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RIP matrices

Definition

An n x N matrix (with n < N) ® has the Restricted Isometry
Property (RIP) of order k with constant ¢ if, for all x with at most
k nonzero coordinates, we have

(1= 0)lxl3 < l[x]13 < (1 + 8)lIx[I3.

Application: sparse signal recovery

o x € CN is a signal with at most k nonzero components
@ Ox is a lower dimensional linear measurement

e Candés, Romberg and Tao (2005-6) showed that given ®x,
one can effectively recover x by linear programming;

@ It suffices, for sparse signal recovery, that ¢ satisfies RIP with
fixed constant § < v/2 — 1 (Candes, 2008).
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Fundamental Problem

Given N, n (fix 6 = % say), find a RIP matrix ¢ with maximal k
(Alternatively, minimize n given N, k).

Theorem (Kashin (1977); Garnaev-Gluskin (1984))

Suppose n < N/2. Choose entries of ® as independent random
variables. With positive probability, ® will satisfy RIP of order k,

log(/n)’

Remarks: Baraniuk, Davenport, DeVore and Wakin (2008) gave a
proof using the Johnson-Lindenstrauss lemma.

for k =

Other random constructions given by Candés - Tao (2005),
Rudelson/Vershinin (2008), Mendelson, Pajor and
Tomczak-Jaegermann (2007).

The problem is closely related to the Gel'fand width problems.
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limitations of RIP matrices

Theorem (Candes - Tao, 2005)

For all RIP matrices ®, k = O (W) .

The proof uses the lower bound for the Gel'fand width problem
due to Garnaev and Gluskin (1984):

d"(U(er), £2) > log(N/n)

n
where, U(¢) is the unit ¢1-ball in RN, and for a set K,
d"(K, ) = inf Nsup{HxH2 xeKNY}.

subspaceY of R
codim(Y)<n

Bourgain, Dilworth, Ford, Konyagin, Kutzarova Explicit RIP matrices



Coherence

The coherence . of unit vectors uy,...,uy € C" is

W= max [{u, us)|.
r#s
Sets of vectors with small coherence are spherical codes

Proposition

Suppose that uy, ...,uy are the columns of ® with coherence p.
For all k, & satisfies RIP of order k with constant § = kpu.
Cor: O satisfies RIP of order k = 1/(3y1) and § = 3.

Proof: For a k-sparse vector X,

2
2 2 2
0113 = 131 = D Ixexsur, ug)] < g (3 Il )™ < ka3

r#s
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Explicit constructions of RIP matrices: coherence

Many explicit contructions of vectors ug, ..., uy satisfying

_0 log N
o= Vnlogn)’
e.g. Kashin (1975), Alon-Goldreich-Héstad-Peralta (1992), DeVore

(2007), Andersson (2008), and Nelson-Temlyakov (2010). All
based on the arithmetic in finite fields.

Corollary: Such ® with columns u; satisfies RIP with § = % and

all k = Sy7logn
logN *
Limitation: (Levenshtein, 1983) For all uy,...,up,
S c< log N )1/2 S <
e nlog(n/ log N) ~n’

With coherence, we cannot deduce RIP of order larger than \/n.
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Explicit constructions: Kashin

Kashin (1977): prime p, n=p, r > 1,
AC{(ar,...,a;):0<a <---<a <p}, N=|A < ().

Fora € A, let
1 ' o+ a, _ T
(G )
Vp—r p
0 pla
Here <Z> =<1 ptaand x?> =a (mod p) has a solution

—1 ptaand x?> = a (mod p) has no solution.

Coherence: By Weil's bound, for a +# a’,

[t g} = — pzl <U+al)---(j+a’,)>

p

<2rﬁv r_ loghN
S p—r /P /nlogn
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Explicit constructions: DeVore

DeVore (2007): prime p, n=p?, r > 1

P, = a rich subset of the polynomials over [F, of degree < r
N=|P,|<p™t Say P, ={f,...,fx}.

For1<j< N, abe{0,1,...,p—1} let

uj(ap+ b) = {*/15 (a, b) = (x, fj(x)) for some x

0 else.
Coherence: If f # g and N ~ p"*1, then
1
(ur,ug) = —#{x € Fp : f(x) = g(x)}

p
r r _ loghN
p ﬁﬁﬁlogn'
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Explicit constructions: Nelson-Temlyakov

Nelson-Temlyakov (2010):
P, = a rich subset of the polynomials over [F, of degree < r,
N=|P|<pt

Same P,, but now n = p and

ur = \/15 (62”"'(()()/" i X € IFP> .

By Weil's bounds again, for f # g,

r— lv log N
VP +/nlogn

Z 2mi(F(x)~g(x))/p

x€lFp

’<Uf,llg <
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Breaking the /n barrier with explicit constructions

Theorem (BDFKK, 2010)

For some constants o > 0 and 8 > 0, large N and N= < n< N,
the N x n matrix below satisfies RIP of order k = n/2+5.

The construction: Take m a large integer, p a large prime,
o A={1,2,...,|pY™|},
o M =22m"1r— { log p J

2mlog 2
r—1 )
B:{ij(zmy:ongg M—l} c{l,....p—1}
j=0

® matrix columns u, ») = L <e2”"(3X2+bX)/p>
ac A beB.
o N=|Al|B| =< ptt/Cm pn=p

1<x<p’
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Some ideas of the proof

r—1
A={1,2,...,[pY"|}, B= {ZXJ(ZI\/I)J 0<x; < M- 1}.
j=0
matrix columns ug, ) = p~ 12 <e2”i(‘3x2+b")/p) ,ae A beB.
x€lFp

B < pt=am, N = |A[-|B|, n = p.

(1) (ugp,uy p) =0if a=a', b # b’ and otherwise
op (=3 N\ _oritb_bVla(aa')-
<ua,baua’,b’> - 7% (P) e 2mi(b—b')’[4(a=a")] " /p

by Gauss' formula. Here ¢!

means inverse in Fp,, 0, € {—1,1}.

(2) The game is to capture cancellations among the exponentials.
This is done using additive combinatorics. A key: adding elements
of BB involves no “carries” in base-2M.
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Flat-RIP

Let uy,...,uy be the columns of an n x N matrix ®, |luj|j> = 1.

It is more convenient to work with 0-1 vectors x (“flat” vectors). If
the RIP property holds when restricted to flat vectors, then it holds
with all vectors with an increase in §.

Lemma (BDFKK, 2010)

Let k > 20 and s be a positive integer. Suppose that the
coherence of vectos u; is < 1/k and, for any disjoint
J1,l C{1,..., N} with |h| < k, || < k, we have

<Z uj, uj> < k.

Jj€h  jEL

Then & satisfies RIP of order 2sk with constant 44sv/5 log k.

We show this “flat-RIP" property in the lemma with k = \/p = /n
and § = p—¢ for some fixed € > 0. Then take m ~ p°/3.
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Further issues

Matrix columns u(, p) = p /2 (ezﬂ"(ax2+bx)/p> ;ac A beB.

x€F,
|B| = = |A[-|B|. n=p.

@ Our ® have complex entries. However, for any RIP matrix &,
replacing each entry a + ib with the 2 x 2 matrix ( 3, 2) yields
a 2n x 2N real matrix having identical RIP parameters.

@ We are able to prove the RIP property for these matrices
provided m is very large (approximately 108). This comes
from the use of some results in additive combinatorics which
are believed to be sub-optimal. Consequently, n > N1 for
some very small 3 > 0 is required for our proofs to work. It is
likely that our matrices satisfy RIP for much smaller m.

© Can we generalize our construction, using cubic or higher
degree polynomials in place of quadratics (as in the
constructions of DeVore and Nelson-Temlyakov)? Problem:
there is no analog of Gauss' formula. Such matrices may still
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Preview of talk # 2

We give a brief introduction to the field of additive combinatorics,
and describe some results that are needed in our argument: these
include

@ Bounds for sumsets with subsets of B

@ A version of the Balog-Szemeredi-Gowers lemma

© Bounds for the number of solutions of equations of the

formula
T
ai dy N bl bk’
with a1, ..., bx € C, where C is an arbitrary set of positive

integers, and equations
a1 + axb = a3 + asb,

where a; € A, b € B and A and B are arbitrary sets of
integers.
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Preview of talk # 3

We describe in some detail how additive combinatorics are used to
prove that our matrices satisfy RIP with k > n1/2+5.

By the flat-RIP lemma, it suffices to prove the following:

Lemma

Let m be sufficiently large and p sufficiently large. Then for any
disjoint sets 21, C A x B such that Q1| < \/p, 2| < /P,

Z Z (Uwy s Uiy ) <P1/2—€7

w1€Q w2 €L
where € > 0 is fixed (depends only on m).

The inequality with e = 0 is trivial (from Gauss’' formula,
[(Ugy, u,)| < 1/4/p for all wy,wy).
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New explicit constructions of RIP matrices

Lecture # 2 : Additive Combinatorics

Standard references:
@ H. Halberastam and K. F. Roth, Sequences, 1966.
@ M. Nathanson, Additive Number Theory. Inverse Problems
and the Geometry of Sumsets, 1996.
© T. Tao and V. Vu, Additive Combinatorics, 2006.

Bourgain, Dilworth, Ford, Konyagin, Kutzarova Explicit RIP matrices 16 /41



Set addition basics

Let G be an additive group. For A, B C G, define the sumset
A+B:={a+b:acAbec B}.

Important cases: G =7, G =79, G=7/mZ, G = (Z/mZ)“.
Example: {1,2,4} +{0,3,6} = {1,2,4,5,7,8,10}.
Generic problem. Given information about A, bound |A + A|.

Inverse problem. Given that |A+ Al is small (resp. large), deduce
some structural information about A.

Remark: Similar theory for A— A= {a—a':a,d € A}, since

ay+a=az3+as < a;—az=aqg — ar.
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Sumsets: some basic examples

Example. G =7, |A| = N. Then
2N —1 < |[A+ Al < N2

Proof: WLOG minA=0. if A={a; =0,...,an},
0< a<---<ap, then A+ A contains

5:{al,ag,...,aN,az+aN,a3+aN,...,aN+aN}.

Theorem: |A+ A| =2N — 1 if and only if A is an arithmetic
progression: A={a,a+d,...,a+ (N —1)d} for some a,d € Z.
Proof. (i) WLOG minA=0. If A={0,d,...,d(N — 1)}, then
A+A={0,d,...,d(2N —2)}.

(ii) if |[Al=Nand |[A+ A =2N—1,then A+ A=S. In
particular, ao +a; € S for all i < N. But ap + a; < a» + ap, so
ar+aj € Afor i < N. Easy to see ap + a; = aj1 for i < N, so A
is an arithmetic progression.
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Sets with small doubling

A set of the form
B={a+kdi+ - +kd :0<k<m—-11<i<r)}

is called an r-dimensional arithmetic progression. If r is small,
these sets have small doubling, i.e. |B+ B| < 2'|B].

Theorem (G. Freiman, 1960s)

If A is a finite set of integers and |A+ A| < KN, then A is a subset
of an r-dimensional arithmetic progression with r and my - - - m,/|A|
bounded in terms of K. We say A has “additive structure”.

Very active area today to find good bounds on r and my --- m,/|A|
as functions of K.
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Sumset estimates in product sets, |

Recall B = {32723 x(2M) : 0 <o < M — 1},

@ Addition in B involves no “carries’ in base-2M. In an additive
sense, B behaves like Cyy, = {0,...,M —1}". Let

¢ (—12M) 4 31 (2M) 4+ x0) = (x0,- - X—1)-
Then ¢ is a “Freiman isomorphism": for by,..., by € B,
bi + by = b3+ by <= ¢(b1) + ¢(b2) = d(b3) + ¢(ba).

In particular, for D, E C B, |D + E| = |¢(D) + ¢(E)|.

@ Cp,r does not possess long arithmetic progressions (M is
fixed, r is very large). Hence, we expect that D + E cannot
be too small, if D, E C B.
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Sumset estimates in product sets, |l

Recall B = {ZJ LMY 0< x5 <M — 1}.
For nonempty D C B, it is trivial that
|D+ D| > |D|.

Theorem B1 (BDFKK, 2010)

Let r,M € N, M > 2 and let 7 = 7)y be the solution of the
equation M~2" + (1 —1/M)”™ = 1. Then 7 >  and for any
D C Cpm,, we have

D+ D| > |D|*".
Approximately, Ty = % + 2'|cc’>ggzM ~ %—{— ﬁ. We conjecture that the
extremal case is D = Cp,, and that 7 may be improved to
S log(2M — 1)
M 2log M

This is true for M = 2 (Woodall, 1977).
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Additive properties of integer reciprocals

Recall A={1,2,3,...,|p"*]}.
Theorem A (BDFKK, 2010)

Suppose m > 1, N is a set of positive integers in [1, N]. For every
€ > 0, the number of solutions of

1 1 1 1
= qrocoqp == = qF 000 Hp =—— (n,-e./\/,1<i<2m)
n Nm Nm+1 mnm

is < C(m,e)|N|™N#, for some constant C(m,¢).

Remark: There are > |N|™ trivial solutions (npmy; = n;, i < m)
Idea (from a paper of Karatsuba): Clearing denominators leads
to divisibility conditions n;|[];_; nj. So every prime dividing one of
the n; must divide another. Key inequality:

Ve > 0,3c(e) such that #{d : d|n} < c(e)n°.

Bourgain, Dilworth, Ford, Konyagin, Kutzarova Explicit RIP matrices 22 /41



Additive energy, |

If A,B C G, we define the additive energy E(A, B) of the sets A
and B as the number of solutions of the equation

ait+bi=a+ b, ai,ax €A b,b€B.

Special case: A=B, G =Z.
o Trivially, E(A, A) < |A]3.
e If Ais an arithmetic progression, E(A, A) ~ 3|A[3.
o If E(A,A) > |A®/K with small K, must A be “structured”
(like an arithmetic progression of small dimension) ?

@ No! If A contains a long arithmetic progression, say of length
5|A], then E(A, A) > 253|AJ3, even if the other (1 — 0)|A|
elements of A are unstructured (look like a random set).

@ However, if E(A, A) is close to |A|3 then A must have a large
structured subset.
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Additive energy, Il
, )

Theorem E (BDFKK, 2010

If Ais a finite set of integers and E(A, A) > |A|3/K, then there
exists A" C A such that |[A’| > |A|/(20K) and

|A/+A/| < 1017K20|A/|.

The proof is a relatively simple consequence of a variant of the
fundamental Balog-Szemeredi-Gowers Lemma:

Theorem (Bourgain-Garaev, 2009)

IFFC Ax A, |F| > |A2/L and

#{al + ar: (31,32) S F} < L|A|.

Then there exists A’ C A such that |A'| > |A|/(10L) and
|A— A| < 10%L%|A.

The proof uses “elementary” graph-theory (Tao-Vu §2.5, 6.4).
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Additive energy, Ill. Theorems B1 and E

Theorem B1 (BDFKK, 2010)
For some 7 > % and for any D C B we have |D + D| > |D|*".

Theorem E (BDFKK, 2010)

If Ais a finite set of integers and E(A, A) > |A|3/K, then there
exists A" C A such that |[A’| > |A|/(20K) and
|A/+A/| < 1017K20’A/|.

Corollary: Suppose A C B. Take K = c|A/|(7=1)/20 (A’ from
Theorem E) and deduce

Theorem B2 (BDFKK, 2010)
For any A C B,

27 —1

E(AA) =0 (|AP7), T 0o =1
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Twisted energy averages

Theorem (Bourgain, 2009 (GAFA))
Suppose A C Fp, B C F,\{0}. For some ¢ > 0,

> E(A b-A):=#{a1 + bap = a3+ bay : a; € A, b € B}
beB
< (min(p/|Al, |Al, |B])) " |AP*|B].
Remarks. An explicit version of the theorem, with ¢ = ﬁ,
given by Bourgain-Glibuchuk (2011). Open: Is the statement true
with any ¢ <17

Idea (over Z): Say A= {0,1,...,N —1}. So E(A, A) is very
large. However,if b > 1, we have a1 — a3 = b(as — a2), which
forces |ag — ap| < (N —1)/b and hence E(A, b- A) < 2N3/b.
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Fourier analysis and sumsets

For a set A C Z, let

TA(H) — Z e27ri03

acA

be the trigonometric sum associated with A. Clearly,

Ta(0) = > r(c)e?™, r(c)=#{(a,d) e A:at+ad =c}.
ceA+A
Also, .
He) = / Ta(0)2e-277% dp.

0
If Ais an arithmetic progression {a,a+d,...,a+ (N —1)d}, then
Ta(0) is a geometric sum - concentrated mass (large only for 0
near points k/d, k € Z).

Conversely, if the mass of T4(0) is very concentrated, then A has
“arithmetic progression - like behavior”, i.e. A+ A is small.
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Fourier analysis in finite fields

For aset AC I, let

TA(@) — Z 627”.03.

aceA

Then

1 )
r(C) = #{(37 a’) [ A2 a4+ 3 = C} = E Z Tg(a/p)e—%rlac/p'
acF,
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Exponential sums and additive energy

Recall (Gauss sum formula)

o(a @, p) o 2mi(b—b')?\(a,a)/p
\/E b
where |o(a,a’,p)| =1 and A(a,a’) = (4(a— a'))"! mod p.

(Uap, Uy ) =

Lemma
For any 0 € F,\{0}, By C Fp, B, C F, we have

Z 27r19(b1 b2)?/p

b1E€B1,beB>

<|Bl‘2E(BlaBl) |BZ‘2E(BQ,BQ)é %

Proof sketch. Three successive applications of Cauchy-Schwarz.
Observe that

§ : 27rlab/p

beB

E(B,B) pz

a=0
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New explicit constructions of RIP matrices

Lecture # 3 : Sketch of the proof of our theorem
Plus Turdn’s power sums
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Theorem

Let m be a sufficiently large, fixed constant and p sufficiently large.
There is a fixed € > 0 (depending only on m), so that for any
disjoint sets 21, C A x B such that Q1| < \/p, 2| < /P,

S = Z Z <Uw1>uw2> <p1/2_87

wleﬂlwzeﬂg
Def. A; = {a,- : (a,-, b,‘) S Q,} (i = 1,2).
Def. Q,-(a,-) = {b,’ : (a,-, b,') S Q,‘} (i
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Small A;

(i) Suppose |A;| < p?/3 for i = 1,2. Recall

For any 0 € IF;,, By C Fp, Bo C F, we have

1

‘ Z et b2)2/p‘ < |B1|2E(By, B1)3|B2|2 E(B2, B2)3 ps.
b1E€B1,beBy

By this lemma, Lemma B2 (that E(B, B) < |B|*~" for B C B),
and Holder:

S<p 23 Y u(a)l T I(a) T ps

a1€A; ax€A,
<P7%+%’A1‘1+T’Y(Z’QI(31)> ’A2 TW<Z‘92 82)’>T
a1

1y, 2"+y 1_ . 2
<p2 st L p2© ife< L -2,
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Small E(Qi(a;), Qu(ar))

(i1) Suppose E(Qi(a;), Qi(ai)) < |Q1(a;)|]>p~2/™ for some i (say
i =1). By the same lemma and Holder's inequality, the sum of
(U(ay,3,)s U(ap,b,)) OVer quadruples with such ay is

1,1 72 7—y
< p_2+8 Z |Ql(al)|8p 8m|Q2(32)| 87
ai,az
_3_2 1 1+y % FT’Y
<p 3T A A (DD (e ) (D 2(22)))
ar a»
< pi T < pr < 3~ Tom
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Remaining case

(iii) We now consider the case max |A;| > p?/3 (WLOG

|Aa| > p?/3), and E(B, B) > |B]*p=%/™ B = Qi(a1).

Using Theorem E, we can reduce to consideration of the case
where |B — B| < p3%/™|B| and |B + B| < p/™|B|. With a; fixed,
we show that

ay — a
‘ > < : 2) & (b1 — bo)?[4(a1 — 2] V) ‘ < |B|p'/*7=.
bieB P
ap€A2,bEQ(a2)

where e,(x) = €2™*/P. Denote by T(a1) the above sum.

Subdivide into cases according to the size of Qy(a2): say

M, < |§22(32)| < 2Mb, M, = 2j.

Bourgain, Dilworth, Ford, Konyagin, Kutzarova Explicit RIP matrices



Further details

Say mis even. Cauchy-Schwartz + Hélder:

I T(@)? < vpIBP2/™ | > |F(b.by)I™ |

b1,beB

where b2 — b2 by (b b)
F(b, b;) = e 1~ 2 )
( 1) Z P (4(31 — 32) 2(31 — 32)
HEA
by€Q(a2)
Also,
Xy by
S IFers 3| o - )
br.beB XxEB+B | amed, Ya—2) 2a-2)

YEB—B beQy(a2)

m/2
1 1
e Y| ¥ o755 e )|

yeEB-B a(i)EAg xEB+B i=1
1<i<m
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Further details, |l

For some complex numbers ¢, ¢ of modulus < 1,

SR )M <M DT S M ey > en(xE/4),

b1,beB yEB—B £€F, xEB+B

m/2

m 1 1
e :#{a(l)’”.’a( € Z (al —ah 4 a("+m/2)> :g}

i=1

By Theorem A, since A, C [1, pl/"”], for any v > 0,
M0) <, |Ag|™2p".
Therefore,

> |F(b, by)|™ <, MJ|Ay|™?p"|B — BJ|B + B|

by,beB
+ Y ) AMOeve D e/

yE€B—B £€F; xEB+B
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Further details, |1l

Let

()= > MO

yeEB—-B
E€EF, . yé=z

By Holder and Parseval, we arrive at

S e S eboe/) <

B+ BI¥/4||¢ * ||y pM*.

yEB—BE€F; x€EB+B
Then
el <37 MEOME) Hya — (/€ )y2 = ys — (€/€)ya  yi € B~ BY'2.
§,§€F

The RHS is estimated using a weighted version of Bourgain's theorem on
> gep E(A,d - A), with A= B — B.
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Turan's power sums

Def: For |zj| =1, let

Problem: find z to minimize Mp(z).

Connection with coherence: The vectors

have coherence pu = 1 My_1(2).
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Constructions for Turan's power sums

Erdds - Rényi (1957): If z; chosen randomly on the unit circle for
each j, then with overwhelming probability, My(z) < /nlog N.

Montgomery (1978): p prime, n = p — 1, x a Dirichlet character
of order p — 1. Put

zj=x(j)e*™P, 1< j<p-1.
Then My(z) < /p=+vn+1for N < n(n+1).

Andersson (2008). p prime, N = p? — 1, x a generator of the
group of characters of £ =F,q4, y € F but in no proper subfield.
Put

zi=x(y+j-1), 1<j<p, n=p.
By a character sum bound of N. Katz,
Mu(z) < (d ~ 1)y < Vet

Remark: the bound is nontrivial for N < eV".
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New explicit construction

Theorem (BDFKK, 2010)

We give explicit constructions of z such that
Mp(z) = O <(Iog N log log N)1/3n2/3> .

Remark. Our constructions are better than Andersson’s
constructions for N > exp{n'/*}, nontrivial for
N < exp{cn/ log n}.

Corollary. Explicit constructions of vectors ug, ..., uy with

coherence
(<Iog N log log N> 1/3)
/,L == O 7 .

This matches, up to a power of loglog N, the best known explicit
constructions for codes when n < (log N)*.
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Some ideas of the proof

Based on ideas in a paper of Ajtai, lwaniec, Komlés, Pintz and
Szemerédi (1990).

They were interested in constructing sets T C {1,..., N} such
that all the Fourier coefficients

SN 1< N,
teT

are uniformly small, with | T| taken a small as possible.

The construction: Parameters Py, P1 > Py, R =~ log(Poy/ log P1),
Ty = multiset {r+s/p:1<r<R,Py<p< 2P prime,|s| < p/2}

of residues modulo g. Finally, let z be the multiset of numbers
emit/d Py < q < 2Py (q prime), t € Tq.
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