
=

1

b1
+ · · ·+ 1

bk
,

with a1, . . . , bk ∈ C, where C is an arbitrary set of positive
integers, and equations

a1 + a2b = a3 + a4b,

where ai ∈ A, b ∈ B and A and B are arbitrary sets of
integers.
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Preview of talk # 3

We describe in some detail how additive combinatorics are used to
prove that our matrices satisfy RIP with k > n1/2+β.

By the flat-RIP lemma, it suffices to prove the following:

Lemma

Let m be sufficiently large and p sufficiently large. Then for any
disjoint sets Ω1,Ω2 ⊂ A× B such that |Ω1| 6

√
p, |Ω2| 6

√
p,∣∣∣∣∣∣

∑
ω1∈Ω1

∑
ω2∈Ω2

〈uω1 ,uω2〉

∣∣∣∣∣∣ 6 p1/2−ε,

where ε > 0 is fixed (depends only on m).

The inequality with ε = 0 is trivial (from Gauss’ formula,
|〈uω1 ,uω2〉| 6 1/

√
p for all ω1, ω2).
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New explicit constructions of RIP matrices

Lecture # 2 : Additive Combinatorics

Standard references:

1 H. Halberastam and K. F. Roth, Sequences, 1966.

2 M. Nathanson, Additive Number Theory. Inverse Problems
and the Geometry of Sumsets, 1996.

3 T. Tao and V. Vu, Additive Combinatorics, 2006.
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Set addition basics

Let G be an additive group. For A,B ⊂ G , define the sumset

A + B := {a + b : a ∈ A, b ∈ B}.

Important cases: G = Z, G = Zd , G = Z/mZ, G = (Z/mZ)d .
Example: {1, 2, 4}+ {0, 3, 6} = {1, 2, 4, 5, 7, 8, 10}.

Generic problem. Given information about A, bound |A + A|.

Inverse problem. Given that |A + A| is small (resp. large), deduce
some structural information about A.

Remark: Similar theory for A− A = {a− a′ : a, a′ ∈ A}, since

a1 + a2 = a3 + a4 ⇐⇒ a1 − a3 = a4 − a2.
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Sumsets: some basic examples

Example. G = Z, |A| = N. Then

2N − 1 6 |A + A| 6 N2.

Proof: WLOG min A = 0. if A = {a1 = 0, . . . , aN},
0 < a2 < · · · < aN , then A + A contains

S = {a1, a2, . . . , aN , a2 + aN , a3 + aN , . . . , aN + aN}.

Theorem: |A + A| = 2N − 1 if and only if A is an arithmetic
progression: A = {a, a + d , . . . , a + (N − 1)d} for some a, d ∈ Z.
Proof. (i) WLOG min A = 0. If A = {0, d , . . . , d(N − 1)}, then
A + A = {0, d , . . . , d(2N − 2)}.
(ii) if |A| = N and |A + A| = 2N − 1, then A + A = S . In
particular, a2 + ai ∈ S for all i < N. But a2 + ai < a2 + aN , so
a2 + ai ∈ A for i < N. Easy to see a2 + ai = ai+1 for i < N, so A
is an arithmetic progression.

Bourgain, Dilworth, Ford, Konyagin, Kutzarova Explicit RIP matrices 18 / 41



Sets with small doubling

A set of the form

B = {a + k1d1 + ·+ krdr : 0 6 ki 6 mi − 1(1 6 i 6 r)}

is called an r -dimensional arithmetic progression. If r is small,
these sets have small doubling, i.e. |B + B| 6 2r |B|.

Theorem (G. Freiman, 1960s)

If A is a finite set of integers and |A + A| < KN, then A is a subset
of an r-dimensional arithmetic progression with r and m1 · · ·mr/|A|
bounded in terms of K . We say A has “additive structure”.

Very active area today to find good bounds on r and m1 · · ·mr/|A|
as functions of K .
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Sumset estimates in product sets, I

Recall B =
{∑r−1

j=0 xj(2M)j : 0 6 xj 6 M − 1
}
.

Addition in B involves no “carries” in base-2M. In an additive
sense, B behaves like CM,r = {0, . . . ,M − 1}r . Let

φ
(
xr−1(2M)r−1 + · · ·+ x1(2M) + x0

)
= (x0, . . . , xr−1).

Then φ is a “Freiman isomorphism”: for b1, . . . , b4 ∈ B,

b1 + b2 = b3 + b4 ⇐⇒ φ(b1) + φ(b2) = φ(b3) + φ(b4).

In particular, for D,E ⊂ B, |D + E | = |φ(D) + φ(E )|.
CM,r does not possess long arithmetic progressions (M is
fixed, r is very large). Hence, we expect that D + E cannot
be too small, if D,E ⊂ B.
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Sumset estimates in product sets, II

Recall B =
{∑r−1

j=0 xj(2M)j : 0 6 xj 6 M − 1
}
.

For nonempty D ⊂ B, it is trivial that

|D + D| > |D|.

Theorem B1 (BDFKK, 2010)

Let r ,M ∈ N,M > 2 and let τ = τM be the solution of the
equation M−2τ + (1− 1/M)τ = 1. Then τ > 1

2 and for any
D ⊂ CM,r we have

|D + D| > |D|2τ .

Approximately, τM ≈ 1
2 + log 2

2 log M ≈
1
2 + 1

4m . We conjecture that the
extremal case is D = CM,r and that τ may be improved to

τ ′ = τ ′M =
log(2M − 1)

2 log M
.

This is true for M = 2 (Woodall, 1977).
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Additive properties of integer reciprocals

Recall A = {1, 2, 3, . . . , bp1/sc}.

Theorem A (BDFKK, 2010)

Suppose m > 1, N is a set of positive integers in [1,N]. For every
ε > 0, the number of solutions of

1

n1
+ · · ·+ 1

nm
=

1

nm+1
+ · · ·+ 1

n2m
(ni ∈ N , 1 6 i 6 2m)

is 6 C (m, ε)|N |mNε, for some constant C (m, ε).

Remark: There are > |N |m trivial solutions (nm+i = ni , i 6 m)

Idea (from a paper of Karatsuba): Clearing denominators leads
to divisibility conditions ni |

∏
j 6=i nj . So every prime dividing one of

the ni must divide another. Key inequality:

∀ε > 0, ∃c(ε) such that #{d : d |n} 6 c(ε)nε.
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Additive energy, I

If A,B ⊂ G , we define the additive energy E (A,B) of the sets A
and B as the number of solutions of the equation

a1 + b1 = a2 + b2, a1, a2 ∈ A; b1, b2 ∈ B.

Special case: A = B, G = Z.

Trivially, E (A,A) 6 |A|3.
If A is an arithmetic progression, E (A,A) ∼ 2

3 |A|
3.

If E (A,A) > |A|3/K with small K , must A be “structured”
(like an arithmetic progression of small dimension) ?

No! If A contains a long arithmetic progression, say of length
δ|A|, then E (A,A) > 2

3δ
3|A|3, even if the other (1− δ)|A|

elements of A are unstructured (look like a random set).

However, if E (A,A) is close to |A|3 then A must have a large
structured subset.
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Additive energy, II

Theorem E (BDFKK, 2010)

If A is a finite set of integers and E (A,A) > |A|3/K , then there
exists A′ ⊂ A such that |A′| > |A|/(20K ) and

|A′ + A′| 6 1017K 20|A′|.

The proof is a relatively simple consequence of a variant of the
fundamental Balog-Szemeredi-Gowers Lemma:

Theorem (Bourgain-Garaev, 2009)

If F ⊂ A× A, |F | > |A|2/L and

#{a1 + a2 : (a1, a2) ∈ F} 6 L|A|.

Then there exists A′ ⊂ A such that |A′| > |A|/(10L) and
|A′ − A′| 6 104L9|A|.

The proof uses “elementary” graph-theory (Tao-Vu §2.5, 6.4).
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Additive energy, III. Theorems B1 and E

Theorem B1 (BDFKK, 2010)

For some τ > 1
2 and for any D ⊂ B we have |D + D| > |D|2τ .

Theorem E (BDFKK, 2010)

If A is a finite set of integers and E (A,A) > |A|3/K , then there
exists A′ ⊂ A such that |A′| > |A|/(20K ) and

|A′ + A′| 6 1017K 20|A′|.

Corollary: Suppose A ⊂ B. Take K = c |A′|(2τ−1)/20 (A′ from
Theorem E) and deduce

Theorem B2 (BDFKK, 2010)

For any A ⊂ B,

E (A,A) = O
(
|A|3−γ

)
, γ =

2τ − 1

20 + 2τ − 1
.
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Twisted energy averages

Theorem (Bourgain, 2009 (GAFA))

Suppose A ⊂ Fp,B ⊂ Fp\{0}. For some c > 0,∑
b∈B

E (A, b · A) := #{a1 + ba2 = a3 + ba4 : ai ∈ A, b ∈ B}

� (min(p/|A|, |A|, |B|))−c |A|3|B|.

Remarks. An explicit version of the theorem, with c = 1
10430 ,

given by Bourgain-Glibuchuk (2011). Open: Is the statement true
with any c < 1 ?

Idea (over Z): Say A = {0, 1, . . . ,N − 1}. So E (A,A) is very
large. However,if b > 1, we have a1 − a3 = b(a4 − a2), which
forces |a4 − a2| < (N − 1)/b and hence E (A, b · A) 6 2N3/b.
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Fourier analysis and sumsets

For a set A ⊂ Z, let

TA(θ) =
∑
a∈A

e2πiθa

be the trigonometric sum associated with A. Clearly,

TA(θ)2 =
∑

c∈A+A

r(c)e2πiθc , r(c) = #{(a, a′) ∈ A2 : a + a′ = c}.

Also,

r(c) =

∫ 1

0
TA(θ)2e−2πiθc dθ.

If A is an arithmetic progression {a, a + d , . . . , a + (N − 1)d}, then
TA(θ) is a geometric sum - concentrated mass (large only for θ
near points k/d , k ∈ Z).

Conversely, if the mass of TA(θ) is very concentrated, then A has
“arithmetic progression - like behavior”, i.e. A + A is small.
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Fourier analysis in finite fields

For a set A ⊂ Fp, let

TA(θ) =
∑
a∈A

e2πiθa.

Then

r(c) = #{(a, a′) ∈ A2 : a + a′ = c} =
1

p

∑
a∈Fp

T 2
A(a/p)e−2πiac/p.
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Exponential sums and additive energy

Recall (Gauss sum formula)

〈ua,b,ua′,b′〉 =
σ(a, a′, p)
√

p
e−2πi(b−b′)2λ(a,a′)/p,

where |σ(a, a′, p)| = 1 and λ(a, a′) = (4(a− a′))−1 mod p.

Lemma

For any θ ∈ Fp\{0}, B1 ⊂ Fp, B2 ⊂ Fp we have∣∣∣∣∣ ∑
b1∈B1,b2∈B2

e2πiθ(b1−b2)2/p

∣∣∣∣∣ 6 |B1|
1
2 E (B1,B1)

1
8 |B2|

1
2 E (B2,B2)

1
8 p

1
8 .

Proof sketch. Three successive applications of Cauchy-Schwarz.
Observe that

E (B,B) =
1

p

p−1∑
a=0

∣∣∣∣∣∑
b∈B

e2πiab/p

∣∣∣∣∣
4
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New explicit constructions of RIP matrices

Lecture # 3 : Sketch of the proof of our theorem
Plus Turán’s power sums
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Goal

Theorem

Let m be a sufficiently large, fixed constant and p sufficiently large.
There is a fixed ε > 0 (depending only on m), so that for any
disjoint sets Ω1,Ω2 ⊂ A× B such that |Ω1| 6

√
p, |Ω2| 6

√
p,

S :=

∣∣∣∣∣ ∑
ω1∈Ω1

∑
ω2∈Ω2

〈uω1 ,uω2〉

∣∣∣∣∣ 6 p1/2−ε,

Def. Ai = {ai : (ai , bi ) ∈ Ωi} (i = 1, 2).

Def. Ωi (ai ) = {bi : (ai , bi ) ∈ Ωi} (i = 1, 2).
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Small Ai

(i) Suppose |Ai | 6 pγ/3 for i = 1, 2. Recall

Lemma

For any θ ∈ F∗p, B1 ⊂ Fp, B2 ⊂ Fp we have∣∣∣ ∑
b1∈B1,b2∈B2

e2πiθ(b1−b2)2/p
∣∣∣ 6 |B1|

1
2 E (B1,B1)

1
8 |B2|

1
2 E (B2,B2)

1
8 p

1
8 .

By this lemma, Lemma B2 (that E (B,B)� |B|3−γ for B ⊂ B),
and Hölder:

S 6 p−1/2
∑
a1∈A1

∑
a2∈A2

|Ω1(a1)|
7−γ

8 |Ω2(a2)|
7−γ

8 p
1
8

6 p−
1
2

+ 1
8 |A1|

1+γ
8

(∑
a1

|Ω1(a1)|
) 7−γ

8 |A2|
1+γ

8

(∑
a2

|Ω2(a2)|
) 7−γ

8

6 p
1
2
− γ

8
+ γ2+γ

12 6 p
1
2
−ε, if ε 6 γ

24 −
γ2

12 .
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Small E (Ωi (ai ),Ω1(ai ))

(ii) Suppose E (Ωi (ai ),Ωi (ai )) 6 |Ω1(ai )|3p−2/m for some i (say
i = 1). By the same lemma and Hölder’s inequality, the sum of
〈u(a1,a2),u(a2,b2)〉 over quadruples with such a1 is

6 p−
1
2

+ 1
8

∑
a1,a2

|Ω1(a1)|
7
8 p−

2
8m |Ω2(a2)|

7−γ
8

6 p−
3
8
− 2

8m |A1|
1
8 |A2|

1+γ
8

(∑
a1

|Ω1(a1)|
) 7

8
(∑

a2

|Ω2(a2)|
) 7−γ

8

6 p
1
2
− γ

16
+ γ

8m 6 p
1
2
−2ε, ε 6 γ

32 −
γ

16m .
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Remaining case

(iii) We now consider the case max |Ai | > pγ/3 (WLOG
|A2| > pγ/3), and E (B,B) > |B|3p−2/m, B = Ω1(a1).

Using Theorem E, we can reduce to consideration of the case
where |B − B| 6 p30/m|B| and |B + B| 6 p60/m|B|. With a1 fixed,
we show that∣∣∣ ∑

b1∈B
a2∈A2,b2∈Ω2(a2)

(
a1 − a2

p

)
ep
(
(b1 − b2)2[4(a1 − a2]−1

) ∣∣∣� |B|p1/2−ε.

where ep(x) = e2πix/p. Denote by T (a1) the above sum.

Subdivide into cases according to the size of Ω2(a2): say

M2 < |Ω2(a2)| 6 2M2, M2 = 2j .
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Further details

Say m is even. Cauchy-Schwartz + Hölder:

|T (a1)|2 6
√

p|B|2−2/m

 ∑
b1,b∈B

|F (b, b1)|m
 1

m

,

where

F (b, b1) =
∑
a2∈A2

b2∈Ω2(a2)

ep

(
b2

1 − b2

4(a1 − a2)
− b2(b1 − b)

2(a1 − a2)

)
.

Also,∑
b1,b∈B

|F (b, b1)|m 6
∑

x∈B+B
y∈B−B

∣∣∣∣∣ ∑
a2∈A2

b2∈Ω2(a2)

ep

(
xy

4(a1 − a2)
− b2y

2(a1 − a2)

) ∣∣∣∣∣
m

6 Mm
2

∑
y∈B−B

∑
a(i)∈A2
16i6m

∣∣∣∣∣ ∑
x∈B+B

ep

(
xy

4

m/2∑
i=1

[
1

a1 − a(i)
− 1

a1 − a(i+m/2)

])∣∣∣∣∣.
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Further details, II

For some complex numbers εy ,ξ of modulus 6 1,∑
b1,b∈B

|F (b, b1)|m 6 Mm
2

∑
y∈B−B

∑
ξ∈Fp

λ(ξ)εy ,ξ
∑

x∈B+B

ep(xyξ/4),

λ(ξ) = #

{
a(1), . . . , a(m) ∈ A2 :

m/2∑
i=1

(
1

a1 − a(i)
− 1

a1 − a(i+m/2)

)
= ξ

}
.

By Theorem A, since A2 ⊂ [1, p1/m], for any ν > 0,

λ(0)�ν |A2|m/2pν .

Therefore,∑
b1,b∈B

|F (b, b1)|m �ν Mm
2 |A2|m/2pν |B − B||B + B|

+
∑

y∈B−B

∑
ξ∈F∗p

λ(ξ)εy ,ξ
∑

x∈B+B

ep(xyξ/4).
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Further details, III

Let
ζ(z) =

∑
y∈B−B

ξ∈F∗p ,yξ=z

λ(ξ).

By Hölder and Parseval, we arrive at∣∣∣∣∣ ∑
y∈B−B

∑
ξ∈F∗p

ε′y ,ξ
∑

x∈B+B

ep(xyξ/4)

∣∣∣∣∣ 6 |B + B|3/4‖ζ ∗ ζ‖1/2
2 p1/4.

Then

‖ζ∗ζ‖2 6
∑

ξ,ξ′∈F∗p

λ(ξ)λ(ξ′) |{y1 − (ξ/ξ′)y2 = y3 − (ξ/ξ′)y4 : yi ∈ B − B}|1/2
.

The RHS is estimated using a weighted version of Bourgain’s theorem on∑
d∈D E (A, d · A), with A = B − B.
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Turán’s power sums

Def: For |zj | = 1, let

MN(z) = max
m=1,2,...,N

∣∣∣∣∣
n∑

j=1

zm
j

∣∣∣∣∣.
Problem: find z to minimize MN(z).

Connection with coherence: The vectors

um =
1√
n

(
zm−1

1 , . . . , zm−1
n

)T
, 1 6 m 6 N,

have coherence µ = 1
nMN−1(z).
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Constructions for Turán’s power sums

Erdős - Rényi (1957): If zj chosen randomly on the unit circle for
each j , then with overwhelming probability, MN(z)�

√
n log N.

Montgomery (1978): p prime, n = p − 1, χ a Dirichlet character
of order p − 1. Put

zj = χ(j)e2πij/p, 1 6 j 6 p − 1.

Then MN(z) 6
√

p =
√

n + 1 for N < n(n + 1).

Andersson (2008). p prime, N = pd − 1, χ a generator of the
group of characters of F = Fpd , y ∈ F but in no proper subfield.
Put

zj = χ(y + j − 1), 1 6 j 6 p, n = p.

By a character sum bound of N. Katz,

MN(z) 6 (d − 1)
√

p 6
√

n
log N

log n
.

Remark: the bound is nontrivial for N < e
√
n.
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New explicit construction

Theorem (BDFKK, 2010)

We give explicit constructions of z such that

MN(z) = O
(

(log N log log N)1/3n2/3
)
.

Remark. Our constructions are better than Andersson’s
constructions for N > exp{n1/4}, nontrivial for
N < exp{cn/ log n}.

Corollary. Explicit constructions of vectors u1, . . . ,uN with
coherence

µ = O

((
log N log log N

n

)1/3
)
.

This matches, up to a power of log log N, the best known explicit
constructions for codes when n . (log N)4.
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Some ideas of the proof

Based on ideas in a paper of Ajtai, Iwaniec, Komlós, Pintz and
Szemerédi (1990).
They were interested in constructing sets T ⊆ {1, . . . ,N} such
that all the Fourier coefficients∑

t∈T
e2πimt/N , 1 6 m 6 N − 1,

are uniformly small, with |T | taken a small as possible.

The construction: Parameters P0, P1 > P0, R ≈ log(P0/ log P1),

Tq = multiset {r+s/p : 1 6 r 6 R,P0 < p 6 2P0 prime, |s| < p/2}

of residues modulo q. Finally, let z be the multiset of numbers
e2πit/q, P1 < q 6 2P1 (q prime), t ∈ Tq.
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