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1. Basic sieve methods and applications

A sieve is a technique for bounding the size of a set after the elements with “undesirable prop-

erties” (usually of a number theoretic nature) have been removed. The undesirable properties

could be divisibility by a prime from a given set, other multiplicative constraints (divisibility by

a perfect square for example) or inclusion in a set of residue classes. Inclusion-exclusion yields an

exact formula, however for k properties this produces 2k summands which is usually too much to

effectively deal with. A sieve is a procedure to estimate the number of “desirable” elements of the

set using kO(1) summands. While inexact, oftentimes the sieve is capable of estimating the size

very accurately.

The original sieve is, of course, the Sieve of Eratosthenes, the familiar process of creating a table

of prime numbers by systematically removing those integers divisible by small primes (but keeping

the primes themselves). The modern sieve was created by Viggo Brun in the period 1915-1922 as

a way of attacking famous unsolved problems such as Golbach’s Conjecture and the Twin Prime

problem (both, so far, unsuccessfully). Sieve methods have since found enormous application in

number theory, often used as tools in many other types of problems, e.g. in studying Diophantine

equations.

1.1. Notational conventions. τ(n) is the number of positive divisors of n

ω(n) is the number of distinct prime factors of n

Ω(n) is the number of prime factors of n counted with multiplicity

µ(n) is the Möbius’s function; µ(n) = (−1)ω(n) if n is squarefree and µ(n) = 0 otherwise.

P+(n) is the largest prime factor of n; P+(1) = 0 by convention

P−(n) is the smallest prime factor of n; P−(1) =∞ by convention

P(z) is the set of positive squarefree integers composed only of primes 6 z
Λ(n) denotes the von Mangoldt function

1X is the indicator function of the statement X or of the set X

the symbol p, with or without subscripts, always denotes a prime

π(x; q, a) is the number of primes p 6 x in the progression a mod q.

P denotes probability and E expectation

logk x is the k-th iterate of the logarithm of x

1.2. General sieve setup. A sieve problem is a probability space (A,F ,P), together with a “total

mass” quantity M and events Ap, one for each prime p. The “sifting function” is

S(A, z) = M · P(not Ap,∀p 6 z).
1
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Oftentimes A will be a finite set of integers, with P(n ∈ A) = 1/|A| for each n ∈ A (the uniform

probability measure), M = |A| and Ap is the event that p|n, that is, Ap = {n ∈ A : p|n}. This

is the standard “small sieve” problem, where S(A, z) is the number of n ∈ A with p - n for all

p 6 z; these are called the “unsifted numbers”. In the above definitions, M can be anything, but

in practice it has some arithmetical meaning.

Some specific examples:

• Eratosthenes sieve for primes. A = [1, x] ∩ N, uniform probabilities on A, M = |A| =
bxc, and Ap = {n ∈ A : p|n}. Then S(A,

√
x) = π(x)−π(

√
x) + 1, as the unsifted elements

are the primes in (
√
x, x] together with the number 1.

• Twin primes. A = [1, x] ∩ N, Ap = {n ∈ A : p|n(n + 2)}. The unsifted numbers are

numbers n such that n(n+ 2) has no prime factor 6 z. In particular, S(A,
√
x+ 2) counts

k ∈ (
√
x+ 2, x] for which both k and k + 2 are prime.

Equivalently, Ap is the set of n that avoid the residue classes 0 mod p and −2 mod p.

• Twin primes, weighted version. A = [2, x] ∩ N, and

P(n ∈ A) =
Λ(n+ 2)

M
, M =

∑
26n6x

Λ(n+ 2),

Ap = {n ∈ A : p|n}. Here M =
∑

26n6x Λ(n+ 2) ∼ x by the Prime Number Theorem, and

S(A,
√
x) =

∑
26n6x

P−(n)>
√
x

Λ(n+ 2) =
∑

√
x<p6x

Λ(p+ 2)

=
∑

√
x<p6x

p+2 prime

log(p+ 2) +O(x1/2),

the error term coming from terms p+ 2 = qb where q is prime and b > 2.

• Prime tuples. Let a1, · · · , ak ∈ N and b1, . . . , bk ∈ Z. Put A = [1, x] ∩ N, and1

Ap = {n ∈ A : p|(a1n+ b1) · · · (akn+ bk)}.
For an appropriate c > 0, which depends on a1, a2, . . . , ak, bk, S(A, c

√
x) counts those n 6 x

for which a1n+ b1, . . . , akn+ bk are simultaneously prime.

• Prime values of a polynomial. Let f : Z → Z be an irreducible polynomial of degree

h > 1, put A = [1, x] ∩ Z, Ap = {n ∈ A : p|f(n)}. Let C be large enough so that

|f(n)| 6 Cnh for all n > 1. Then, as before, S(A,
√
Cxh) captures values of n for which

f(n) is prime.

• Goldbach’s problem. Let N be an even, positive integer, put A = {1, 2, . . . , N − 1},
M = |A| = N − 1, and Ap = {k ∈ A : p|k(N − k)}. Then S(A,

√
N) counts numbers

k ∈ (
√
N,N ] for which both k and N − k are prime. In particular, S(A,

√
N) > 0 implies

that N is the sum of two primes. If one shows this for all N > 4, one deduces Goldbach’s

Conjecture.

• Primes in an arithmetic progression. Fix coprime positive integers a and q, let

A = {1 6 n 6 x : n ≡ a (mod q)},
1Unless otherwise specified, from now on whenever A is a finite set, the probability measure on A will be the

uniform measure, and M will be the number of elements of A.



SIEVE METHODS LECTURE NOTES, SPRING 2023 3

Ap = {n ∈ A : p|n}. Then S(A,
√
x) captures primes in (

√
x, x] that are in the arithmetic

progression a mod q.

• Sums of two squares. A = [1, x] ∩ Z,

Ap =

{
{n ∈ A : pe‖n for some odd e} p ≡ 3 (mod 4)

∅ otherwise.

Then S(A, x) counts integers n 6 x, for which we don’t have pe‖n for any prime p ≡ 3

(mod 4) and odd exponent e. That is, S(A, x) is the number of integers n 6 x which are

the sum of two squares.

• Sieve by multiple residue classes. Let M,N be two integers, A = {N + 1,M +

2, . . . , N +M} and for each prime p let Ip be some subset (possibly empty) of the residue

classes modulo p. Put

Ap = A ∩ Ip.

Here S(A, z) counts the integers in (N,M+N ] avoiding all the residue classes Ip for primes

p 6 z. If |Ip| is bounded or bounded on average, then this is a very general sieving problem

of “small sieve” type, whereas if |Ip| is unbounded on average, the problem falls under the

umbrella of the “large sieve”. The case of prime values of a polynomial, see above, is a

special case with

Ip = {n ∈ Z/pZ : f(n) ≡ 0 (mod p)}.

• Multivariate polynomial sieve. Let F (x) : Zk → Z be a multivariate polynomial of

x = (x1, . . . , xk), take any finite A ∈ Zk, and Ap = {x ∈ A : p|F (x)}. Then S(A, z) counts

x ∈ A for which F (x) has no prime factor p 6 z.
• The square-free sieve. Let A be a finite set of integers and for each prime p let Ap =

{n ∈ A : p2|n}. Then S(A, z), with an appropriately large z, will count the elements of

A which are squarefree. A famous application is for squarefree values of a polynomial, e.g.

A = {f(n) : 1 6 n 6 x}, where f is an irreducible polynomial.

One can similarly set up a k-free sieve problem.

• Elliptic curve sieve. Fix and elliptic curve E over Q Let A be the set of primes q 6 x.

Let Ap = {q ∈ A : p|#E/Fq}, where E/Fq is the reduction of E modulo q. It is known that

#E/Fq 6 q + 1 + 2
√
q 6 3q,

and thus S(A, 2
√
x) counts those q for which #E/Fq is prime.

If d is a square-free integer, define

(1.1) Ad =
⋂
p|d

Ap, Ad = M · P(Ad).

In particular, A1 = A and A1 = M . In the case where A is a finite set of integers with uniform

measure, M = |A|, and Ap = {n ∈ A : p|n}, Ad counts the number of n ∈ A divisible by d.

In this notation, inclusion-exclusion gives

(1.2) S(A, z) =
∑

d∈P(z)

µ(d)Ad.
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1.3. Legendre’s sieve for primes (Legendre, 1808). Let A = [1, x] ∩ Z, Ap = {n ∈ A : p|n}.
Then S(A, z) counts the positive integers n 6 x with no prime factor 6 z; in particular, this

includes all of the primes between z and x. Also, for each aquarefree d, Ad = {n ∈ A : d|n} and

thus

Ad = |Ad| = bx/dc = x/d+O(1).

By (1.2),

π(x)− π(z) 6 S(A, z) =
∑

d∈P(z)

µ(d)
(x
d

+O(1)
)

= x
∑

d∈P(z)

µ(d)

d
+O

(
2π(z)

)
= x

∏
p6z

(
1− 1

p

)
+O

(
2π(z)

)
.

Taking z = log x, and using the crude bound π(z) 6 z together with Mertens’ bound, we conclude

that

π(x) 6 z +
x

log z

(
e−γ + o(1)

)
+O(2log x) = O

(
x

log2 x

)
.

Remark: We can do better by observing that in fact Ad = 0 for d > x (cf. Hooley [94]), and thus

restricting the sums to such d.

1.4. The role of independence. If the events Ap are independent, then the sieving problem is

trivial, for then

(1.3) S(A, z) = M
∏
p6z

(1− PAp).

In practice, the events are not independent, but are close to being so, especially for small primes.

For example, in Legendre’s sieve for primes, Ad = bx/dc is very close to x/d. Even with this strong

approximation, however, the accumulation of error terms (coming from k-correlations) becomes

unwieldy when z is much larger than log x.

1.5. Main goals. We will see that the right side of (1.3) is a good approximation to S(A, z) under

very general conditions. We will accomplish this by a judicious pruning of the summands in (1.2).

To set things up, we adopt some additional notation. Take X to be an approximation of M

(this can be anything, but in practice it is very close to M). We assume that there is a function g

satisfying

(g) 0 6 g(p) < 1 (all primes p),

which, when extended to a multiplicative function by g(d) =
∏
p|d g(p), gives Ad ≈ Xg(d) for

squarefree d; that is, we require that the “remainders”

(r) rd := Ad −Xg(d)

to be “small on average”. In the case where the events Ap are independent, taking g(p) = PAp
yields rd = 0 for all d and we recover (1.3). In practice, however, we will not take g(p) = PAp but
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something very close which is convenient for calculations. We also adopt the short-hand

(V ) V (z) =
∏
p6z

(1− g(p)).

In this notation, the right side of (1.3) is about XV (z).

Broadly speaking, if pg(p) is bounded on average and rd is O(1) on average over “small” d, we

will be able to prove the following:

(asymptotic) S(A, z) ∼ XV (z) (z = Xo(1));

(upper bound) S(A, z)� XV (z) (z 6 X);

(lower bound) S(A, z)� XV (z) (z 6 Xc),

(1.4)

where the constant c > 0 depends on the nature of the sieve problem A.

In plain language, we can prove the expected asymptotic formula for small z, an upper bound

of the expected order for all z, and a lower bound of the expected order if z is at most a small

power of X. The upper bound in (1.4) is amazing in its generality, and it has enormous utility as

an auxilliary counting device in many problems.

1.6. Sifting density (dimension), and level of distribution. For most sieving problems, we

have g(p) ≈ κ/p on average over p for some fixed κ (we’ll make this precise below). In this case κ

is referred to as the sifting density or sifting dimension. In the literature, the linear sieve refers to

dimension 1. Various sieving procedures have been optimized for sieves of a particular density, e.g.

the Rosser-Iwaniec theory of the linear sieve, and Iwaniec’s theory of the half-dimensional sieve.

Roughly speaking, the level of distribution of a sieve problem A is the largest D for which∑
d6D,d∈P(z)

|rd| 6 εXV (z),

where ε > 0, X and z are given, and ε is small. The larger the level of distribution, the better

quality of the bounds we can prove in (1.4).

1.7. More examples. There are limitations of the sieve, which are illustrated by the following

examples.

1.7.1. Eratosthenes sieve. The asymptotic in (1.4) cannot be expected to hold for z being a fixed

power of X. Take A = [1, x] ∩ Z, X = x, and set Ap = {n ∈ A : p|n}. As before,

Ad = #{n 6 x : d|n} = bx/dc = x/d+O(1)

Thus, taking g(d) = 1/d, we see that the error terms rd = O(1). Also,

S(A,
√
x) = π(x)− π(

√
x) + 1 ∼ x

log x
(x→∞)

by the Prime Number Theorem. However, Mertens’ theorem gives

XV (
√
x) = x

∏
p6
√
x

(
1− 1

p

)
∼ 2e−γx

log x
,

with 2e−γ = 1.122 . . .. The discrepancy between S(A,
√
x) and XV (

√
x) stems from the large

amount of dependence among the events Ap for large primes p; e.g. Ap ∩ Ap′ ∩ Ap′′ = ∅ if

p > p′ > p′′ > x1/3. In fact, for fixed c > 0, one has S(A, xc) ∼ w(c)XV (z), where w(·) is the
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Buchstab function, which satisfies w(c) 6= 1 for almost all c ∈ (0, 1]. Thus, in general the condition

z = Xo(1) is necessary in order to conclude the asymptotic in (1.4).

1.7.2. Twin primes. . Take A = [1, x] ∩ Z, X = x, Ap = {n ∈ A : p|n(n+ 2)}. Here S(A,
√
x+ 2)

counts the number of twin prime pairs between
√
x+ 2 and x. Hardy and Littlewood [78, Conjec-

ture B] conjectured that the count of such pairs is ∼ Cx/ log2 x where

C = 2
∏
p>2

(
1− 1

(p− 1)2

)
≈ 1.32.

For a heuristic explanation of this formula, see Section 1.8 below. By breaking up [1, x] into

subintervals of length d, we easily derive

Ad = #{n 6 x : d|n(n+ 2)} = x
ρ(d)

d
+O(ρ(d)),

where

ρ(d) = #{0 6 k 6 d− 1 : k(k + 2) ≡ 0 (mod d)}.
By the Chinese remainder theorem, ρ is multiplicative, ρ(2) = 1 and ρ(p) = 2 for p > 2. Thus,

this is a sieve problem of dimension 2 (or sifting density 2). Putting g(d) = ρ(d)/d and applying

Mertens, we get that

(1.5) XV (
√
x+ 2) =

x

2

∏
36p6z

(
1− 2

p

)
∼ (4e−2γ)Cx

log2 x
(x→∞).

As in subsection 1.7.1 above, XV (z) differs by a constant multiplicative factor from what is expected

to be true.

Sieve methods deliver an upper bound of the expected order

#{n 6 x : n and n+ 2 are both prime} � xV (
√
x) � x

log2 x
.

However, sieve methods only deliver a lower bound for somewhat smaller z. For example, we will

show in section 3 that

S(A, x1/8)� XV (x1/8) � x

log2 x
.

From the last estimate, we conclude that there are � x/ log2 x values of k 6 x for which each of k

and k + 2 has at most 7 prime factors. This is a typical conclusion from a lower bound sieve. A

better conclusion is possible using the “linear variant” of the twin prime sieving problem, where

A = {p+ 2 : p 6 x} a set of shifted primes, Ap = {n ∈ A : p|n}. In this set-up,

Ad = π(x; d,−2) ∼ li(x)

φ(d)
(2 - d)

by the prime number theorem in arithmetic progressions. For the application to the sieve, we need a

uniform estimate on π(x; d,−2), at least on average over d. Here we take X = li(x), ad g(p) = 1
p−1

for odd p. Since g(p) ≈ 1/p, this is a sieve problem of dimension 1. We will show, in section 3, that

S(A, x1/7)� X V (x1/7)� x

log2 x
,

and hence there are � x/ log2 x primes p 6 x such that p+ 2 has at most 6 prime factors.
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1.7.3. Prime k-tuples. Let a1, · · · , ak ∈ N and b1, . . . , bk ∈ Z. Put A = [1, x] ∩ N, and

Ap = {n ∈ A : p|(a1n+ b1) · · · (akn+ bk)}.
An easy counting yields

Ad = x
ρ(d)

d
+O(ρ(d)),

where

ρ(d) = #{0 6 n < d : (a1n+ b1) · · · (akn+ bk) ≡ 0 (mod d)}.
By the Chinese Remainder Theorem, ρ(d) is multiplicative. We say that the collection of linear

forms a1n + b1, . . . , akn + bk is admissible if ρ(p) < p for all primes p. In the contrary case that

ρ(p) = p for some p, for every n one of the forms ajn+ bj is divisible by p and hence there are only

finitely many n making all of the ajn+ bj simultaneously prime. Some examples:

Admissible Non-admissible

(n, n+ 2k); k ∈ N (n, n+ 1)

(n, 2n+ 1) (n, 3n+ 1)

(n, n+ 2, n+ 6) (n, n+ 2, n+ 4)

We set g(p) = ρ(p)/p. Note that if

p -
k∏
i=1

ai
∏

16i<j6k

(aibj − ajbi),

then ρ(p) = k (see Theorem 2.5 below). In particular, ρ(p) = k for all sufficiently large p, and

hence this is a sieve problem of density k (or dimension k). At present, sieve methods can deliver

bounds of the form

#{n 6 x : ajn+ bj are prime for all j} 6 C x

(log x)k
,

where C is an explicit function of a1, b1, . . . , ak, bk. See Theorem 2.5 below for a precise statement.

If k > 2 we still do not know how to show that the left side goes to ∞ as x→∞.

1.7.4. Selberg’s examples. [135]. The values of c for which sieve method deliver lower bounds (1.4)

are invariable smaller than we would like. There is a fundamental barrier at work which explains

this, known as the “parity barrier”. Roughly speaking, the small sieve works with inputs X, the

function g and estimates for the remainders rd. However, even if the level of distribution is very

large, say x1−o(1), the sieve fundamentally cannot distinguish between numbers with an odd number

of prime factors from those with an even number of prime factors. Consider two sequences defined

as follows. Recall the Liouville function λ(n) = (−1)Ω(n) (the completely multiplicative function

which is -1 at all primes). Define

A+ = {1 6 n 6 x : λ(n) = 1}, A− = {1 6 n 6 x : λ(n) = −1},
respectively, and A±p = {n ∈ A± : p|n} for each p.

The prime number theorem (with classical error term) implies∑
n6x

λ(n) = O(xe−c
′√log x), some c′ > 0.
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Therefore,

#{n ∈ A± : d|n} =
∑

m6x/d

1± λ(dm)

2
=

1

2

⌊x
d

⌋
± λ(d)

2

∑
m6x/d

λ(m)

=
x

2d
+O

(x
d
e−c
√

log(x/d)
)
.

In particular, taking d = 1, we wee that |A±| ∼ x
2 . Take X = x

2 and g(d) = 1
d for all d. For both

sequences, the level of distribution is x1−o(1) (pretty much the best range that one can hope for),

and for both sieve problems we have

V (
√
x) ∼ 2e−γ

log x
.

However, numbers n 6 x that have no prime factor 6
√
x are prime or 1, thus

S(A+,
√
x) = 1, while S(A−,

√
x) ∼ x

log x
=

2X

log x
.

Thus, although the sieve inputs (quantity X and bounds on Ad) are identical in both problems,

the truth is very different. In order to distinguish primes from integers with 2 prime factors, say,

further inputs into the sieve are required. Sieve procedures which include as hypotheses bilinear

sum bounds for A have proven to be very successful in detecting primes, e.g. Friedlander-Iwaniec

[60] and Harman [82].

1.8. The prime k–tuples conjecture. Much of sieve theory has been driven by attempts to prove

special cases of the general Prime k-tuples Conjecture. The setup is a finite collection f1, . . . , fk
of nonconstant irreducible (over Q) polynomials in m variables, with integer coefficients. For each

prime p, let

ρ(p) = #{x = (x1, . . . , xm) mod p : f1(x) · · · fk(x) ≡ 0 (mod p)}.

Definition 1. The set (f1, . . . , fk) is admissible if the fi are distinct and ρ(p) < pm for all p.

Conjecture 1.1 (General Prime k-tuples Conjecture). Let f1, . . . , fk be an admissible collection

of polynomials from Zm to Z. Then

(1.6) #{0 6 xi < x (1 6 i 6 m) : f1(x), . . . , fk(x) are all prime } ∼ S∏k
i=1 deg(fi)

xm

(log x)k
,

where deg(fi) is the total degree of fi, and

S = S(f1, . . . , fk) =
∏
p

(
1− ρ(p)

pm

)(
1− 1

p

)−k
is the so-called singular series associated with f1, . . . , fk.

One can show that ρ(p)/pm−1 is k on average and this implies that the infinite product converges

(details below in the case of univariate polynomials).

This conjecture subsumes a large number of conjectures that have been made over time, in

various degrees of generality. We mention here the conjectures of Bunyakowsky [16], Dickson [28],

Hardy-Littlewood [78], Schinzel [131], and Bateman-Horn [11].

Some special cases.
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• Primes in an arithmetic progression. m = 1, k = 1, f1(n) = qn+ a, where (a, q) = 1.

Dirichlet proved [29] in 1837 that there are infinitely many n with f1(n) prime; the Prime

Number Theorem for arithmetic progressions (de la Vallée Poussin, 1896) gives the full

asymptotic (1.6).

• Twin primes. m = 1, k = 2, f1(n) = n, f2(n) = n + 2. Here S = C := 2
∏
p>2(1 −

1
(p−1)2

) = 1.32 . . . is the “twin prime constant”.

• “Sexy” primes. m = 1, k = 2, f1(n) = n, f2(n) = n + 6. Here S = 2C since ρ(2) =

ρ(3) = 1 and ρ(p) = 2 for p > 3. That is, conjecturally there are about twice as many “sexy

primes” as twin primes below x.

• Sophie Germain primes. m = 1, k = 2, f1(n) = n, f2(n) = 2n+ 1.

• Primes of form n2 + 1. m = 1, k = 1, f1(n) = n2 + 1.

• k-term arithmetic progressions of primes. m = 2, forms n1, n1 +n2, n1 +2n2, . . . , n1 +

(k − 1)n2. When k = 3, the asymptotic in Conjecture 1.1 was essentially proved by Vino-

gradov in 1937. Balog [5] extended this to include many other collections of forms with

m > 2. Green and Tao [71] showed that there are infinitely many k-term arithmetic pro-

gressions of primes for any k > 4, and this was extended by Green and Tao and by Green,

Tao and Ziegler [72, 73, 74, 75] in 2010–12 to prove the full asymptotic in (1.6). Their

theory extends to many other collections of linear forms when m > 2.

• Primes of the form x2 + y2. m = 2, k = 1, f1(x, y) = x2 + y2. Fermat showed that every

prime p ≡ 1 (mod 4) is the sum of two squares.

• Primes of the form x2 + y4. m = 2, k = 1, f1(x, y) = x2 + y4. The infinitude of such

primes, and in fact the full asymptotic (1.6), is a celebrated theorem of Friedlander and

Iwaniec [59] in 1998.

The only case of (1.6) which is known when m = 1 is the case when k = 1 and f1 is linear (the

prime number theorem for arithmetic progressions).

There is a relatively easy heuristic for (1.6). According to the Prime Number Theorem, a

randomly chosen integer near x has a likelihood of about 1
log x of being prime. Assuming that the

fi(x) behave randomly, the likelihood of fi(x) being prime should be about 1
log fi(x) ∼

1
deg(fi) log x if

each xi ∈ [1, x]. This leads to the prediction that

#{0 6 xi < x (1 6 i 6 m) : f1(x), . . . , fk(x) are all prime } ∼ 1∏k
i=1 deg(fi)

xm

(log x)k
.

This matches (1.6) except for the singular series factor. Implicit in the “randomness” hypothesis

is the assumption that for any prime p, the likelihood that each of fi(x) is coprime to p is about

(1− 1/p)k. This is not correct, however, and if x is chosen randomly modulo p, then the likelihood

that each of the fi(x) is coprime to p is exactly 1−ρ(p)/pm. Thus, in our heuristic we should insert

a correction factor (
1− ρ(p)

pm

)(
1− 1

p

)−k
.

Doing this for all p produces a correction factor equal to S(f1, . . . , fk), and leads to the more precise

prediction (1.6).

Recently, Banks, Ford and Tao [9] showed that when the polynomials fi are all linear, then the

asymptotic formula (1.6) can be heuristically derived by sieving up to x1/eγ , suggested by Polya in
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the case of the prime number theorem. That is, with X = xm and z = x1/eγ ,

XV (z) ∼ Sxm

(log x)k
.

This is easy to show: indeed,

V (z) =
∏
p6z

(
1− ρ(p)

pm

)

=
∏
p6z

(
1− ρ(p)

pm

)
(1− 1/p)−k(1− 1/p)k

∼ S

(
e−γ

log z

)k
=

S

(log x)k
(x→∞).

1.9. The small sieve. Viggo Brun’s fundamental idea was to replace the huge sum on the right

side of (1.2) with a sum over a much smaller range of d, at the expense of replacing the equality

in (1.2) with an inequality. In general, a sieve (or small sieve) is a sequence λ = (λd) supported

on squarefree integers d which replaces µ(d) in (1.2). We will suppose that either λ = λ+ = (λ+
d )

satisfies

(λ+) λ+
1 = 1,

∑
d|m

λ+
d > 0 (m > 1)

or that λ = λ− = (λ−d ) satisfies

(λ−) λ−1 = 1,
∑
d|m

λ−d 6 0 (m > 1).

We call λ+ an upper bound sieve and λ− a lower bound sieve, which comes from the following easy

result:

Lemma 1.2. For z > 2 let P(z) denote the set of squarefree positive integers, divisible only by

primes p 6 z. Assume (λ+) and (λ−). Then, for any sieve problem and and z > 2,

(1.7)
∑

d∈P(z)

λ−d Ad 6 S(A, z) 6
∑

d∈P(z)

λ+
d Ad.

Further, for any multiplicative function g such that 0 6 g(p) < 1 for each p 6 z, we have

(1.8)
∑

d∈P(z)

λ−d g(d) 6
∏
p6z

(1− g(p)) 6
∑

d∈P(z)

λ+
d g(d).

Proof. For a random ω ∈ A, let

mω =
∏
p6z
ω∈Ap

p.

Then, by (λ+),

S(A, z) = MP(mω = 1) = M · E1mω=1

6M · E
∑
d|mω

λ+
d =

∑
d∈P(z)

λ+
d Ad,
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and similarly by (λ−),

S(A, z) >M · E
∑
d|mω

λ−d =
∑

d∈P(z)

λ−d Ad.

The claim (1.8) is a special case, where M =, our probability space has independent events Ap such

that PAp = g(p), so that S(A, z) =
∏
p6z(1−g(p)) and Ad = g(d). Such a probability space is easy

to construct explicitly: take m = π(z), pk the k-th prime, A = {0, 1}m, the probability defined by

P((v1, . . . , vm)) =
∏
vk=0

g(pk)
∏
vk=1

(1− g(pk)),

and Apk = {(v1, . . . , vm) ∈ A : vk = 0}. �

The major goal of sieve methods is to construct good sieve parameters λ±, with small support

inside P(z) (usually this means the support has zO(1) elements in P(z)) and with the sums in

(1.7) mimicking S(A, z) as closely as possible. With this notation, (g) and (r), we have

(1.9)
∑

d∈P(z)

λdAd = X
∑

d∈P(z)

g(d)λd +
∑

d∈P(z)

λdrd.

As λd is a replacement for µ(d), it is reasonable to suppose (if we have constructed our sieve well)

that ∑
d∈P(z)

g(d)λd ≈
∑

d∈P(z)

g(d)µ(d) =
∏
p6z

(1− g(p)) = V (z).

1.10. Legendre’s sieve, general version.

Theorem 1.3. Consider a sieve problem, assume (g), (r) and adopt notation (V ). Then

(1.10) S(A, z) = XV (z) +O

( ∑
d∈P(z)

|rd|
)
.

Proof. Trivially, the weights λ±d = µ(d) satisfy (λ+) and (λ−) with equality. By (1.7),

S(A, z) = X
∑

d∈P(z)

µ(d)g(d) +
∑

d∈P(z)

µ(d)rd = XV (z) +O

( ∑
d∈P(z)

|rd|
)
. �

Although this sieve suffers from the large number, 2π(z), of remainder summands, it is useful in

situations where the “densities” g(p) are rather small on average, and so the product on the right

hand side of (1.10) captures the true behavior of set of interest for relatively small z. A prominent

example of the use of Legendre’s sieve was given by Hooley [90], who deduced Artin’s primitive

root conjecture from the Generalized Riemann Hypothesis for Dedekind zeta functions of certain

number fields. Details will be given later in Section 2.2.6.

1.11. Brun’s pure sieve. Brun’s sieve is based on a simple truncated version of inclusion-exclusion,

due to Brun (1915).

Lemma 1.4 (Inclusion-exclusion). Let u be a non-negative integer. Then, for any k ∈ N,

1u=0 =
∞∑
r=0

(−1)r
(
u

r

)
=

k∑
r=0

(−1)r
(
u

r

)
+ (−1)k+1

(
u− 1

k

)
,
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where we set
(−1
j

)
= 0 for all j.

Proof. We may assume that u > 1, as the statement is trivial when u = 0. The first equality is

trivial from the binomial theorem. For the second, when u > 1 we have
∞∑

r=k+1

(−1)r
(
u

r

)
=

∞∑
r=k+1

(−1)r
[(
u− 1

r − 1

)
+

(
u− 1

r

)]
= (−1)k+1

(
u− 1

k

)
. �

Theorem 1.5 (Brun’s pure sieve). Let k be a nonnegative integer and define

λd =

{
µ(d) if ω(d) 6 k

0 otherwise.

Then λ satisfies (λ+) if k is even and (λ−) if k is odd. Thus, if ke is even and ko is odd, then for

any sieve problem A and any z > 2 we have

(1.11)
∑

d∈P(z)
ω(d)6ko

µ(d)Ad 6 S(A, z) 6
∑

d∈P(z)
ω(d)6ke

µ(d)Ad.

In particular, taking ke, ko to be consecutive integers we see that for any non-negative integer k,∣∣∣∣S(A, z)−
∑

d∈P(z)
ω(d)6k

µ(d)Ad

∣∣∣∣ 6 ∑
d∈P(z)
ω(d)=k+1

µ(d)Ad.

Proof. Let k > 0 and let m be a positive, squarefree integer. Then, by Lemma 1.4,

1m=1 = 1ω(m)=0 =

k∑
r=0

(−1)r
(
ω(m)

r

)
+ (−1)k+1Y, Y =

(
ω(m)− 1

k

)
> 0,

=
k∑
r=0

(−1)r
∑
d|m

ω(d)=r

1 + (−1)k+1Y

=
∑

d|mω(d)6k

µ(d) + (−1)k+1Y

=
∑
d|m

λd + (−1)k+1Y,

from which follows (λ+) if k is even and (λ−) if k is odd. The final claim (1.11) follows from (1.7)

in Lemma 1.2. �

The inequalities in Theorem 1.5 were later rediscovered by Bonferroni, and are often referred to

as the “Bonferroni inequalities” in probability theory.

Lemma 1.6. Let z > 2 and 0 6 g(p) 6 1 for each prime p 6 z. Let k be a non-negative integer.

Extend f multiplicatively by defining g(d) =
∏
p|d g(p) for any squarefree d with d ∈P(z). Then∑

d∈P(z)
ω(d)6k

µ(d)g(d) =
∏
p6z

(1− g(p)) + (−1)kW,
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where

0 6W 6
∑

d∈P(z)
ω(d)=k+1

g(d) 6
1

(k + 1)!

(∑
p6z

g(p)

)k+1

.

Proof. Again, consider the sieve problem where P(Ap) = g(p) for each p 6 z, and the events Ap
are independent. By Theorem 1.5 and (1.8),∏

p6z

(1− g(p)) =
∑

d∈P(z)
ω(d)6k

µ(d)g(d) + (−1)k+1W, 0 6W 6
∑

d∈P(z)
ω(d)=k+1

g(d).

The final inequality for W comes from expanding the (k+1)-fold sum (this is an old Erdős trick). �

Theorem 1.7. Assume (g), (r) and V (z) > 0, where V (z) is given by (V ). Then

S(A, z) = XV (z) +O(XV (z)3/2) +O

( ∑
d6z4 log(1/V (z))+1

d∈P(z)

|rd|
)
.

Proof. Apply Theorem 1.5 with k =
⌊
4 log 1

V (z)

⌋
, followed by an application of Lemma 1.6. This

gives

S(A, z) =
∑

d∈P(z)
ω(d)6k

µ(d)Ad +O

( ∑
d∈P(z)
ω(d)=k+1

Ad

)
, Ad = Xg(d) + rd

= X
∑

d∈P(z)
ω(d)6k

µ(d)g(d) +O

(
X

∑
d∈P(z)
ω(d)=k+1

g(d)

)
+O

( ∑
d∈P(z)
ω(d)6k+1

|rd|
)

= XV (z) +O

(
X

1

(k + 1)!

(∑
p6z

g(p)

)k+1)
+O

( ∑
d∈P(z)

d6zk+1

|rd|
)
.

Lastly, by our definition of k,

1

(k + 1)!

(∑
p6z

g(p)

)k+1

6
1

(k + 1)!

(∑
p6z

− log(1− g(p))

)k+1

=
1

(k + 1)!

(
log

1

V (z)

)k+1

6

(
e log 1

V (z)

k + 1

)k+1

6 (e/4)k+1 � V (z)4 log 4−4 6 V (z)3/2.

(1.12)

This completes the proof. �

Remarks. We have imposed virtually no hypotheses on the sieve problem in this theorem. In

applications, one has typically V (z) � (logX)−κ for some fixed κ, and thus we have applied (1.11)

with k ≈ 4κ log2X. Typically in the sum in identity (1.2) and the sums in Brun’s inequalities
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(1.11), the summands corresponding to d > X are negligible (or identically zero). Hardy and

Ramanujan [80] in 1917 showed that most integers d 6 X have about log2X prime factors, and

thus it is natural to choose k somewhat larger than log2X in order to capture the bulk of the sum.

1.11.1. Example: twin primes. As before, let A = [1, x] ∩ Z, Ap = {k ∈ A : p|k(k + 2)}. Take

X = x,

g(p) =
ρ(p)

p
, ρ(2) = 1, ρ(p) = 2 (p > 2),

and extend ρ to a multiplicative function on P(z). For squarefree d, Ad counts integers lying in

ρ(d) residue classes modulo d, hence

bx/dcρ(d) 6 Ad 6 dx/deρ(d).

This implies that Ad = xg(d) + rd where

|rd| 6 ρ(d) 6 τ(d).

By Mertens’ estimate (cf., (1.5)), V (z) ∼ c(log z)−2 for some constant c. Take

z = x
1

16 log2 x ,

so that in the summation of the error terms rd we have

z4 log(1/V (z))+1 = z8 log2 z+O(1) � x1/2+o(1).

Thus, ∑
d∈P(z)

d6z4 log(1/V (z))+1

|rd| 6
∑

d6z4 log(1/V (z))+1

τ(d)� x1/2+o(1).

By Theorem 1.5,

S(A, z) ∼ XV (z) ∼ cx

log2 z
∼ 256cx

(
log2 x

log x

)2

.

As S(A, z) > #{z < k 6 x : k, k + 2 both prime}, we see that

#{k 6 x : k, k + 2 both prime} � x

(
log2 x

log x

)2

,

which misses the conjectured order by a factor (log2 x)2. Applying partial summation gives an

immediate corollary.

Corollary 1.8 (Brun [19], 1919). We have∑
p:p,p+2 prime

1

p
<∞.

Remarks. Applying Theorem 1.5 to the sieve of Eratosthenes yields π(x) � x log2 x
log x , missing

the true order of π(x) by a factor log2 x.

Brun later [20] gave a much more complicated version of his sieve, where the simple truncation

(1.11) is replaced by sieves where one considers the summation over integers d with restricted prime

factors of various sizes. A greatly simplified version of this idea was found by Hooley, and which

will be the subject of the following two sections.
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2. The Brun-Hooley sieve: upper bounds

In this section and the next, we present a variation of Brun’s pure sieve due to C. Hooley [95],

which is very simple, from a combinatorial viewpoint, and yet powerful enough to deliver quickly

each of the desired sieve bounds in (1.4). Some general estimates using this method were given by

Ford and Halberstam [55].

2.1. Upper bounds. The fundamental idea of the upper bound sieve is to partition the primes

blow z into sets P1, . . . ,Pt and apply the Brun sieve bounds on each set Pi separately.

Lemma 2.1. Partition the primes 6 z as P1 ∪ · · · ∪ Pt. For each i, let (λ
(i)
d ) be an upper bound

sieve. For any d ∈P(z), let

λ+
d =

t∏
i=1

λ
(i)
di
,

where d1, . . . , dt are defined uniquely by

(2.1) d = d1 · · · dt, (∀i, p|di ⇒ p ∈ Pi).

Then λ+ is an upper bound sieve, i.e., satisfies (λ+).

Proof. Clearly λ+ = 1. Also, for any m > 1, m has a unique decomposition as m = m1 · · ·mt,

where for each i, all of the prime factors of mi are in Pi. Then, by (λ+),∑
d|m

λ+ =
t∏
i=1

( ∑
di|mi

λ
(i)
di

)
> 0,

as required. �

Taking each λ
(i)
d to be an upper bound Brun sieve (from Theorem 1.5) with k = ki even, we

arrive at

Lemma 2.2 (The Brun-Hooley upper bound sieve). Let P1 ∪ · ∪ Pt be any partition of the primes

6 z, and let k1, . . . , kt be arbitrary non-negative even integers. Then the sequence λ given by

(2.2) λ+
d =

{
µ(d) if ω(dj) 6 kj (1 6 j 6 t)

0 otherwise

is an upper bound sieve satisfying (λ+). Here d uniquel decomposes as in (2.1).

The number theoretic motivation for this comes from looking at the statistical distribution of

prime factors of integers 6 X. Not only does a typical integer have about log logX prime factors,

but the prime factors themselves are typically uniformly distributed on a log log-scale; that is,

there are about log log t prime factors 6 t, uniformly for t 6 X. With Lemma 2.2, we can restrict

the number of large prime factors of the summands d while still retaining almost all significant

summands.

Suppose that we have a sieve problem, z > 2 and assume (g) and (r). Partition the primes 6 z

as P1 ∪ · · · Pt. Define

Pi =
∏
p∈Pi

p (1 6 i 6 t).
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From Lemma 2.2 and Lemma 1.2 we immediately get

S(A, z) 6
∑
d1|P1

ω(d1)6k1

· · ·
∑
dt|Pt

ω(dt)6kt

µ(d1) · · ·µ(dt)Ad1···dt

= XU1 · · ·Ut +R,

where

(2.3) Uj =
∑
dj |Pj

ω(dj)6kj

µ(dj)g(dj), R =
∑
d1|P1

ω(d1)6k1

· · ·
∑
dt|Pt

ω(dt)6kt

µ(d1 · · · dt)rd1···dt .

Define

(2.4) Vj =
∏
p∈Pj

(1− g(p)), Lj = log
1

Vj
.

Notice that V1 · · ·Vt = V (z). Lemma 1.6 plus g(p) 6 − log(1− g(p)) implies

Vj 6 Uj 6 Vj +
L
kj+1
j

(kj + 1)!
= Vj

(
1 + eLj

L
kj+1
j

(kj + 1)!

)
6 Vj exp

{
eLj

L
kj+1
j

(kj + 1)!

}
.

The last inequality appears wasteful, but in practice the quantity in the exponential is small. When

kj = 0 we can omit the factor eLj since

Uj = 1 = VjV
−1
j = Vje

Lj .

This leads to small improvements in numerical constants. Multiplying these inequalities together

for all j, we have

(2.5) V (z) 6 U1 · · ·Ut 6 eEV (z),

where

(2.6) E :=

t∑
j=1

e
Lj1kj>0

L
kj+1
j

(kj + 1)!
.

We conclude from (1.7) and (1.9) the following.

Theorem 2.3. Let A be a sieve problem and assume (g), (r) and (V ). Partition the set of primes

in [1, z] into P1 ∪ · · · ∪ Pt, let Pi =
∏
p∈Pi p and let k1, . . . , kt be non-negative even integers. Then

S(A, z) 6 XV (z)eE +R′,

where E is given by (2.6) and

(2.7) R′ :=
∑

ω((d,Pj))6kj (16j6t)
d∈P(z)

|rd|.

In particular, defining λ+
d as in Lemma 2.2, we have

(2.8)
∑
d

λ+
d g(d) 6 eEV (z).
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To make further progress and produce an upper bound of general utility, we make a very mild

assumption on the function g, which is satisfied in a large number of cases. It is sometimes called

the Iwaniec condition. We assume that for some κ > 0 and B > 0 that

(Ω)
∏

y6p6w

(1− g(p))−1 6

(
logw

log y

)κ
exp

(
B

log y

)
(2 6 y 6 w 6 z)

Roughly speaking, this states that g(p) . κ/p on average over p. Although B, κ are not uniquely

defined by (Ω), the smallest admissible value of κ (with B remaining bounded) is sometimes referred

to as the “dimension” or “sifting density”. It is easy to show (cf., Exercise 2.1 below), that condition

(Ω) is implied by the condition

(Ω0) g(p) 6 min (κ/p, 1− δ) .

Although (Ω0) is easy to verify, for many problems we have (Ω) holding with a smaller value of κ

than the global bound (Ω0), and this produces quantitatively better sieve bounds.

We can now obtain a general purpose upper bound of type in (1.4). In sums of remainders rd
we recall that rd is supported only on squarefree d.

Theorem 2.4. Let A be a sieve problem, let z > 2 and assume (g), (r) and (V ). Let κ0 > 0 and

B0 > 0. Assume (Ω) with 0 6 κ 6 κ0 and 0 6 B 6 B0. Then for any z > 2 we have

S(A, z) 6 Oκ0,B0(XV (z)) +
∑
d6z

µ2(d)=1

|rd|,

the implied constant depending only on κ0, B0.

Proof. Before invoking (Ω), we will work out a general procedure for producing upper bounds from

Theorem 2.3. We suppose that

zt+1 = 2 < zt < zt−1 < · · · < z1 = z

Pj = {p prime : zj+1 < p 6 zj} (1 6 j 6 t− 1),

Pt = {p prime : zt+1 6 p 6 zt}.
(2.9)

This way, P1, . . . ,Pt partition the primes in [2, z]. The primes > z play no role in S(A, z) and may

be ignored (or assigned to P1, for example). In the sum (2.7) defining R′, we have

d1 · · · dt 6 zk11 · · · z
kt
t .

A convenient choice is

zj = z1/4j−1
(1 6 j 6 t), zt+1 = 2,

where t is chosen maximally so that zt > 2. Then define Pj by (2.9). We also take

k1 = 0, kj = 2j−1 (j > 2).

In (2.7), we have

(2.10) d 6 zk11 · · · z
kt
t 6 z.

Invoking (Ω) and taking logarithms, we have

Lj =
∑

zj+1<p6zj

− log(1− g(p)) 6 κ log 4 +
B

log zj+1
6 κ0 log 4 +

B0

log 2
=: L.
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Therefore, in the notation of Theorem 2.3,

(2.11) E 6
t∑

j=1

eLj
L
kj
j

kj !
6 eL

∞∑
j=1

L2j−1+1

(2j−1 + 1)!
6 e2L 6 e3κ0+3B0 .

The theorem now follows from Theorem 2.3. �

2.2. Applications of the upper bound sieve. Theorem (2.4) is very easy to apply in practice.

It suffices to verify that the sifting function g(p) has regular behavior ((Ω) or (Ω0)) and that the

remainders rd are small on average in some reasonable range.

2.2.1. Primes. Take the Eratosthenes sieve A = [1, x]∩N, Ap = {n ∈ A : p|n}, X = x, g(p) = 1/p,

z = X1/2. Then, by Theorem 2.4,

π(x) 6 S(A, z) + z � XV (z) +O(z)� x

log x
,

matching Chebyshev’s bound.

2.2.2. Prime k-tuples.

Theorem 2.5. Let a1, . . . , ak be non-zero integers and b1, . . . , bk integers, with (aj , bj) = 1 for all

j, and the forms ajn+ bj are distinct. Let ρ(d) be the number of solutions modulo d of

(a1n+ b1) · · · (akn+ bk) ≡ 0 (mod d),

and assume that ρ(p) < p for all primes p (that is, the linear forms ain + bi, 1 6 i 6 k, are

admissible). Also let

∆ =

∣∣∣∣ k∏
i=1

ai
∏
i<j

(aibj − ajbi)
∣∣∣∣.

Then ρ(p) 6 k for all p, ρ(p) 6= k if and only if p|∆, and furthermore,

#{n 6 x : ain+ bi prime , 1 6 i 6 k} �k
Sx

logk x

�k
x

logk x

∏
p|∆

(
1− 1

p

)ρ(p)−k

�k
x

logk x

(
∆

φ(∆)

)k
,

where

S =
∏
p

(
1− ρ(p)

p

)(
1− 1

p

)−k
and the implied constants may depend on k alone.

Remarks. If (aj , bj) > 1 for some j then ρ(p) = p for p|(aj , bj). Hence, ρ(p) < p for all p implies

that (aj , bj) = 1 for every j. The other hypotheses then imply that ∆ 6= 0.
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Proof. Define our sieve problem as follows. Let A = [1, x] ∩ Z, with uniform probability and

Ap = {n ∈ A : p|(a1n+ b1) · · · (akn+ bk)}

for each prime p. Let X = x and put z = X1/2. By the Chinese remainder theorem, ρ is

multiplicative. Now let p be prime and consider ρ(p). Since (ai, bi) = 1 for all i, the congruence

ain+ bi ≡ 0 (mod p) has a solution ri if and only if p - ai, and then ri is unique modulo p. Hence,

if p|ai for some i, then ρ(p) < k. If p - a1 · · · ak, then ρ(p) is the number of distinct values among

r1, . . . , rk. It is clear that ri = rj if and only if p|(aibj − ajbi). Thus, if p|∆ then ρ(p) < k, and if

p - ∆ then r1, . . . , rk all exist and are distinct, so ρ(p) = k. This proves the first two claims.

Setting g(p) = ρ(p)/p, we see that

g(p) 6 min

(
1− 1

p
,
k

p

)
6 min

(
1− 1

k + 1
,
k

p

)
.

Thus, (Ω0) holds with δ = 1/(k+ 1) and κ = k. Then (Ω) holds with κ = k and some B depending

only on k by Exercise 2.1. Moreover, bx/dcρ(d) 6 Ad 6 dx/deρ(d), and thus

Ad = x
ρ(d)

d
+ rd, |rd| 6 ρ(d).

Hence,

∑
d6z

|rd| 6
∑

d6x1/2

ρ(d) 6 x1/2
∑

d6x1/2

ρ(d)

d
6 x1/2

∏
p6z

(
1 +

k

p

)
�k x

1/2(log x)k

by Mertens’ theorem. By Theorem 2.4 plus the easy bound

V (z) >
∏
p62k

(1/p)
∏

2k<p6z

(1− k/p)�k

∏
2k<p6z

(1− k/p)�k
1

logk z
�k

1

logk x
,

we have

S(A, z)�k xV (z) + x1/2(log x)k � xV (z).

Also, S(A, z) is the number of n 6 x for which (a1n + b1) · · · (akn + bk) has no prime factor < z.

This includes all n 6 x for which each of the forms ain + bi is a prime larger than z. For each i,

there are at most z values of n such that ain+ bi is a prime that is 6 z. Thus,

#{n 6 x : ain+ bi prime , 1 6 i 6 k} 6 kz + S(A, z)�k xV (z).
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Next,

V (z) =
∏
p6z

(
1− ρ(p)

p

)

�k
1

(log z)k

∏
p6z

(
1− ρ(p)

p

)(
1− 1

p

)−k
=

S

(log z)k

∏
p>z

(
1− ρ(p)

p

)−1(
1− 1

p

)k
�k

S

(log x)k

∏
p>2k

(
1− k

p

)−1(
1− 1

p

)k
�k

S

(log x)k
.

Finally, since ρ(p) = k if and only if p - ∆,

S =
∏
p|∆

(
1− ρ(p)

p

)(
1− 1

p

)−k∏
p-∆

(
1− k

p

)(
1− 1

p

)−k
.

For p > k, (1− k/p)(1− 1/p)−k = 1 +Ok(1/p
2), and also 1− h/p 6 (1− 1/p)h for a non-negative

integer h. Thus,

S�k

∏
p|∆

(
1− ρ(p)

p

)(
1− 1

p

)−k
6
∏
p|∆

(
1− 1

p

)ρ(p)−k
6

(
∆

φ(∆)

)k
,

where we used ρ(p) > 0 in the last step. �

Remarks. Examining the proof, we see that S �k 1, that is , S is bounded away from zero.

On the other hand, S is not bounded above, as it is possible to have ρ(p) = 0 for all primes p 6M
for some M , e.g. when, for all i, ai is divisible by all the primes 6M .

Corollary 2.6. We have, for positive m,

#{p 6 x : p, p+ 2m both prime} � 2m

φ(2m)

x

log2 x
,

#{p 6 x : p, 2p+ 1 both prime} � x

log2 x
,

#{p, q prime : p+ q = 2m} � σ(m)

m

m

log2m
.

Proof. We apply Theorem 2.5 with k = 2 in each case. The count of generalized twin primes has

the forms n, n + 2m. Here ∆ = 2m, ρ(p) = 1 for p|2m and ρ(p) = 2 otherwise, and we get the

upper bound

#{p 6 x : p, p+ 2m both prime} � x

log2 x

∏
p|2m

(1− 1/p)−1 � 2

φ(2m)

x

log2 x
.
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In fact,

S �
∏
p|2m

(
1− 1

p

)−1

=
2m

φ(2m)
.

The count of Sophie Germain primes is easier: here we use the forms n, 2n+ 1 and ∆ = 2. For the

application to Goldbach’s Conjecture, take x = 2m and the pair of forms n, 2m − n, which gives

∆ = 2m. Again, we have ρ(p) = 1 for p|2m and ρ(p) = 2 for p - 2m. The final estimate comes from

the elementary bound m
φ(m) �

σ(m)
m (the bound is often presented in this way rather than using

2m/φ(2m)). �

2.2.3. The Brun-Titchmarsh inequality. Denote by π(x; q, a) the number of primes p 6 x satisfying

p ≡ a (mod q).

Theorem 2.7 (Brun-Titchmarsh inequality). There is a constant C so that uniformly for 1 6 a 6
q < y 6 x and (a, q) = 1,

π(x; q, a)− π(x− y; q, a) 6 C
y

φ(q) log(y/q)
.

Proof. WLOG assume that y > 2q, for otherwise trivially the left side is 6 2 while the right side is

> C/ log(y/q) > C/ log 2. Write

{x− y < n 6 x : n ≡ a (mod q)} = {q(h+ 1) + a, . . . , q(h+m) + a}.

Apply Theorem 2.5 with k = 1 and the single form qn + (qh + a), where 1 6 n 6 m = x. Here

∆ = q and thus

π(x; q, a)− π(x− y; q, a)� q

φ(q)

m

logm
.

Since m � y/q, the theorem follows. �

Remarks. The case a = q = 1, that is, showing that π(x) − π(x − y) � y/ log y, was asserted

by Hardy and Littlewood [78, p. 69] without proof, the authors claiming that it followed from the

method of Brun [20]. Using the Eratosthenes sieve, Hardy and Littlewood [78, Theorem G] showed

the weaker bound π(x) − π(x − y) � y
log2 y

. The case x = y with an arbitrary a, q was shown by

Titchmarsh [142]. The constant C = 2 is admissible by work of Montgomery and Vaughan [111].

The utility of this bound is its uniformity in x, y, a, q. If π(x; q, a) := #{p 6 x : p ≡ a (mod q)},
the prime number theorem for arithmetic progressions implies that

π(x; q, a) ∼ x

φ(q) log x

for every individual q, a. Issues of uniformity are crucially important, and are intimately connected

to questions of the existence of zeros of L-functions lying off the critical line (especially so-called

Siegel zeros, real zeros lying very close to 1). If one assumes the Generalized Riemann Hypothesis,

then the above asymptotic holds uniformly for q 6
√
x or so, and in a smaller range if one considers

primes in “short” intervals (x− y, x]. On the other hand, the Brun-Titchmarsh inequality gives an

upper bound of the correct order even for very large moduli q = x1−ε and for very short intervals

y/q = xε (ε > 0 fixed). Estimates for individual q >
√
x are inaccessible by L-function methods.

In the special case a = q = 1 we have π(x)− π(x− y)� y/ log y. Contigent on the truth of the

generalized prime k-tuples conjecture, Conjecture 1.1, this estimate is best possible; that is, for any
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y > 3 there are intervals of length y containing � y/ log y primes. To see this, let q1, . . . , qk denote

the primes that are in (y, 2y]. Since these are all odd, k < y. We claim that the set of linear forms

n+ q1, . . . , n+ qk is admissible in the sense of Conjecture 1.1. Here ρ(p) is the number of solutions

of the congruence

(n+ q1) · · · (n+ qk) ≡ 0 (mod p),

which is equal to the number of residue classes modulo p occupied by the numbers q1, . . . , qk. For

any prime p 6 y, the numbers qi avoid the residue class 0 mod p, thus ρ(p) < p. For prime p > y,

we clearly have ρ(p) 6 k < y 6 p. This proves that the forms n + q1, . . . , n + qk are admissible.

The conclusion of Conjecture 1.1 implies that for infinitely many n, the numbers n+ q1, . . . , n+ qk
are simultaneously prime, hence there are infinitely many intervals of length y having at least k

primes. Finally, by the prime number theorem,

k = π(2y)− π(y)� y

log y
.

2.2.4. Romanoff’s Theorem.

Theorem 2.8 (Romanoff [127], 1934). A positive proportion2 of positive integers can be expressed

as p+ 2k where p is prime and k is a non-negative integer.

Proof. We start with a common device for lower-bounding the size of a set defined by solutions of

some equation. Let

r(n) = #{(p, k) : k > 1, n = p+ 2k}
and B(x) = #{n 6 x : r(n) > 0}. We need to show that B(x) � x for large x. Assume that

x > 100. By Cauchy-Schwarz, (∑
n6x

r(n)

)2

=

(∑
n6x

r(n)1r(n)>0

)2

6
∑
n6x
r(n)>0

1
∑
n6x

r(n)2

= B(x)
∑
n6x

r(n)2.

On the other hand,∑
n6x

r(n) > #{(p, k) : p 6 x/2, 2k 6 x/2} � π(x/2) log x� x

and, since n 6 x implies that p 6 x and 2k 6 x,∑
n6x

r(n)2 =
∑
n6x

#{(p1, p2, k1, k2) : p1 + 2k1 = p2 + 2k2 = n}

6 D := #{(p1, p2, k1, k2) : pj 6 x, 2
kj 6 x for j = 1, 2; p1 + 2k1 = p2 + 2k2}.

It follows that

(2.12) B(x)� x2

D
.

2If A is a set of natural numbers with counting function A(x) = #{a 6 x : a ∈ A} satisfying lim infx→∞A(x)/x >
0, we say that A contains a positive proportion of all positive integers.
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There are O(x) quadruples (p1, p2, k1, k2) with p1 = p2 and k1 = k2. Thus,

D � x+ #{(p1, p2, k1, k2) : p1 < p2 < x, 2kj 6 x for j = 1, 2; p2 = p1 + 2k1 − 2k2}.

Now fix k1 > k2 > 1. Now apply Corollary 2.6 with 2m = 2k1 − 2k2 . With k1 and k2 fixed, the

number of possible pairs p1, p2 with p1 6 x is

� 2k1 − 2k2

φ(2k1 − 2k2)

x

log2 x

and hence

D � x+
x

log2 x

∑
0<k2<k16

log x
log 2

2k1 − 2k2

φ(2k1 − 2k2)
.

Factoring out 2k2 we see that

2k1 − 2k2

φ(2k1 − 2k2)
� 2l − 1

φ(2l − 1)
, l = k1 − k2.

Also,
2l − 1

φ(2l − 1)
� σ(2l − 1)

2l − 1
=
∑
d|2l−1

1

d
.

For each l there are O(log x) pairs (k1, k2) with k1 − k2 = l and thus

D � x+
x

log x

∑
16l6 log x

log 2

∑
d|2l−1

1

d

� x+
x

log x

∑
d6x
d odd

1

d

∑
16l6 log x

log 2

d|2l−1

1.

If s(d) denotes the order of 2 modulo d, then the inner sum counts l 6 log x
log 2 which are divisible by

s(d) and is therefore O( log x
s(d) ). We arrive at

(2.13) D � x+ x
∑
d6x
d odd

1

ds(d)
.

Following Erdős, we show that the sum on d converges, when extended to a sum over all odd

positive integers. To this end, define

tk =
∑
d odd
s(d)6k

1

d
,

which is finite since s(d)� log d. Partial summation gives

(2.14)
∑
d

1

ds(d)
=
∑
k

tk − tk−1

k
=
∑
k

tk
k(k + 1)

.

Letting

Nk =
∏
i6k

(2i − 1),
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we see that s(d) 6 k implies that d|Nk. Also Nk 6 21+2+···+k < 2k
2
, and so

tk 6
∑
d|Nk

1

d
=
σ(Nk)

Nk
� log2Nk � log k.

Thus, the sum on the right side of (2.14) converges, as desired. Consequently, by (2.13), D � x.

Recalling (2.12), the proof is complete. �

Remark 1. Evidently, almost all even integers are not of the form p+ 2k. Erdős [36] showed that

a positive proportion of odd numbers are not of the form p+ 2k. This paper introduced the notion

of covering systems of congruences.

2.2.5. Sums of primes: Schnirelmann’s theorem. In the 1933, Schnirelmann [133] showed that there

is a constant k so that every positive integer > 2 is the sum of at most k primes. This was a huge

step in the direction of Goldbach’s Conjecture. His proof combined the sieve upper bound with a

very elementary argument.

Given a set A ⊂ N ∪ {0}, let A(N) be the counting function of A (excluding zero), that is,

A(N) = #{n ∈ A : 1 6 n 6 N}. The Schnirelmann density σ(A ) of A is defined as

σ(A ) = inf
N>1

A(N)

N
.

Examples:

• σ(A ) = 1 if and only if A ⊃ N
• if 1 6∈ A then σ(A ) = 0.

• σ({1, 3, 5, 7, 9, 11, . . .}) = 1/2.

• σ({1, 4, 9, 16, 25, . . .}) = 0.

Given any two sets A ,B of integers, define the sumset A + B by

A + B = {a+ b : a ∈ A , b ∈ B}.

We denote the k-fold subset kA inductively as kA = (k − 1)A + A , so that kA is the set of

integers that can be written as the sum of k (not necessarily distinct) elements of A .

Theorem 2.9 (Shnirelmann [133], 1933). (a) Suppose that 0 ∈ B and 1 ∈ A . Then

σ(A + B) > σ(A ) + σ(B)− σ(A )σ(B).

(b) If 0 ∈ A , 0 ∈ B and σ(A ) + σ(B) > 1 then A + B = N ∪ {0}.

The conclusion of part (a) is conveniently written as

1− σ(A + B) 6 (1− σ(A ))(1− σ(B)).

In general, the conclusion is best possible, for example if

A = {1, 5, 6, 7, 8, 9, . . .}, B = {0, 1, 4, 5, 6, 7, 8, . . .}

then A + B = {1, 2, 5, 6, 7, 8, 9, . . .}, σ(A ) = 1
4 , σ(B) = 1

3 and σ(A + B) = 1
2 .

Corollary 2.10 (Schnirelmann [133]). Suppose that 0 ∈ A and σ(kA ) > 0 for some k ∈ N. Then

for some h ∈ N, hA = N ∪ {0}.
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Proof that Theorem 2.9 implies Corollary 2.10. Let B = kA . Obviously 0 ∈ B. Since σ(B) > 0,

we have 1 ∈ B. Hence, {0, 1} ⊂ rB for all r ∈ N. By Theorem 2.9 (a), for any r ∈ N we have

1− σ((r + 1)B) 6 (1− σ(B))(1− σ(rB)).

By induction,

1− σ(rB) 6 (1− σ(B))r

Hence, for some r, σ(rB) > 1/2. Then, by Theorem 2.9 (b), we conclude that σ(2rB) = 1, that is,

2rkA = 2rB = N ∪ {0},

as required. �

Proof of Theorem 2.9. We begin with (a). Let N ∈ N and enumerate the elements of A ∩ [1, N ] as

1 = a1 < a2 < . . . < ar 6 N . These integers are separated by gaps of gi = ai+1−ai−1 numbers not

in A , plus a final gap of gr = N − ar integers from ar + 1 to N . Let C = A + B. Then C ∩ [1, N ]

contains A ∩ [1, N ], plus additional numbers ai + b, where b ∈ B, 1 6 b 6 gi. The number of such

elements b is > giσ(B). It follows that

C(N) > A(N) +

r∑
i=1

σ(B)gi

= A(N) + σ(B)(N −A(N))

= A(N)(1− σ(B)) +Nσ(B)

> N
(
σ(A )(1− σ(B)) + σ(B)

)
.

As this is true for every N , σ(C ) > σ(A ) + σ(B)− σ(A )σ(B).

To prove (b), first observe that 1 ∈ A ∪B, so that 1 ∈ A + B. Suppose that A + B 6= N∪ {0}
and that n 6∈ A + B. Then n > 2, n 6∈ A and n 6∈ B. Thus,

A(n− 1) +B(n− 1) = A(n) +B(n) > n(σ(A ) + σ(B)) > n.

Now let

C = {a ∈ A : 1 6 a 6 n− 1}, D = {n− b : 1 6 b 6 n− 1, b ∈ B}.
Then |C |+ |D | > n. But C ,D ⊂ [1, n− 1], hence by the pigeonhole principle, C and D must have

a common element, thus n ∈ A + B, a contradiction. Therefore, A + B = N ∪ {0}. �

We now apply these results to primes. Let P denote the set of primes and set P0 = P ∪{0, 1}.
Now σ(P0) = 0 by the prime number theorem. However, by Exercise 2.5 below, we have σ(2P0) >

0. Hence, by Corollary 2.10, there is an h so that hP0 = N ∪ {0}. We also have h > 3, since

27 6∈ 2P0. Thus, for any positive integer n > 4, we have

n− 2 = p1 + · · ·+ pr + s · 1

where p1, . . . , pr are primes, r > 0, s > 0 and r + s 6 h. Now 2 + s = 2k + 3l where k > 0, l > 0

and k + l 6 s+ 1. Thus, n is the sum of at most r + s+ 1 = h+ 1 primes. We conclude that

Theorem 2.11 (Schnirelmann [133], 1933). For some h ∈ N, every positive integer > 2 is the sum

of at most h primes.
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In 1937, I. M. Vinogradov (see [145]) proved that every sufficiently large odd integer is the sum

of three primes. The proof used a version of the circle method and did not utilize sieve ideas. The

precise measure of “sufficiently large” was shown by various authors, finally culminating in the

work of Helfgott, who proved that all off integers > 7 are the sum of three primes [88].

2.2.6. Primitive roots of primes. Are there infinitely many primes p for which the fraction 1/p has

period p − 1 in base 10? Equivalently, is 10 a primitive root of p for infinitely many primes p?

This question was addressed by Gauss in his Disquisitiones Arithmeticae (1801). In 1927, E. Artin

conjectured an asymptotic formula for the number of primes p 6 x for which a given squarefree

integer a is a primitive root; his formula was later discovered not to hold up against numerical

data by D. H. Lehmer, and a revised conjecture was later proposed by H. Heilbronn and others.

In 1967, C. Hooley deduced the revised conjecture from the Generalized Riemann Hypothesis for

certain Dedekind zeta functions ζK(s) [90]; see also [94, Ch. 3]. The theorem makes use of sieve

methods. Here we will specialize to the case a = 2. For background on Dedekind zeta functions,

see [98, Sec. 5.10].

Theorem 2.12 (Hooley [90]). Assume the Generalized Riemann Hypothesis for ζK(s) for the

number fields K = Q( k
√

2, e2πi/k), k running over all squarefree integers. Then

#{p 6 x : 2 is a primitive root of p} ∼ Cπ(x), C =
∏

q prime

(
1− 1

q(q − 1)

)
.

Proof. We set this up as a general sieve problem as follows. Let A be the set of primes p 6 x, and

for any prime q, let

Aq =
{
p ∈ A : q|p− 1 and 2(p−1)/q ≡ 1 (mod p)

}
.

Clearly, 2 is a primitive root of p (order p−1) if and only if p 6∈ Aq for all primes q (and it suffices to

check for primes q 6 p). We need good, uniform bounds for Ad. Bounds for individual d, but with

poor uniformity, are available unconditionally by the analog of the prime number theorem for the

number fields K (the prime ideal theorem of Landau), but the uniformity is very poor, especially

for xo(1) < d 6
√
x, and not good enough for our application.

Lemma 2.13 (Hooley [90]). Assume the Generalized Riemann Hypothesis for the Dedekind zeta

functions ζK(s) for all of the number fields K = Q( k
√

2, e2πi/k), k running over all squarefree

integers. Then, uniformly for squarefree d 6 x,

Ad =
li(x)

dφ(d)
+O(

√
x log x).

Define the cutoffs

z1 =
1

6
log x, z2 =

√
x(log x)−2, z3 =

√
x log x.

Evidently,

(2.15) S(A, z1) > #{p 6 x : 2 is a primitive root of p} > S(A, z1)− S1 − S2 − T,

where

S1 =
∑

z1<q6z2

Aq, S2 =
∑

z2<q6z3

Aq, T = #{p 6 x : p ∈ Aq for some q > z3}.
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Using the Legendre sieve (Theorem 1.3) with X = li(x) and with g(d) = 1
dφ(d) , Lemma 2.13 gives

S(A, z1) = li(x)
∏
q6z1

(
1− 1

q(q − 1)

)
+O(

√
x(log x)2π(z1))

=

(
C +O

(
1

log x

))
li(x) =

(
C +O

(
1

log x

))
π(x).

For S1, we again use Lemma 2.13 and obtain

S1 =
∑

z1<q6z2

(
li(x)

q(q − 1)
+O(

√
x log x)

)
� li(x)

log x
+
√
x(log x)π(z2)� π(x)

log x
.

For S2, the bounds from Lemma 2.13 are too poor, but we do better by observing that Aq 6
π(x; q, 1) and using Theorem 2.7 (the Brun-Titchmarsh inequality):

S2 6
∑

z2<q6z3

π(x; q, 1)�
∑

z2<q6z3

x

q log x
� x

log2 x

∑
z2<q6z3

log q

q

� x

log2 x
log

z3

z2
� x log2 x

log2 x
� π(x)

log2 x

log x
.

Finally, if p ∈ Aq for some q > z3, then p|(2m − 1) for some positive integer m 6
√
x/ log x. Thus,

p|M , where

M =
∏

m6
√
x/ log x

(2m − 1).

Thus,

T 6 #{p|M : p prime} 6 logM

log 2
�
( √

x

log x

)2

=
x

log2 x
� π(x)

log x
.

Combining the estimates for S(A, z1), S1, S2 and T with (2.15) proves the theorem. �

In 1986, Heath-Brown [87] showed that for all but at most two primes r,

{p : r is a primitive root of p}

is infinite. We cannot say which two prime might be exceptional, or even give a bound on the

exceptional primes. We will revisit this type of result later.

2.3. Exercises.

Exercise 2.1. Assume condition (Ω0). Show that (Ω) holds with the same value of κ and with B

depending only on δ, κ.

Exercise 2.2. For each prime, let Ip denote a set of residue classes modulo p. suppose that |Ip| 6 κ
for all p. Show that

#{x < n 6 x+ y : ∀p 6 z, n mod p 6∈ Ip} �κ y
∏
p6z

(
1− |Ip|

p

)
,

uniformly for 2 6 z 6 y and all x.



28 KEVIN FORD

Exercise 2.3. Let k be a positive, even integer. Assuming Conjecture 1.6 for the pair of linear

forms (n, n+ k), prove that

#{n 6 x : n and n+ k are consecutive primes} ∼ a(k)x

log2 x
(x→∞),

where

a(k) = C
∏

p|k,p>2

p− 1

p− 2
, C = 2

∏
p>3

(
1− 1

(p− 1)2

)
,

C being the “twin prime constant”.

Exercise 2.4. Show that for any odd N ,

#{(p1, p2, p3) : N = p1 + p2 + p3} �
N2

log3N
,

the constant being absolute.

Exercise 2.5. We say that an even number k is a Goldbach number if there exists primes p1, p2

such that k = p1 +p2. Show that a positive proportion of all positive integers are Goldbach numbers.

Exercise 2.6. Let Ξ(x, y, z) denote the number of integers n 6 x which have no prime factor in

(y, z]. Prove that uniformly in 1.5 6 y 6 z 6 x, we have

Ξ(x, y, z)� x log y

log z
.

Exercise 2.7. Prove that ∑
p6x

Ω(p− 1)� x log2 x

log x
,

where Ω(n) is the number of prime power divisors of n.

Exercise 2.8. Let S denote the set of integers that are the sum of two squares.

(a) Show that S has counting function O(x(log x)−1/2).

(b) Let h ∈ N. Show that, uniformly in h,

#{n 6 x : n ∈ S, n+ h ∈ S} �
∏
p|h

p≡3 (mod 4)

(
1 +

1

p

)
x

log x
.

Exercise 2.9. (Landau-Lehmer problem). Let q ∈ N, q > 2, and let R be a collection of reduced

residue classes modulo q. Prove that the number of integers n 6 x lacking any prime factor that

lies in one of the congruence classes of R is bounded above by

�q
x

(log x)|R|/φ(q)
.

Exercise 2.10. Let A denote the set of positive, squarefree integers.

(a) Show that the Schnirelmann density σ(A ) > 1/2.

(b) Show that every integer n > 2 is the sum of exactly two squarefree integers.(This does not

follow immediately from Theorem 2.9 (b)).
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Exercise 2.11. Let B be the set of primes that are of the form a2 +b4 for some integers a, b. Prove

that

#{p 6 x : p ∈ B} � x3/4

log x
.

Exercise 2.12. Let 1 6 a 6 q, (a, q) = 1. Prove that uniformly in a, q and x > 10 we have∑
q6p6x

p≡a (mod q)

1

p
� log2 x

φ(q)
.

Note that the condition p > q is necessary, as the least prime that is ≡ a (mod q) might be a, which

could be very small.

3. The Brun-Hooley sieve: lower bounds

Our lower bound for S(A, z) is derived from the upper bound in Lemma 2.2 by subtracting off

appropriate quantities. We use the following simple inequality:

Lemma 3.1. Suppose that 0 6 xj 6 yj for 1 6 j 6 t. Then

x1 · · ·xt > y1 · · · yt −
t∑

`=1

(y` − x`)
t∏

j=1
j 6=`

yj .

Proof. The inequality is an equality when t = 1, and follows by induction on t using

y1 · · · yt − x1 · · ·xt = (y1 · · · yt−1 − x1 · · ·xt−1)yt + x1 · · ·xt−1(yt − xt)
6 (y1 · · · yt−1 − x1 · · ·xt−1)yt + y1 · · · yt−1(yt − xt). �

As before, partition the primes in [2, z] into sets P1, . . . ,Pt and let k1, . . . , kt be nonnegative even

integers. We apply Lemma 3.1 with

xj =
∑

d|(n,Pj)

µ(d), yj =
∑

d|(n,Pj)
ω(d)6kj

µ(d) (1 6 j 6 t).

From Lemma 1.6 (with g(p) = 1 for each p) we have that

0 6 y` − x` 6
∑

d|(n,P`)
ω(d)=k`+1

1.

Hence by Lemma 2.2 and Lemma 3.1, for any n with P+(n) 6 z we obtain

(3.1) 1n=1 =
∑
d|n

µ(d) >
t∏

j=1

∑
dj |(n,Pj)
ω(dj)6kj

µ(dj)−
t∑

`=1

( ∑
d`|(n,P`)

ω(d`)=k`+1

1

) t∏
j=1
j 6=`

∑
dj |(n,Pj)
ω(dj)6kj

µ(dj).

Thus, we have a lower bound sieve with coefficients (here d = d1 · · · dt with di = (d, Pi) for each i)

(3.2) λ−d =


µ(d) if dj |Pj , ω(dj) 6 kj (1 6 j 6 t)

µ(d) if dj |Pj (1 6 j 6 t), ∃` : ω(dj) 6 kj (j 6= `), ω(d`) = k` + 1

0 otherwise.
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From (1.7),

S(A, z) >
∑

d1,...,dt
∀j:dj |Pj ,ω(dj)6kj

µ(d1) · · ·µ(dj)Ad1···dt −
t∑

`=1

∑
d1,...,dt

dj |Pj ,ω(dj)6kj (j 6=`)
d`|P`,ω(d`)=k`+1

µ

(
d1 · · · dt
d`

)
Ad1···dt .

As before, introduce the conditions (g) and (r), and the shorthand notation (V ). Adopting our

previous notation (2.3) for quantities Uj , we can rewrite this as

S(A, z) > XU1 · · ·Ut

(
1−

t∑
`=1

1

U`

∑
d`|P`

ω(d`)=k`+1

g(d`)

)
− R̃,

where

R̃ =
∑
d∈D
|rd|,

and D is the set of squarefree numbers d that satsify P+(d) 6 z, ω((d, Pj)) 6 kj + 1 for all j and

ω((d, Pj)) = kj + 1 for at most one j. Define Vj and Lj by (2.4). By Lemma 1.6, Ui > Vi for every

i, thus in particular

U1 · · ·Ut > V (z), 1/U` 6 e
L`1k`>0 .

Another invocation of the Erdős trick (cf., the proof of Lemma 1.6) gives∑
d`|P`

ω(d`)=k`+1

g(d`) 6
1

(k` + 1)!

(∑
p∈P`

g(p)

)k`+1

6
Lk`+1
`

(k` + 1)!
.

We partition the primes in [2, z] as in (2.9). Then

R̃ 6
∑

d∈P(z)
d6D

|rd|, D = zk1+1
1 zk22 · · · z

kt
t .

We arrive at a first general lower bound sieve.

Theorem 3.2. Let A be a sieve problem and assume (g), (r) and (V ). Partition the set of primes

in [2, z] as in (2.9) and let k1, . . . , kt be nonnegative even integers. Then

S(A, z) > XV (z)(1− E)−R′′,

where E is given by (2.6) and

(3.3) R′′ =
∑

d∈P(z)

d6z
k1+1
1 z

k2
2 ···z

kt
t

|rd|,

In terms of the lower bound sieve coefficients (3.2), we have shown that

(3.4) (1− E)V (z) 6
∑
d

λ−d g(d) 6 V (z),

where E is given by (2.6) and the upper bound comes from (1.8).

Incorporating (Ω), we can derive a lower bound of general utility.
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Theorem 3.3. Adopt the notation (g), (r) and (V ). Assume also (Ω) with κ > 0. Then, if z is

large enough as a function of κ,B, we have

S(A, z) > 0.00001XV (z)−
∑

d∈P(z)

d6zf(κ)

|rd|,

where f(κ) is a function satisfying

(i) f(1) = 3.35;

(ii) f(2) = 7.8;

(iii) f(κ) = 1 +O(2−1/κ) for 0 < κ 6 1;

(iv) f(κ) = ξκ+O(κ1/2 log(κ+ 3)) for κ > 1, where ξ = 3.5911214766 . . . is the unique solution

of 1/ξ − log ξ + 1 = 0.

Proof. Fix κ, suppose 1 = α1 > α2 > α3 > · · · with

αj > 0 (j > 1), αj+1 > α
2
j (j large).

Suppose also `1, `2, . . . are non-negative, even integers with

`j > 2 (j > 1).

The numbers αj and `j are chosen to depend on κ alone. Define

f = 1 +
∞∑
j=1

αj`j , E′ =
∞∑
j=1

(
αj
αj+1

)κ1`j>0 (κ log(αj/αj+1))`j+1

(`j + 1)!
,

and assume that the numbers αj , `j are chosen so that f is finite and E′ 6 1.

Suppose we have a sieve problem, number X and function g satisfying (g), and adopt the notation

(r) and (V ). Suppose that (Ω) holds for some constant B. Define numbers z1 = z > z2 > · · · >
zt > zt+1 = 2 and sets Pj as in (2.9) with zj = zαj for 1 6 j 6 t, and such that t is the smallest

index with 1/(log log z)8 6 αt 6 1/(log log z)4. Since aj+1 > α2
j for large j, such t exists whenever

z is large enough. Furthermore, since `j > 2 for j > 2 and f is finite, we have that aj � 1/j and

consequently

t� (log log z)4.

Set

kj = `j (1 6 j 6 t− 1), kt = 2
⌊
(log log z)2

⌋
.

We then have zktt = zo(1) as z →∞. Adopting the notation R′′ from Theorem 3.2, we see that

R′′ 6
∑

d∈P(z)
d6D

|rd|, D = zf+o(1) (z →∞).

By (2.4) and (Ω),

(3.5) Lj 6 κ log(αj/αj+1) +
B

log zj+1
= κ log(αj/αj+1) +

B

αj+1 log z
.

In particular,

Lj 6 κ log(αj/αj+1) +O

(
(log log z)8

log z

)
(1 6 j 6 t− 1)
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and

Lt 6 log

(
log z

log 2

)
+O(1)� log log z.

For brevity, let Kj = κ log(αj/αj+1) and δ = (log log z)8/ log z. Recalling the definition (2.6) of E,

we have

E 6 eO(δ)
t−1∑
j=1

e
Kj1kj>0

(Kj +O(δ))kj+1

(kj + 1)!
+ eO(log log z) (O(log log z))kt+1

(kt + 1)!

= (1 + o(1))
t−1∑
j=1

e
Kj1`j>0

(Kj +O(δ))`j+1

(`j + 1)!
+ o(1) (z →∞).

Since Kj � log3 z for 1 6 j 6 t− 1, the binomial theorem implies

(Kj +O(δ))`j+1 = K
`j+1
j +O(δ)2`j+1(O(log3 z))

`j .

Therefore,

t−1∑
j=1

e
Kj1`j>0

(Kj +O(δ))`j+1

(`j + 1)!
6 E′ +O(δt) max

16j6t−1

(O(log3 z))
`j+1

(`j + 1)!

6 E′ +O(δt)eO(log3 z)

6 E′ + o(1) (z →∞).

Invoking Theorem 3.2, we find that for sufficiently large z,

S(A, z) > (E′ − 0.00001)XV (z)−
∑

d∈P(z)

d6zf+0.00001

|rd|.

The desired concluding in the theorem then follows provided that

(3.6) f(κ) > f + 0.00001, E′ 6 1− 0.00002.

To prove the various parts of the theorem, we need only exhibit sequences αj and `j satisfying

(3.6), `j > 2 for j > 2 and αj+1 > α2
j for large j.

(i) When κ = 1, take `1 = 0, `j = 2 for j > 1, and

αj =
96

(j + 2.5)3.5
.

A computer calculation then gives f 6 3.348 and E′ 6 0.998.

(ii) Let `1 = 0, `j = 2 for j > 1 and

αj =
8774

(j + 8)4
.

A computer calculation gives f 6 7.79 and E′ 6 0.9997.

(iv) When 0 < κ 6 1, let `1 = 0, `j = 2 for j > 1 and

αj =

(
96

(j + 2.5)3.5

)1/κ

.
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By the calculation in part (i), E′ 6 0.998. Also,

f = 1 +O(α2) = 1 +O(2−1/κ).

(iv) Let c = 1/ξ = 0.278 · · · so that 1 + c + log c = 0. For some positive integers mj , to be

determined later, set

`j = 2j − 2 + 2mj (j > 1).

Also let

αj = exp

{
− c(j − 1)2

κ

}
.

Utilizing the inequality k! > (k/e)k, we have

E′ =
∞∑
j=1

ec(2j−1) (c(2j − 1))2j−1+2mj

(2j − 1 + 2mj)!

6
∞∑
j=1

ec(2j−1) (c(2j − 1))2j−1(c(2j − 1))2mj

(2j − 1)!(2j − 1)2mj

6
∞∑
j=1

c2mj exp
{
c(2j − 1) + (2j − 1)(1 + log c)

}
=
∞∑
j=1

c2mj .

Taking mj = dlog je+ 1 gives

E 6
∞∑
j=1

c2/j2 < 0.2.

We now estimate f . Since e−cx
2/κ is a decreasing function for x > 0, we have

f 6 1 + 2`1 +

∞∑
j=2

`j

∫ j−1

j−2
e−cx

2/κ dx

6 O(1) +

∫ ∞
0

(2x+O(log(x+ 3)))e−cx
2/κ dx

= κ/c+O(κ1/2 log(κ+ 3)). �

3.0.1. Application: twin primes. We take A = [1, x]∩Z, Ap = {n ∈ A : p|n(n+ 2)}, X = x. As we

saw previously, g(p) = ρ(p)/p with ρ(2) = 1, ρ(p) = 2 for p > 2, so (Ω0) holds with κ = 2, as does

Ω. Taking z = x1/7.9 we have∑
d6zf(2)

µ2(d)|rd| 6
∑

d6zf(2)

τ(d)� zf(2) log z � x0.99,

which is negligible. Since V (z)� 1/ log2 z � 1/ log2 x we conclude from Theorem 3.3 that

S(A, z)� x

log2 x
.

We conclude that there are � x/ log2 x integers n 6 x, such that each of n and n+ 2 have at most

7 prime factors, as these factors are > z.
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Now we approach the problem as in Example (c) (this is A. Rènyi’s approach), taking

A = {p+ 2 : p prime 6 x}, X = li(x),

and Ap = {n ∈ A : p|n}. Here

Ad = π(x; d,−2) =
li(x)

φ(d)
+ rd,

where rd is expected to be small by the prime number theorem for arithmetic progressions. Taking

g(d) = 1/φ(d), we easily verify the (Ω) holds with κ = 1. Indeed, for y > 3, Mertens’ bounds give∏
y6p6w

(1− g(p))−1 =
∏

y6p6w

(
1− 1

p− 1

)−1

=
∏

y6p6w

(
1− 1

p

)−1(
1− 1

(p− 1)2

)−1

6
logw

log y

(
1 +O

(
1

log y

))
.

For the error terms rd, we use the famous theorem of Bombieri and Vinogradov:

Theorem 3.4 (Bombieri-A.I.Vinogradov, 1965). For every A > 0 there is a B > 0 so that∑
q6x1/2(log x)−B

max
y6x

max
(a,q)=1

∣∣∣∣π(y; q, a)− li(y)

φ(q)

∣∣∣∣� x

(log x)A
.

In Theorem 3.3, we have f(1) = 3.35. Take z = x
1
6.8 so that zf(1) 6 x0.493. Hence, Theorem BV

implies ∑
d6zf(1)

|rd| =
∑

d6zf(1)

∣∣∣∣π(x; d,−2)− li(x)

φ(d)

∣∣∣∣� x

(log x)10
.

We conclude that for large x,

S(A, z)� XV (z)� x

log2 x
.

Finally, we observe that S(A, z) counts primes p such that p + 2 has no prime factor 6 z; in

particular, p+ 2 has at most 6 prime factors.

3.0.2. Prime values of polynomials. Generalizing greatly the study of twin primes, we can use the

sieve to study prime values of arbitrary polynomials.

Theorem 3.5. Let F1, . . . , Fk be distinct, irreducible polynomials in Z[x], each with positive leading

coefficient. Put F = F1 · · ·Fk, ` = deg(F ). Suppose (F1, . . . , Fk) is admissible. Then

(3.7) #{n 6 x : Fi(n) prime for every i} �F
x

logk x
.

Further, there is an integer m = O(k`) such that for large x,

(3.8) #{n 6 x : Ω(Fi(n)) 6 m (1 6 i 6 k)} �F
x

logk x
.

Proof. We will show the upper bound (3.7), leaving (3.8) as an exercise (cf., Exercise 3.1 below).

Let x be large, A = [1, x] ∩ N, Ap = {n ∈ A : p|F (n)} for primes p, X = x, z = x1/2. Generically

write

ρG(d) = #{0 6 n < d : G(n) ≡ 0 (mod d)},
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where G is any polynomial. As with twin primes, we have

Ad =
ρF (d)

d
X + rd, |rd| 6 ρF (d),

and so we set g(d) = ρF (d)/d. Now ρF is multiplicative by the Chinese remainder theorem. Also,

ρF (p) < p by hypothesis,

ρF (p) 6 ` by Lagrange’s theorem.

In particular, (Ω0) holds with κ = ` and δ = 1/`. Thus,∑
d6z

|rd| 6
∑

d6x1/2

dg(d) 6 x1/2
∑

d∈P(z)

g(d) = x1/2
∏
p6z

(1 + g(p))

6 x1/2
∏
p6z

(
1 +

`

p

)
�` x

1/2(log x)` �` x
2/3.

By Theorem 2.4 and the trivial lower bound V (z)�F (log x)−`, we have

S(A, z)� XV (z).

As before, the left side is at least as large as the count of k 6 x such that each Fi(k) is prime and

> z (and there are OF (z) values of k with each of Fi(k) prime, and one of them is 6 z). It remains

to bound V (z) from above. To do this, we need the following two facts:

ρF (p) = ρF1
(p) + · · ·+ ρFk(p) for all but finitely many p,(3.9) ∑

p6y

ρFi(p)

p
= log2 y + C(Fi) +OFi

(
1

log y

)
(1 6 i 6 k)(3.10)

where C(Fi) is a constant depending on Fi. From (3.9) and (3.10) we deduce that

log V (z) =
∑
p6z

log

(
1−

ρF (p)

p

)
= OF (1)−

∑
p6z

ρF (p)

p

= OF (1)−
∑
p6z

k∑
j=1

ρFj (p)

p
= −k log2 z +OF (1),

and thus V (z) �F (log z)−k. In fact, (3.9) and (3.10) imply that (Ω) holds with κ = k (this will be

needed in the lower bound argument). In conclusion,

#{k 6 x : Fi(k) prime for every i} 6 OF (z) + S(A, z)�F
x

(log x)k
.

Proof of (3.9): Suppose the equation in (3.9) does not hold. Then there are i 6= j and some n

with p|Fi(n) and p|Fj(n), i.e., p|(Fi(n), Fj(n)). As Fi and Fj are distinct, irreducible and have no

fixed prime factor (in particular, neither is a multiple of the other), (Fi, Fj) = 1 over Q[x]. Hence,

there are G,H ∈ Q[x] such that FiG + FjH = 1. Clearing denominators gives G̃, H̃ ∈ Z[x] with

FiG̃+ FjH̃ = Cij , where Cij ∈ Z. It follows that p|Cij . As there are only finitely many pairs i, j,

there are finitely many possible p.
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Comments on (3.10): this is a consequence of the Prime Ideal Theorem of Landau [101]; see

also [23, p. 33–38]. In some special cases, it follows from Mertens theorem for primes in arithmetic

progressions, e.g. if F (x) = x2 + 1, then∑
p6x

ρF (p)

p
= 1 + 2

∑
p6x

p≡1 (mod 4)

1

p
= log2 x+O(1).

�

3.1. Sieving limits. One sees from Theorem 3.3 the effect of the dimension κ on the quality of the

estimates. In order to ensure the remainder terms
∑
|rd| are small, one needs zf(κ) to be smaller

than the sieving limit for the sieve problem A (this is generally less than x), hence the range of

permissible z is limited by the value of f(κ).

Definition 2. In the literature, the sieve limit ( or sifting limit) β(κ), for a given κ, is the infimum

of exponents u so that for any sieve problem A satisfying (g), (r), and (Ω), we have for some positive

c the bound

S(A, z) > cXV (z)−
∑
d6zu

|rd|.

Some authors, e.g. Selberg, refer to 1/β(κ) as the sieve limit.

Theorem (3.3) implies that β(κ) 6 f(κ) 6 ξκ+O(κ1/2 log(κ+3)) for all κ > 0, where ξ = 3.591 . . .

is defined in Theorem 3.3 (iv) and that β(κ) 6 1 + o(1) as κ→ 0+. When κ is large, this matches

the asymptotic upper bound for β(κ) achievable from the very complicated “β-sieve”; see [61, Ch.

11].

The exact value of β(κ) is known only for κ ∈ [0, 1/2] ∪ {1}, in these cases β(κ) = 1 for κ 6 1/2

and β(1) = 2. See [61, Ch. 11] for details. The lower bound β(1) > 2 is clear from Selberg’s

examples in Section 1.7.4. The very complicated combinatorial sieves given in [27] give the best

known upper bounds on β(κ) for small κ (less than 10, say), see Table 1. Selberg [136, eq. (14.40)]

showed that β(κ) 6 2κ+ 0.4454 for sufficiently large κ. The exact value of β(κ) is unknown in all

cases κ > 1/2 except for κ = 1.

κ β(κ) 6

0.5 1.0

1.0 2.0

2.0 4.2665

3.0 6.6409

Table 1. Known upper bounds on the sieving limit β(κ)

3.2. The small z case. Asymptotic formula for the sifting function (Fundamental

Lemma). We combine the upper and lower bound sieve theorems to achieve an asymptotic for-

mula for the sifting function when z is small compared with x. The bounds below are of the same

strength, as s becomes large, as [76, Theorem 2.5], which is derived from a later, complicated sieve
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developed by Brun. In particular, this gives the promised asymptotic formula in (1.4) as long as κ

is fixed, z = xo(1) and the remainders |rd| are small enough on average.

Theorem 3.6 (Fundamental Lemma). (a) For any pair (z,D) of positive integers with 2 6 z 6
D1/2, there are sieves λ+ and λ− satisfying (λ+) and (λ−), respectively, satisfying |λ±d | 6 1 for

all d, with support in D(z,D) := {d ∈ N : µ2(d) = 1, P+(d) 6 z, d 6 D}, and such that for any

multiplicative function g satisfying (Ω), we have

∑
d

λ±d g(d) =
(

1 +O
(
e−s log s+s log3 s+Oκ,B(s)

))∏
p6z

(1− g(p)),

where s = max(100, logD
log z ).

(b) Let κ0 > 0 and B0 > 0. Assume A is a sieve problem, such that (g), (r) and that (Ω) holds

for some constants 0 6 κ 6 κ0 and 0 6 B 6 B0. For any 2 6 z 6 D1/2, we have

S(A, z) = XV (z)
(

1 +O
(
e−s log s+s log3 s+Oκ0,B0

(s)
))

+ ∆
∑
d6D

d∈P(z)

|rd|,

where s = max(100, logD
log z ) and |∆| 6 1.

Proof. Firstly, we observe that part (b) is immediate from part (a), the bound |λ±d | 6 1 and (1.9).

To prove (a), we take Brun-Hooley sieves, that is, sieves given in Theorems 2.3 (upper bound sieve)

and 3.2 (lower bound sieve) and additionally supported on D(z,D). In light of (2.8), (2.11) and

(3.4), it suffices to prove that there is a choice of parameters zj and kj such that

zk1+1
1 zk22 · · · z

kt
t 6 D,

E � e−s log s+s log3 s+Oκ0,B0
(s).

(3.11)

As before, we will partition the primes in [2, z] as in (2.9) and let k1, . . . , kt be nonnegative even

integers. Let s0(κ0, B0) > 100 be sufficiently large. When s 6 s0(κ0, B0), we need only establish

E �κ0,B0 1. We’ll take, similar to the proof of Theorem 2.4, the parameters k1 = 0, kj = 2j−1

(j > 2), and zj = z1/4j−1
for each j > 1. Then zk1+1

1 zk22 · · · 6 z2 6 D. As before, Lj 6 L for all

j, where L is a constant that depends only on κ0, B0. It then follows from (2.6) that E �κ0,B0 1,

and this implies (3.11) in this case.

When s > s0(κ0, B0) we take the parameters

θ = log s, zj = z1/θj−1
, (1 6 j 6 t),

where t is maximally chosen to satisfy (2.9), and

kj = 2

⌊
s

2

(
1− 1

θ

)⌋
− 6 + 2j (1 6 j 6 t).
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Note that θ > log 100 > 4 and kj 6 s(1− 1/θ)− 6 + 2j for all j. Thus, zk1+1
1 zk22 · · · 6 zC , where

C = 1 +
∞∑
j=1

2(1− 1/θ)− 6 + 2j

θj−1

= 1 +
s(1− 1/θ)− 6

1− 1/θ)
+

2

(1− 1/θ)2

6 s.

Since zs = D, this proves the first part of (3.11). In the notation (2.4), we have by (Ω) the bound

Lj 6 κ log θ +
B

log zj+1
6 κ0 log θ + 2B0 =: L.

For large enough s0(κ0, B0), if s > s0(κ0, B0) then

k1 > s(1− 1/θ)− 6 > 3s/4− 6 > 2L.

Thus, using Stirling’s formula, we find that

E 6 eL
t∑

j=1

Lkj+1

(kj + 1)!

� eL
Lk1+1

(k1 + 1)!
6 eL

(
eL

k1 + 1

)k1+1

� eO(B0)(log s)κ0 exp

{
− k1 log k1 +O(k1) + k1 log(κ0 log θ + 2B0)

}
� e−s log s+s log3 s+Oκ0,B0

(s).

This gives (3.11) and completes the proof. �

3.2.1. Application: Buchstab’s function. Buchstab’s function

Φ(x, z) = #{n 6 x : P−(n) > z}

is perhaps the most basic sieve function. Here we take g(p) = 1/p for all p so that (Ω) holds with

κ = 1.

Theorem 3.7 (No small prime factors). (i) Uniformly for x > 0 and 2 6 z 6 y, we have

Φ(x+ y, z)− Φ(x, z)� y

log z
;

(ii) Uniformly for x > 2z > 4 we have

Φ(x, z)� x

log z
.

(iii) Uniformly for exp{(log2 x)2} 6 z 6 x, we have

Φ(x, z) =
(
1 +O(e−u log u+O(u log3 u))

)
x
∏
p6z

(1− 1/p),

where u = log x
log z .
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Proof. For (i), we may suppose that z 6
√
y, for the estimate with z >

√
y follows from that for

z =
√
y. We let A = (x, x+y]∩N, X = y, Ap = {n ∈ A : p|n}, g(d) = 1/d and then (Ω) holds with

κ = 1. Part (i) is then immediate from Theorem 2.4. For parts (ii) and (iii), let A = [1, x] ∩ N,

X = x, Ap = {n ∈ A : p|n}, g(d) = 1/d and again (Ω) holds with κ = 1. Part (ii) follows from

Theorem 3.3 when z 6 x1/5 and x is large, since f(1) < 5 and thus
∑

d6zf(1) |rd| � x4/5. When

x1/5 < z 6 x/2 and x is large, say x > x0, the Prime number theorem implies

Φ(x, z) > π(x)− π(z)� x

log x
� x

log z
.

Finally, when 4 6 x < x0, we have Φ(x, z) > 1� x/ log z. This proves (ii).

For part (iii), when u 6 10 this follows from (i) and (ii). Now assume u > 10. take D =
x

log xe
−u log u in Theorem 3.6, and define s by D = zs. Then the error terms satisfy∑

d6D

|rd| 6 D � e−u log uXV (z)

since V (z) � 1/ log z � 1/ log x. By hypothesis, u 6 log x
(log2 x)2

6 log x
log2 u

and hence

s =
u

log x
(log x− log2 x− u log u) = u

(
1−O

(
1

log u

))
.

Inserting this into the conclusion of Theorem 3.6 completes the proof of (iii). �

3.3. Small κ. The petite sieve. In the previous sections, we showed an asymptotic formula for

S(A, z) whenever κ,B are bounded and logD
log z →∞. In this section, we show an asymptotic formula

for S(A, z) when D = zO(1) and κ→ 0. First, we mention a very general principle.

Definition 3. Consider a sieve problem, and let p be a prime and p > w > 2. Then

S(Ap, w) := MP
(
Ap \

⋃
q6w

Aq
)
.

This corresponds to S(Ã, w), where Ã is the sieve problem with space (Ã,F ,P) inherited from A,

that is, Ã = Ap, Ãd = Ap ∩ Ad, X̃ = g(p)X, g̃(d) = g(d) and r̃d = rpd.

In the case where A is a finite set with uniform probability, S(Ap, w) counts those elements of

A which have property Ap but not any of the properties Aq for q 6 w.

Lemma 3.8 (Buchstab’s identity). Consider a sieve problem, and z > w > 2. Then

(3.12) S(A, z) = S(A, w)−
∑

w<p6z

S(Ap, p− 1).

Proof. Suppose that Aq does not occur for all primes q 6 w, but Ap does holds for some p ∈ (w, z].

Letting p be the largest such prime and summing over p yields the lemma. �

Theorem 3.9 (The petite sieve). Let A be a sieve problem and assume (g), (r) and define V (z)

by (V ). Assume g satisfies (Ω) for some κ ∈ (0, 1] and B > 0. Then, uniformly for 2 6 s 6 log z

with κ log s 6 1 we have

S(A, z) =

(
1 +OB

(
κ log s+

s

log z
+ e−

1
2
s log s

))
XV (z) +O

( ∑
d6z1+1/s

|rd|
)
.
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Proof. Let

w = z1/s

so that w > e > 2. By Buchstab’s identity (3.12) and the fact that S(Ap, z) is decreasing in z, we

have

S(A, w) > S(A, z) > S(A, w)−
∑

w<p6z

S(Ap, w).

By Theorem 3.6, with κ0 = 1 and B0 = B, we have

S(A, w) = (1 +OB(e−
1
2
s log s))XV (w) + ∆

∑
d6z

|rd|

where |∆| 6 1. By Theorem 2.4, again with κ0 = 1 and B0 = B we have

S(Ap, w) 6 OB(Xg(p)V (w)) +
∑
d6w

|rpd|.

Summing over all p ∈ (w, z] we use that∑
w<p6z

g(p) 6 −
∑

w<p6z

log(1− g(p))

6 κ log

(
log z

logw

)
+

B

logw

= κ log s+
Bs

log z
.

We conclude that

(3.13) S(A, z) =

(
1 +OB

(
e−

1
2
s log s + κ log s+

s

log z

))
XV (w) +O

( ∑
d6zw

|rd|
)
.

Finally,

V (z) 6 V (w) = V (z)
V (w)

V (z)
6 V (z)

(
log z

logw

)κ
(1 +OB(1/ logw))

= V (z)sκ(1 +OB(1/ logw))

= V (z)(1 +OB(κ log s+ s/ log z)).

Inserting this into (3.13) completes the proof. �

Corollary 3.10. Assume that z →∞, κ→ 0, and that the remainders satisfy∑
d6z1+δ

|rd| = o(XV (z))

for some fixed δ > 0. Then

S(A, z) ∼ XV (z)

Proof. Take s = 2 + min(log(1/κ), log2 z) in Theorem 3.9. For large z, s > 1/δ. By hypothesis,

s→∞ and s
log z → 0, and κ log s→ 0. �
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3.4. Exercises.

Exercise 3.1. Prove the lower bound (3.8) in Theorem 3.5.

Exercise 3.2. Show that for all sufficiently large even N , there is a prime p and a number q with

Ω(q) 6 6 such that N = p+ q.

Exercise 3.3. Almost primes in short intervals. Prove that for every δ > 0, there is a natural

number k so that whenever x > x0(δ), then the interval (x, x + xδ] contains an integer q with

Ω(q) 6 k.

Exercise 3.4 (∗). Let S denote the set of integers which are the sum of two squares

(a) Show that a positive proportion of integers have the form a2 + b2 + 2c
2

for non-negative

integers a, b, c. You may use as a fact that the counting function of S is � x/
√

log x.

(a) Show that a positive proportion of integers do not have the form a2 + b2 + 2c
2

for non-

negative integers a, b, c.
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4. Selberg’s sieve

For any real numbers λ(d) for squarefree d, satisfying λ(1) = 1, and for any natural number m,

we have

1m=1 =
∑
d|m

µ(d) 6

(∑
d|m

λ(d)

)2

=
∑
e|m

∑
[d1,d2]=e

λ(d1)λ(d2).

Thus, any choice of λ(d) produces a valid upper bound sieve λ+ with

λ+
e =

∑
[d1,d2]=e

λ(d1)λ(d2).

Selberg calls this the Λ2-sieve, terminology used also by Friedlander and Iwaniec [61]. Our goal is

to optimize the choice of (λ(d))d>1. Let A be a sieve problem, and assume (g) and (r). Then

S(A, z) 6
∑
d1,d2

P+(d1d2)6z

λ(d1)λ(d2)A[d1,d2]

6 X
∑
d1,d2

P+(d1d2)6z

λ(d1)λ(d2)g([d1, d2]) +
∑
d1,d2

P+(d1d2)6z

|λ(d1)λ(d2)r[d1,d2]|

=: XG+R,

say. Minimizing XG+R is quite difficult. However, if we restrict the support of λ(d) to d 6
√
D,

it is relatively easy to minimize G. Since primes with g(p) = 0 do not contribute anything to G,

we let

P =
∏
p6z

g(p)>0

p

and restrict the support of λ(d) to d|P . Define

(4.1) h(d) =
∏
p|d

g(p)

1− g(p)
for d|P

and h(d) = 0 otherwise. Since [d1, d2] = d1d2
(d1,d2) is squarefree, we have

g([d1, d2]) =
g(d1)g(d2)

g((d1, d2))
.

Inverting (4.1) gives
1

g(m)
=
∏
p|m

(
1 +

1

h(p)

)
=
∑
d|m

1

h(d)
(m|P ),

so that

G =
∑

d1|P,d2|P

λ(d1)λ(d2)g(d1)g(d2)
∑

d|(d1,d2)

1

h(d)

=
∑
d|P

1

h(d)

∑
d1|P,d2|P
d|d1,d|d2

λ(d1)λ(d2)g(d1)g(d2) =
∑
d|P

1

h(d)

(∑
d|m

λ(m)g(m)

)2

.
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If we define

(4.2) ξ(d) =
µ(d)

h(d)

∑
d|m

λ(m)g(m) (d|P, d 6
√
D),

then we have

G =
∑
d

h(d)ξ(d)2.

This quadratic form in the λ(d) is minimized using Cauchy’s inequality. First, we invert (4.2).

Since ∑
k

h(kl)ξ(kl) = µ(l)
∑
k

µ(k)
∑
kl|m

λ(m)g(m)

= µ(l)
∑
l|m

λ(m)g(m)
∑
k|m/l

µ(k) = µ(l)λ(l)g(l),

and thus

(4.3) λ(l) =
µ(l)

g(l)

∑
l|d

h(d)ξ(d) (l|P ).

In particular, by Cauchy’s inequality,

1 = λ(1)2 =

( ∑
d6
√
D

h(d)1/2ξ(d)h(d)1/2

)2

6

( ∑
d6
√
D

h(d)ξ(d)2

)
J = GJ, J =

∑
d6
√
D

h(d),

with equality if and only if ξ(d) is constant; i.e., ξ(d) = 1/J for every d 6
√
D, d|P . By (4.3), this

is attained by taking

(4.4) λ(l) =
µ(l)

Jg(l)

∑
l|d

d6
√
D

h(d) =
µ(l)h(l)

Jg(l)

∑
m6
√
D/l

(m,l)=1

h(m).

We conclude that

S(A, z) 6 X

J
+R.

To handle R, we need an upper bound on λ(l). Observe that for any l > 1,

J =
∑
k|l

∑
d6
√
D

(d,l)=k

h(d) =
∑
k|l

h(k)
∑

m6
√
D/k

(m,l/k)=1

h(m)

>
∑
k|l

h(k)
∑

m6
√
D/l

(m,l)=1

h(m) =
h(l)

g(l)

∑
m6
√
D/l

(m,l)=1

h(m).

Comparing with (4.4), we see that |λ(l)| 6 1 for all l, and therefore that

(4.5) R 6
∑

d1,d26
√
D

P+(d1d2)6z

|r[d1,d2]| 6
∑
d6D

P+(d)6z

3ω(d)|rd|.

Since h(d) = 0 for d - P , we arrive at the following general theorem.
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Theorem 4.1 (Selberg’s sieve). Let A be a sieve problem, and assume (g), (r). Let z > 2 and

D > 1. Then

S(A, z) 6 X

J
+

∑
d1,d26

√
D

P+(d1d2)6z

|r[d1,d2]| 6
X

J
+

∑
d6D

P+(d)6z

3ω(d)|rd|,

where J =
∑

n6
√
D µ

2(n)h(n), and h is the multiplicative function defined on primes p 6 z by

h(p) = g(p)
1−g(p) .

4.1. Application. The Brun-Titchmarch inequality revisited.

Theorem 4.2 (Brun-Titichmarch inequality, v.2). For x > y > q > 1 and (a, q) = 1, we have

π(x; q, a)− π(x− y; q, a) 6
2y

φ(q) log(5y/q)

(
1 +O

(
log2(5y/q)

log(5y/q)

))
.

We need the following auxilliary lemma.

Lemma 4.3. For k ∈ N and x > 1, define

Hk(x) :=
∑
d6x

(d,k)=1

µ2(d)

φ(d)
.

Then

(i) Hk(x) > φ(k)
k H1(x) for all k, x;

(ii) H1(x) > log x for x > 1.

Proof. We first write

H1(x) =
∑
`|k

∑
d6x

(d,k)=`

µ2(d)

φ(d)
.

Write d = `h and observe that any nonzero summand corresponds to squarefree d, so (h, `) = 1

and (h, k/`) = 1. Thus, (h, k) = 1 and we have

H1(x) =
∑
`|k

µ2(`)

φ(`)

∑
h6x/`

(h,k)=1

µ2(h)

φ(h)
=
∑
`|k

µ2(`)

φ(`)
Hk(x/`) 6 Hk(x)

∑
`|k

µ2(`)

φ(`)
.

Inequality (i) follows from the identity∑
`|k

µ2(`)

φ(`)
=
∏
p|k

(
1 +

1

p− 1

)
=

k

φ(k)
.

Next, define s(d) =
∏
p|d p to be the squarefree kernel of d. Then∑

s(d)=m

1

d
=
∏
p|m

(
1

p
+

1

p2
+ · · ·

)
=
µ2(m)

φ(m)
.
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Hence, for x > 2 we have

H1(x) =
∑
m6x

∑
s(h)=m

1

h
=
∑
s(h)6x

1

h
>
∑
h6x

1

h
>
∫ bx+1c

1

dt

t
= log bx+ 1c > log x. �

Proof of Theorem 4.2. As with the proof of Theorem 2.7, let

A = {x− y < n 6 x : n ≡ a (mod q)}, X = y/q,

and let g(p) = 1/p for p - q and g(p) = 0 for p|q. Then

Ad = g(d)X + rd, |rd| 6 1

Also

S(A, z) > π(x; q, a)− π(x− y; q, a)− z.

In the notation of Theorem 4.1, we have

h(d) =
µ2(d)

φ(d)
for (d, q) = 1.

Let z =
√
D. By Lemma 4.3,

J = Hq(
√
D) >

φ(q)

2q
logD.

By Theorem 4.1,

S(A, z) 6 X

J
+

∑
d1,d26

√
D

1 6
X

J
+D 6

2y

φ(q) logD
+D,

hence

π(x; q, a)− π(x− y; q, a) 6
2y

φ(q) logD
+D +

√
D.

A near-optimal choice for D is

D = max

(
2,

5y/q

log2(5y/q)

)
,

and this gives the theorem upon using that

1

logD
=

1

log(5y/q)

(
1 +O

(
log2(5y/q)

log(5y/q)

))
.

�

4.2. Selberg’s sieve is best possible in dimension 1. Consider Selberg’s example

A = {n 6 x : λ(n) = −1},

where λ(n) = (−1)Ω(n) is Liouville’s function, and set X = x/2. As we saw previously, by the

Prime Number Theorem, for some constant c > 0,

Ad =
∑
d6x

1− λ(d)

2
=
x/2

d
+O

(
x

d
e−c
√

log(x/d)

)
.
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Let g(d) = 1/d for d ∈ P(z), and thus h(p) = 1/(p − 1) for p 6 z. Take z =
√
D = x1/2−ε(x) for

ε(x) = 1/ log log x. Then∑
d6D

µ2(d)3ω(d)|rd| � xe−c
√

2ε(x) log x
∑
d6D

µ2(d)3ω(d)

d

� x

log10 x

∏
p6x

(1 + 3/p)� x

log7 x
.

By Lemma 4.3,

J = H1(
√
D) > 1

2 logD,

and thus, by Theorem 4.1,

S(A, z) 6 X

J
+O

(
x

log7 x

)
=

x

(1− 2ε(x)) log x
+O

(
x

log2 x

)
∼ x

log x

as x → ∞. But S(A, z) = π(x) − π(
√
x) + 1 ∼ x/ log x by the prime number theorem. Thus,

Selberg’s upper bound sieve cannot be improved, for general sieve problems.

4.3. Asymptotic formulas. It is possible, under two-sided bounds on g(p), to obtain an asymp-

totic formula for J . The theorem below illustrates some useful techniques for analyzing sums of

multiplicative functions.

Theorem 4.4. Let A1, A2, L, κ > 0, and let g be a multiplicative function supported on squarefree

integers satisfying

(4.6) 0 6 g(p) 6 1−A1 (p prime)

and

(4.7) −L 6
∑

w6p6y

g(p) log p− κ log
y

w
6 A2 (2 6 w 6 y).

Let h be the multiplicative function supported on squarefree integers and defined by

h(p) =
g(p)

1− g(p)
(p prime).

Then, uniformly for x > 2,∑
n6x

µ2(n)h(n) = S(g)
(log x)κ

Γ(κ+ 1)
+Oκ,A1,A2

(
S(g)

[
(L+ 1)(log x)κ−1 + (L+ 1)κ

])
,

where

S(g) =
∏
p

(1− g(p))−1(1− 1/p)κ.

Remarks. It is important that the dependence on L be made explicit in the error term, as in

many applications L is not uniformly bounded, whereas κ,A1, A2 are usually uniformly bounded.

That is, we may wish to apply the result with a sequence of functions g1, g2, . . ., and typically the

same κ,A1, A2 will work for every gi but the corresponding numbers L (call them Li, say) may not

be bounded; see Theorem TP2 below for an example.

The sum on the left side depends only on g(p) for primes p 6 x, whereas the singular series is

defined in terms of g(p) for all primes p. It might seem more natural to replace the infinite product
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defining S(g) with a finite product over primes p 6 x, but the given form of the theorem is easier

to apply in practice. The inclusion of “extraneous factors” in S(g) does force us to include the

additional error term S(g)(L+ 1)κ, which is in fact best possible as the following example shows:

fix κ > 0, consider a large L (say going to ∞ as x→∞), g(p) = 0 for p < eL/2κ and g(p) = κ/p for

p > eL/2κ. One easily verifies (4.6) and (4.7), and computes that S(g) � L−κ. If 1 < x < eo(L),

then the sum in the lemma is just h(1) = 1, while the “main term” and first error term on the right

side are both o(1).

The second error term S(g)(L + 1)κ is frequently missing in versions of Theorem gh appearing

in the literature, e.g. some of the recent work on prime gaps [66, Lemma 4], [108, Lemma 6.1].

These two works ultimately depend on [76, Lemma 5.3 (2.5)], which claims, in our notation, that∏
p6z

(1− g(p)) = S(g)−1 e−γκ

(log z)κ

(
1 +O

(
L+ 1

log z

))
for all z > 2. The above example clearly shows this claim to be false in some cases when 2 6 z <

eo(L). The error in the proof can be traced to [76, p. 146], two lines after (2.7), where it is written

that (1 +O(L/ log z))−1 = (1 +O(L/ log z)), a relation which is only true when z > eCL for some

positive constant C.

Proof. We will use a technique due to E. Wirsing. Assume throughout that g and h are supported

on squarefree integers, so that all sums are over squarefree integers, and let

H(x) =
∑
n6x

h(n).

By partial summation,

H(x) log x =
∑
n6x

h(n)
(

log n+ log
x

n

)
=
∑
n6x

h(n) log n+

∫ x

1

H(u)

u
du.

We rewrite the right hand sum as∑
n6x

h(n) log n =
∑
n6x

h(n)
∑
p6x

log p =
∑
p6x

log p
∑

m6x/p
p-m

h(p)h(m).

Using the relation h(p) = g(p) + g(p)h(p), the right side transforms into

=
∑
p6x

g(p) log p

{ ∑
m6x/p

h(m)−
∑

m6x/p
p|m

h(m) + h(p)
∑

m6x/p
p-m

h(m)

}

=
∑
p6x

g(p) log p

{ ∑
m6x/p

h(m)− h(p)
∑
l6x/p2

p-l

h(l) + h(p)
∑

m6x/p
p-m

h(m)

}

=
∑
p6x

g(p) log p

{ ∑
m6x/p

h(m) + h(p)
∑

x/p2<m6x/p
p-m

h(m)

}
.
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Interchanging the order of summation yields

(4.8)
∑
n6x

h(n) log n =
∑
m6x

h(m)

{ ∑
p6x/m

g(p) log p+
∑

√
x/m<p6x/m

p-m

g(p)h(p) log p

}
.

Applying (4.7) (with y = w = p) followed by (4.6), we see that for every p,

g(p) 6
A2

log p
and h(p) 6

A2/ log p

A1
.

Hence, by another application of (4.7), we obtain∑
√
x/m6p6x/m

g(p)h(p) log p 6
A2/A1

log
√
x/m

∑
√
x/m6p6x/m

g(p) log p� 1 (m 6 x/4),

the sum being trivially O(1) when m > x/4 (here and throughout he proof, constants implied by

O-symbols may depend on κ,A1, A2 but not on any other parameter). By (4.7),∑
p6x/m

g(p) log p = κ log
x

m
+O(L+ 1),

and thus relation (4.8) becomes∑
n6x

h(n) log n =
∑
m6x

h(m)

{
κ log

x

m
+O(L+ 1)

}
= κ

∫ x

1

H(u)

u
du+O((L+ 1)H(x)).

Hence

H(x) log x = (κ+ 1)

∫ x

1

H(u)

u
du+ ∆∗(x), ∆∗(x)� (L+ 1)H(x).

It is convenient to slightly alter this relation, using the fact that H(u) = 1 for 1 6 u < 2. Thus

(4.9) H(x) log x = (κ+ 1)

∫ x

2

H(u)

u
du+ ∆(x) (x > 2), ∆(x)� (L+ 1)H(x).

We treat ∆(x) like an error term, and consider the integral equation for H given by (4.9). The

“unperturbed” equation f(x) log x = (κ+ 1)
∫ x

2 f(u)/u du has general solution f(t) = C(log t)κ for

some constant C, and our aim is to prove an asymptotic of this shape for H(x). First, we bound

∆(x) using the crude estimate

(4.10) H(x) 6
∏
p6x

(1 + h(p)) = S(x)
∏
p6x

(
1− 1

p

)−κ
� (log x)κS(x),

where

S(x) =
∏
p6x

(1− g(p))−1(1− 1/p)κ.

We must relate S(x) to S(g) by estimating the contribution of the large primes p > x to S(g);

that is, the “extraneous” primes that are not involved in the sum
∑

n6x h(n) (cf. the Remarks).

Let x > 2. Now

log(S(x)/S(g)) = log
∏
p>x

(1− g(p))(1− 1/p)−κ 6
∑
p>x

(
κ

p
− g(p) +

κ

p2

)
.
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By (4.7) and partial summation, when x > eL+1 we get∑
p>x

κ

p
− g(p) =

∑
p>x

κ log p
p − g(p) log p

log p
=

∫ ∞
x

∑
x<p6t

(
κ log p

p
− g(p) log p

)
dt

t log2 t
� L+ 1

log x
� 1.

When x < eL+1, however, we do better using the trivial observation g(p) > 0:∑
p>x

κ

p
− g(p) 6

∑
x<p6eL+1

κ

p
+

∑
p>eL+1

κ

p
− g(p) = κ log

(
L+ 1

log x

)
+O(1).

Therefore we have

(4.11) S(x) = S(g)
S(x)

S(g)
�
(

1 +

(
L+ 1

log x

)κ)
S(g).

The example described in the Remarks shows that (4.11) is in fact best possible. Combining (4.11)

with (4.10) yields the estimates

H(x)� ((log x)κ + (L+ 1)κ)S(g) (x > 2),(4.12)

∆(x)�
(
(L+ 1)(log x)κ + (L+ 1)κ+1

)
S(g) (x > 2).(4.13)

Returning to (4.9), we replace x with t, divide through by t(log t)κ+2 and integrate from 2 to x.

This gives ∫ x

2

H(t)

t(log t)κ+1
dt−

∫ x

2

κ+ 1

t(log t)κ+2

∫ t

2

H(u)

u
du =

∫ x

2

∆(t)

t(log t)κ+2
dt.

After interchanging the order of integration, we see that the double integral equals∫ x

2

H(u)

u

(
1

(log u)κ+1
− 1

(log x)κ+1

)
du,

which implies that ∫ x

2

H(u)

u
du = (log x)κ+1

∫ x

2

∆(t)

t(log t)κ+2
dt.

Comparing this with (4.9) yields

(4.14) H(x) = (κ+ 1)(log x)κ
∫ x

2

∆(t)

t(log t)κ+2
dt+

∆(x)

log x
(x > 2).

By (4.13), the integral above converges as x→∞ (the tail being� (L+1)S(g)/ log x for x > eL+1),

thus ∫ ∞
2

∆(t)

t(log t)κ+2
dt = C

for some constant C. Therefore, combining (4.14) and (4.13) (when x > eL+1) and (4.12) (when

x < eL+1), we conclude that

(4.15) H(x) = C(κ+ 1)(log x)κ +O
(
S(g)

[
(L+ 1)(log x)κ−1 + (L+ 1)κ

])
(x > 2).

It remains to determine C. For real s > 0 let

ζh(s) :=

∞∑
m=1

h(m)m−s = s

∫ ∞
1

H(x)x−s−1 dx = s

∫ ∞
0

H(et)e−st dt.
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By (4.15), as s→ 0+ we have

ζh(s) ∼ sC(κ+ 1)

∫ ∞
0

tκe−st dt = s−κC(κ+ 1)

∫ ∞
0

uκe−u du = s−κC(κ+ 1)Γ(κ+ 1).

Since ζ(s+ 1) ∼ 1
s as s→ 0+, we obtain

lim
s→0+

ζ(s+ 1)−κζh(s) = C(κ+ 1)Γ(κ+ 1).

On the other hand,

ζ(s+ 1)−κζh(s) =
∏
p

(
1− 1

ps+1

)κ(
1 +

h(p)

ps

)
.

Using (4.7), we see that the Euler product is uniformly convergent for s > 0 (Exercise). Therefore,

C(κ+ 1)Γ(κ+ 1) = lim
s→0+

∏
p

(
1− 1

ps+1

)κ(
1 +

h(p)

ps

)
=
∏
p

(
1− 1

p

)κ
(1 + h(p)) = S(g). �.

4.4. Application: twin primes.

Theorem 4.5. Let k be an even, positive integer. Then, uniformly in k 6 x,

#{p 6 x : p+ k prime} 6 C
∏
p|k
p>2

(
p− 1

p− 2

)
x

log2 x

(
4 +O

(
log2 x

log x

))
,

where

C = 2
∏
p

(
1− 1

(p− 1)2

)
is the “twin prime constant”.

Proof. Let A = {p+ k : p 6 x}. Then

Ad = Xg(d) + rd, X = li(x), g(d) =

{
1/φ(d) if (d, k) = 1

0 if (d, k) > 1.

Let D = z = x1/2(log x)−B, where B is sufficiently large. We have |rd| � x/d trivially, and

therefore by the Bombieri-Vinogradov theorem and Cauchy’s inequality,∑
d6D

3ω(d)µ2(d)|rd| �
∑
d6D

µ2(d)3ω(d)
(x
d

)1/2
|rd|1/2

6 x1/2

(∑
d6D

µ2(d)9ω(d)

d

)1/2(∑
d6D

|rd|

)1/2

� x1/2

( ∏
p6D

(
1 +

9

p

))1/2(
x

(log x)20

)1/2

� x

(log x)5
.

Since g(p) = 1
p−1 for primes p - k, the hypotheses of Theorem 4.4 hold with κ = 1, A1 and A2

absolute constants, and with

L = O(1) +
∑
p|k

log p

p− 1
�

∑
p=O(log k)

log p

p− 1
� log2 k.
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We also have h(p) = 1
p−2 for p - k. Theorem 4.4 implies that

J = S(g)
(

log
√
D +O(log2 k)

)
= S(g)

(
1
4 log x+O(log2 x)

)
,

where

S(g) =
1

2C

∏
p|k
p>2

p− 2

p− 1
.

Finally, Theorem 4.1 gives

#{p 6 x : p+ k prime} 6 D + S(A, D) 6 D +
X

J
+
∑
d6D

µ2(d)3ω(d)|rd|

6 C
∏
p|k
p>2

(
p− 1

p− 2

)
x

log2 x

(
4 +O

(
log2 x

log x

))
. �

Remarks. Assuming the Elliott-Halberstam conjecture, we may take D = x1−ε for any positive

ε in the above argument, and replace the 4 with 2 + o(1) in the conclusion. This is only a factor

two worse than the Hardy-Littlewood conjectured asymptotic formula for the left hand side.

For fixed k, Bombieri, Friedlander and Iwaniec showed that one may replace 4 with 3.5 (the error

term is not uniform in k).

Using the very same analysis, one can also prove, for even N > 4,

#{p1, p2 : N = p1 + p2} 6 C
∏
p|N
p>2

p− 1

p− 2

N

log2N

(
4 +O

(
log2N

logN

))
.

We leave this as an exercise.

4.5. Exercises.

Exercise 4.1. As in the proof of Lemma 4.3, let

H1(x) =
∑
n6x

µ2(n)

φ(n)
.

Show that H1(x) = log x+ c+ o(1), where

c = γ +
∑
p

log p

p(p− 1)
= 1.332 . . .

and γ = 0.5772 . . . is Euler’s constant.

Exercise 4.2. Prove that for even N > 4,

#{p1, p2 : N = p1 + p2} 6 C
∏
p|N
p>2

p− 1

p− 2

N

log2N

(
4 +O

(
log2N

logN

))
.
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Exercise 4.3. (Asymptotic for J in Selberg’s sieve). Let A1, A2, L, κ > 0, and let g be a multiplica-

tive function satisfying (4.6) and (4.7). Let h be the multiplicative function defined by h(p) = g(p)
1−g(p)

for prime p.

(i) Prove that uniformly for 2 6 w 6 y and s > 0,∏
w6p6y

(
1− 1

ps+1

)κ(
1 +

h(p)

ps

)
= 1 +O

(
L+ 1

logw

)
.

The implied constant in the O−term may depend only on A1, A2, κ. Hint: be careful. You may

want to consider separately the cases w < eL+1 and w > eL+1.

(ii) Use (i) to show that

lim
s→0+

∏
p

(
1− 1

ps+1

)κ(
1 +

h(p)

ps

)
=
∏
p

(
1− 1

p

)κ
(1 + h(p)) .

Exercise 4.4. We say that a tuple (h1, . . . , hk) of integers is admissible if the set of linear forms

(n+h1, . . . , n+hk) is admissible. For each x > 2, let ρ∗(x) be the maximum size k of an admissible

k-tuple lying in [0, x]. For example, ρ∗(12) = 5 by taking 0, 2, 6, 8, 12 Show that

(1 + o(1))x/ log x 6 ρ∗(x) 6 (2 + o(1))x/ log x.
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5. Smooth numbers

In what follows we will need the Erdős notation for iterates of the logarithm:

logk x = log · · · log︸ ︷︷ ︸
k

x.

The basic function

Ψ(x, y) = #{n 6 x : P+(n) 6 y}

is widely used in number theory. In contrast with Φ(x, z), which eliminates numbers with small

prime factors, Ψ(x, y) eliminates numbers with large prime factors. One can use the small sieve

(Theorem 2.4) to bound Ψ(x, y) but we obtain only

Ψ(x, y)� x
log y

log x

with no lower bound. The truth, however, is very different, owing to the non-independence of large

primes dividing n, e.g. the events p|n and p′|n are exclusive if p > p′ >
√
x.

Theorem 5.1. Uniformly for x > 10 and log x 6 y 6 x we have

Ψ(x, y) = xe−u log u+O(u log2(10u)), u =
log x

log y
.

Remarks. There is a change of behavior around y = log x, due to the fact that for smaller y,∏
p6y p < x, and this forces at least some of the exponents of primes dividing n to be large.

We note some special cases which we will find useful for applications:

(5.1) Ψ(x, log x) = exp

{
O

(
(log x) log3 x

log2 x

)}
= xo(1) (x→∞),

(5.2) Ψ(x, (log x)c) = x1−1/c+o(1) (x→∞)

for any fixed c > 1, and

(5.3) Ψ(x, xc(log3 x)/ log2 x) =
x

(log x)c+o(1)
(x→∞).

We first need a combinatorial lemma, which is similar to devices we used to develop the Brun-

Hooley sieve.

Lemma 5.2. Let I be a finite set of positive integers, and k ∈ N. Then

∑
n1,...,nk∈I

n1<n2<···<nk

1

n1 · · ·nk
>

1

k!

(∑
n∈I

1

n
− k − 1

min I

)k
,

provided that the expression in parentheses is > 0.
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Proof. This is straightforward. We have∑
n1,...,nk∈I

n1<n2<···<nk

1

n1 · · ·nk
=

1

k!

∑
n1,...,nk∈I

distinct

1

n1 · · ·nk

=
1

k!

∑
n1∈I

1

n1

∑
n2∈I
n2 6=n1

1

n2
· · ·

∑
nk∈I

nk 6∈{n1,...,nk−1}

1

nk
.

Each sum over ni is at least
∑

n∈I 1/n − (i − 1)/min I, independent of the choice of n1, . . . , ni−1,

and the proof is complete. �

Proof of Theorem 5.1. We begin with the upper bound, and we will in fact prove a stronger bound

(5.4) Ψ(x, y) 6 xe−u log u+O(u).

Define

α = 1− log u

log y
.

By our hypothesis that log x 6 y 6 x,

(5.5) 1 6 u 6
log x

log2 x
,

log3 x

log2 x
6 α 6 1.

For all w > 0, log(wα) 6 wα and thus logw 6 α−1wα. Hence,

(5.6) (log x)Ψ(x, y) =
∑
n6x

P+(n)6y

log(x/n) + log n 6 α−1xαS +
∑
n6x

P+(n)6y

∑
pa|n

log p,

where

S =
∑

P+(n)6y

1

nα
.

In the double-sum on the right side of (5.6), let n = pam, and separate into cases depending on

a = 1 or a > 1. The a = 1 terms contribute

6
∑
m6x

P+(m)6y

∑
p6min(y,x/m)

log p�
∑
m6x

P+(m)6y

min(y, x/m) 6
∑

P+(m)6y

y1−α
( x
m

)α
= uxαS.

The terms with a > 1 contribute

6
∑
p6y

26a�log x

log p
∑

m6x/pa

P+(m)6y

1 6
∑
p6y

26a�log x

log p
∑

P+(m)6y

(
x

pam

)α
= xαST,

where

T =
∑
p6y

26a�log x

log p

paα
.

If α > 2/3 then clearly T � 1. If 0 < α < 2/3 then y 6 (log x)3 and u > log x
3 log2 x

, thus crudely

T � (log x)
∑
p6y

log p� y log x� (log x)4 � u5.
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Putting together the a = 1 and a > 1 terms, we conclude from (5.5) and (5.6) that

(5.7) (log x)Ψ(x, y)� xαS(α−1 + u+ u5)� u5xαS = xu5e−u log uS,

since α−1 = log y
log(y/u) � log u. It remains to bound S. We have

S =
∏
p6y

(
1 +

1

pα
+

1

p2α
+ · · ·

)
=
∏
p6y

(
1 +

1

pα − 1

)
6 exp

{∑
p6y

1

pα − 1

}
.

First consider the case α > 2/3. For any 0 6 z 6 1 and c > 0 we have

ecz =
∞∑
k=0

(cz)k

k!
6 1 + z

∞∑
k=1

ck

k!
6 1 + ecz,

hence
1

pα
=

1

p
e

(log u) log p
log y 6

1

p

(
1 + elog u log p

log y

)
.

Thus, by Mertens bounds,

logS 6 O(1) +
∑
p6y

1

pα

6 O(1) +
∑
p6y

1

p
+

u

log y

∑
p6y

log p

p

6 log2 y +O(u+ 1).

Thus, S � (log y)eO(u). Combining this with (5.7), we get (5.4) in this case.

Now assume 0 < α < 2/3. Then y 6 u3 6 log3 x and u � log x
log2 x

. We then have, using (5.5) again,

logS �
∑

p621/α

1

α log p
+

∫ y

1

dt

tα

� α−121/α +
y1−α

1− α
� (log x)o(1) + u� u.

Again, plugging this into (5.7) yields the claimed upper bound in (5.4).

Now we prove the lower bound in Theorem 5.1. This breaks into two cases,

(i) log x 6 y 6 exp{(log2 x)10};
(ii) exp{(log2 x)10 6 y 6 x.

In each case we may assume that x > x0, a sufficiently large constant, since for x 6 x0, Ψ(x, y) > 1

and the result follows.

We begin with the easier case (i), following ideas from Tenenbaum [140, Ch. III.5.1]. Here

(5.8)
log x

(log2 x)10
6 u 6

log x

log2 x
.
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Let v = buc and k = π(y). Let p1, . . . , pk be the primes 6 y. Then Ψ(x, y) counts at least every

number of the form pν11 · · · p
νk
k where ν1 + · · ·+ νk 6 v. Thus,

Ψ(x, y) >

(
k + v

v

)
.

By (5.8), u� y/ log y � k . Thus, by Stirling’s formula and v = u+O(1), we deduce

log Ψ(x, y) > (k + v) log(k + v)− k log k − v log v +O(log(k + v))

= (k + u) log(k + u)− k log k − u log u+O(log y)

= −u log u+ u log k + (k + u) log(1 + u/k) +O(log y).

Again, (5.8) implies that log2 y � log3 x� log2 u, hence

u log k = u log y +O(u log2 y) = log x+O(u log2 u).

Also,

(k + u) log(1 + u/k) 6
(k + u)u

k
6 u+

u2

k
� u.

Hence,

log Ψ(x, y) > log x− u log u+O(u log2 u),

as desired.

In case (ii), we will first show a weaker bound

(5.9) Ψ(x, y)� xe−3u log u (1 6 y 6 x).

If y < log x then 3u log u > log x and (5.9) is trivial, and if log x 6 y 6 exp{(log2 x)10} then (5.9)

follows from the bound proved in case (i). Now suppose y > exp{(log2 x)10}. Let k = buc+ 1 and

let I be the set of primes in the interval (x
1
k+1 , x

1
k ]. Then Ψ(x, y) counts at least all numbers of

the form n = p1 · · · pkm 6 x with pi ∈ I for each i and p1 < · · · < pk (these numbers are distinct

since m 6 x
1
k+1 ). We observe that

x
1
k+1 > x

1
u+2 > x

1
3u = y1/3 > exp{(log2 x)9}.

By the Prime Number Theorem, we thus have for some constant c > 0

∑
p∈I

1

p
= log

(
k + 1

k

)
+O

(
e−c
√

log x1/(k+1)
)

= log

(
k + 1

k

)
+O(1/ log10 x).
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Hence, by Lemma 5.2,

Ψ(x, y) >
∑

p1,...,pk∈I
p1<p2<···<pk

⌊
x

p1 · · · pk

⌋
>

∑
p1,...,pk∈I

p1<p2<···<pk

x

2p1 · · · pk

>
x/2

k!

(∑
p∈I

1

p
− k

x
1
k+1

)k

>
x/2

k!

(
log(1 + 1/k)−O

(
1

k2 log2 x

))k
>
x/2

k!

(
1

k
− 1

2k2
−−O

(
1

k2 log2 x

))k
� x

kk k!
� xe−2k log k+O(k)

and (5.9) follows since k 6 u+ 1.

Now we use (5.9) as a bootstrap for a better estimate. Suppose that exp{(log2 x)10} 6 y 6 x.

Assume u > e4, since the desired lower bound in Theorem 5.1 follows from (5.9) for 1 6 u 6 e4.

Let k = buc+ 1, let η = 1
log u 6

1
4 and I be the set of primes in the interval (y1−2η, y1−η]. Consider

integers n = p1 · · · pkm, where pi ∈ I for all i, p1 < · · · < pk and P+(m) 6 y1−2η. These integers

are distinct and counted by Ψ(x, y). Then

Ψ(x, y) >
∑

p1,...,pk∈I
p1<···<pk

Ψ

(
x

p1 · · · pk
, y1−2η

)
.

Now p1 · · · pk > yk(1−2η) > yu(1−2η) = x1−2η and thus

x

p1 · · · pk
6 x2η = y2ηu 6 (y1−2η)4ηu,

and p1 · · · pk 6 (xy)1−η = x(1+1/u)(1−η) 6 x, using that η 6 1
4 . Hence, by (5.9),

Ψ(x, y)� x
∑

p1,...,pk∈I
p1<···<pk

1

p1 · · · pk
e−12ηu log(4ηu)

� xe−O(u)
∑

p1,...,pk∈I
p1<···<pk

1

p1 · · · pk
.

Invoking Lemma 5.2 and using the Prime Number Theorem as in case (i), we conclude that

Ψ(x, y)� xe−O(u)

k!

(∑
p∈I

1

p
+O

(
1

k100 log x

))k

� xe−O(u)

k!

(
1

2 log u

)k
= xe−u log u+O(u log2(10u)).

This completes the proof of the lower bound in Theorem 5.1. �
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Exercise 5.1. (a) Show, using elementary estimates, that

Ψ(x, x1/u) = x(1− log u) +O(x/ log x)

uniformly for 1 6 u 6 2.

(b) Show that for y < z < x that

Ψ(x, y) = Ψ(x, z)−
∑
y<p6z

Ψ(x/p, p).

(c) Let ρ(u) be the Dickman-de Bruijn function, defined recursively by

ρ(u) = 1 (0 6 u 6 1), ρ(u) = 1−
∫ u

1

ρ(v − 1)

v
dv (u > 1).

Using (b) and induction on buc, show that for any k > 1, uniformly for 1 6 u 6 k we have

Ψ(x, x1/u) = ρ(u)x+Ok

(
x

log x

)
.

Exercise 5.2. Prove that uniformly for 10 6 log z 6 y 6 z 6 x/2,

Θ(x, y, z) := #

{
n 6 x :

∏
pv‖n
p6y

pv > z

}
= xe−u log u+O(u log2(3u)), u =

log z

log y
.

That is, counting numbers which have a large y-smooth part.

Exercise 5.3. Let S denote the set of integers with (P+(n))2|n. Show that

#{n 6 x : n ∈ S} = x exp
{
− (
√

2 + o(1))
√

log x log2 x
}
.
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6. Structure of shifted primes

Throughout, we will work with sets Pa = {p+a : p prime }, for a fixed nonzero a. The structure

of these sets have numerous applications, particularly when a = −1 or a = 1. These include

(1) The study of Euler’s totient function φ(n);

(2) The study of the sum-of-divisors function σ(n);

(3) Problems about orders and primitive roots modulo primes;

(4) Carmichael numbers; analyzing primality tests

6.1. The number of prime factors of shifted primes. In 1935, Erdős [32] showed that for any

fixed a 6= 0, the function ω(p + a) has normal order log2 p. To accomplish this, Erdős proved an

upper bound of Hardy-Ramanujan type for the number of primes p 6 x with ω(p + a) = k. Here

we prove a best-possible version of this estimate. Theorem 6.2 below improves the uniformity of

Theorem 1 of Timofeev [141], who showed this bound uniformly for k 6 b log2 x for any fixed b.

Lemma 6.1. Fix b > 0. Uniformly for x > 2 and ` > 0 we have∑
ω(r)=`

rP+(r)6x

1

φ(r) logb(x/r)
�b

(log2 x+O(1))`

`! logb x
.

Proof. If ` = 0 then r = 1 and the result is trivial. Now suppose ` > 1. Then 2 6 r 6 x/2. We

separately consider r in log-dyadic ranges. Let Qj = x1/2j for j > 0 and define

Tj =

{
2 6 r 6 x/2 : ω(r) = `, rP+(r) 6 x,

x

Qj−1
< r 6

x

Qj

}
.

For r ∈ Tj , P
+(r) 6 x/r 6 Qj−1. Also, if Tj is nonempty then Qj−1 > 2. We have∑

r∈Tj

1

φ(r) logb(x/r)
6

1

logbQj

∑
r∈Tj

1

φ(r)
.

For the sum on the right side, we’ll use a trick that was useful in the study of Ψ(x, y). Let

α = 1
10 logQj

. Since Qj−1 > 2, Qj >
√

2 and thus 0 < α 6 1
3 . We’ll encode the condition

r > x/Qj−1 with
1

φ(r)
=

1

φ(r)αφ(r)1−α �
1

rα/2φ(r)1−α �
1

xα/2φ(r)1−α ,

since (x/r)α/2 6 Qα/2j−1 = Qαj = e1/10. Now∑
P+(r)6Qj−1

ω(r)=`

1

φ(r)1−α 6
1

`!

{ ∑
p6Qj−1

1

(p− 1)1−α +
1

(p(p− 1))1−α + · · ·
}`

=
1

`!

{
O(1) +

∑
p6Qj−1

1

p1−α

}`
.

Since log p 6 logQj−1 = 2 logQj , we have pα = 1 +O(α log p). It follows that∑
p6Qj−1

1

p1−α 6
∑

p6Qj−1

1

p
+O

(
α log p

p

)
6 log2Qj−1 +O(1) 6 log2 x+O(1).
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Putting everything together, we see that∑
r∈Tj

1

φ(r) logb(x/r)
� 1

xα/2 logbQj

∑
P+(r)6Qj−1

ω(r)=`

1

φ(r)1−α

6
1

xα/2 logbQj

(log2 x+O(1))`

`!

=
2bj exp

{
− 1

20 · 2
j
}

logb x

(log2 x+O(1))`

`!
.

Summing over j completes the proof. �

Theorem 6.2 (K. Ford [51]). Fix a 6= 0. Uniformly for x > 4|a| and k ∈ N we have

#{2 + |a| < p 6 x : ω(p+ a) = k} �a
x

log2 x

(log2 x+O(1))k−1

(k − 1)!
(2|a)

and

#{2 + |a| < p 6 x : ω(p+a2 ) = k} �a
x

log2 x

(log2 x+O(1))k−1

(k − 1)!
(2 - a).

Proof. Let

s =

{
1 2|a
2 2 - a.

Suppose p > 2 + |a| > 3 is prime and ω(p+as ) = k. Define q = P+(p+as ) and write p+a
s = qr. Either

ω(r) = k − 1 or ω(r) = k, and r is odd if 2|a. Also, rP+(r) 6 rq 6 (x+ a)/s. Define, for ` > 0,

R` = {r ∈ N : rP+(r) 6 x+a
s , ω(r) = `; r odd if 2|a}.

We separately consider two cases. First, suppose that 1 6 k 6 log2 x. Let L = exp{
√

log x}. Using

Theorem 5.1, we have

(6.1) #{2 + |a| < p 6 x : q2|p+as } 6 Ψ(x+ a, L)︸ ︷︷ ︸
q6L

+
∑
q>L

x+ a

q2
�a

x

L
.

We use Theorem 2.5 to bound the contribution of those p with q‖(p+ a) thus:

#{2 + |a| < p 6 x : ω(p+as ) = k, q2 - p+as } 6
∑

r∈Rk−1

#{q 6 x+a
rs : q, qsr − a︸ ︷︷ ︸

E=|rsa|

both prime}

�
∑

r∈Rk−1

|ars|
φ(|ars|)

x+ a

rs log2 x+a
rs

�a x
∑

r∈Rk−1

1

φ(r) log2 x+a
r

.

Invoking Lemma 6.1, we conclude that

#{2 + |a| < p 6 x : ω(p+as ) = k} �a
x

log2 x

(log2 x+O(1))k−1

(k − 1)!
+
x

L
.
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The final term x/L is negligible since k 6 log2 x implies that the first term on the right is �
x/ log2 x. This concludes the proof when k 6 log2 x.

Now assume k > log2 x. Here we do not separately consider the case q2|p+as ) and do not use

(6.1). We must then retain both cases ω(r) = k − 1 and ω(r) = k. Arguing as before, we obtain

from Theorem 2.5 and Lemma 6.1 the estimate

#{2 + |a| < p 6 x : ω(p+as ) = k} �a

∑
r∈Rk−1∪Rk

x

φ(r) log2((x+ a)/r)

�a
x

log2 x

(
(log2 x+O(1))k−1

(k − 1)!
+

(log2 x+O(1))k

k!

)
=

x

log2 x

(log2 x+O(1))k−1

(k − 1)!

(
1 +

(log2 x+O(1))

k

)
Recalling that k > log2 x, this concludes the proof. �

6.2. Large prime factors of shifted primes. It is conjectured that P+(p+a) has a distribution

roughly the same as the distribution of P+(n) over all integers n 6 x. We are far from proving

this, in fact the following is not known:

Conjecture 6.3. For any 0 < u < 1, there are infinitely many primes p with P+(p+ a) < pu and

infinitely many primes p with P+(p+ a) > pu.

The second assertion measures progress toward a special case of the Prime k−tuples conjecture

1.1. Letting s = 1 for even a and s = 2 for odd a, it’s conjectured that infinitely often, p+a
s is

prime.

At present, it is know that P+(p+ a) < p0.2844 infinitely often and P+(p+ a) > p0.677 infinitely

often. The first result in this direction is due to Erdős.

Theorem 6.4 (Erdős [32], 1935). For some u < 1 there are infinitely many primes p with P+(p+

a) < pu.

Definition 4. Let µ1 denote the infimum of all real numbers µ such that for all a 6= 0,

#{p 6 x : P+(p+ a) 6 xµ} > x1−o(1).

Upper bounds on µ1 have been given in a series of papers, see Table 2.

Upper bound on µ1 Author year

2
√

2− 2 = 0.82842 . . . Wooldridge [148] 1979
625
512e = 0.44907 . . . Pomerance [121] 1980

1
2e
−1/2.73 = 0.34664 . . . Balog [4] 1984
1
2e
−1/2 = 0.30326 . . . Friedlander [58] 1989

0.2961 Baker and Harman [7] 1998
15
32e
−1/2 = 0.2844 . . .; Lichtman [103] 2022+

Table 2. Progression of results on smooth shifted primes
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Here, we present an argument due to Balog which gives quantitatively better constants. The

main input is a hypothesis known as the Brun-Titmarsch on average hypothesis. Here N = N(x)

is some function of x.

Hypothesis BT(x,N,−a;λ). For all but o(N) moduli n ∈ (N, 2N ] (as N →∞), we have

(6.2) π(x;n,−a) 6 λ
x

φ(n) log x
.

By Theorem 4.2, for any ε > 0, any 1 < N < x with x sufficiently large (depending on ε), and

any a, we have (6.2) with λ = (2 + ε) log x
log(x/N) . The first result showing Hypothesis BT(x,N,−a;λ)

with a value of λ smaller than that achievable pointwise (that is, for all n, a) is due to Hooley [91],

with further improvements due to Hooley [93], Fouvry [57], Bombieri, Friedlander and Iwaniec [15]

and Baker and Harman [6, 7].

Theorem 6.5 (Balog [4], 1984). Let x be sufficiently large in terms of a, let M = xξ > x1/2 logA x,

where A is a large enough constant. Assume that λ > 1 and Hypothesis BT(x,N,−a;λ) holds for

all M < N 6M log x. Then for any u satisfying

(6.3) ξ > u >
(
e−1ξλ(1− ξ)

) 1
1+λ ,

there are �u x/ log5 x primes p 6 x so that P+(p+ a) < xu.

Take ξ > 1/2, then Theorem 4.2 implies that BT(x, xξ;−a, 4 + ε) holds (with no exceptional

set), where ε→ 0 as ξ → 1/2 and x→∞. We conclude that

Corollary 6.6. For any u > 1
2e
−1/5 = 0.409365 . . ., there are �u x/ log5 x primes p 6 x with

P+(p+ a) < xu. In particular, µ1 6 1
2e
−1/5.

Bombieri, Friedlander and Iwaniec [15] showed that Hypothesis BT(x, x1/2 logA x, a; 1 + ε) holds

for all A > 0 and all ε > 0, if x is sufficiently large. It follows that (6.3) holds for all u > 1
2e
−1/2 =

0.303 . . ., giving Friedlander’s result [58] that µ1 6 1
2e
−1/2.

Proof of Theorem 6.5. Let y = xu, and for x/ log x < p 6 x let

g(p) = #{(m,n) : p+ a = mn,P+(mn) 6 y, x+a
M log x < m 6 x+a

M ,M < n 6M log x}.

By Cauchy-Schwarz (see §2.2.4) we have

(6.4) #{p 6 x : P+(p+ a) 6 y} >

(∑
p6x g(p)

)2∑
p6x g(p)2

.

We bound the denominator using a crude argument:

(6.5)
∑
p6x

g(p)2 6
∑
p6x

τ(p+ a)2 6
∑

n6x+|a|

τ(n)2 � x log3 x.

Evidently,

g(p) > #{(m,n) : p+ a = mn,P+(m) 6 y, x+a
M log x < m 6 x+a

M ,M < n 6M log x}

−#{(m,n) : p+ a = mn, x+a
M log x < m 6 x+a

M ,M < n 6M log x, P+(n) > y},
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where we have ignored the condition P+(m) 6 y in the subtracted term. Thus

(6.6)
∑
p6x

g(p) > S1 − S2,

where, writing M for the set of integers in ( x+a
M log x ,

x+a
M ] that have largest prime factor 6 y,

S1 >
∑
m∈M

π(x;m,−a)− π(Mm− a;m,−a)

and, writing n = q` with q = P+(n),

S2 6
∑

y<q6M log x

∑
M/q<`6(M log x)/q

P+(`)6q

π(x; `q,−a).

Since x+a
M � x1/2(log x)−A, we use the Bombieri-Vinogradov theorem for S1, obtaining

S1 >
∑
m∈M

1

φ(m)

∫ x

Mn−a

dt

log t
+O

(
x

log x

)
>
∑
m∈M

x−Mm

φ(m) log x
+O

(
x

log x

)
>

x

log x

∑
m∈M

1

φ(m)
+O

(
x

log x

)
using the elementary bound ∑

m6z

m

φ(m)
= O(z).

We will also need the asymptotic

(6.7)
∑
m6z

1

φ(m)
= C1 log z +O(1)

for some constant C1 > 0. If P+(m) > y write m = qm′ where q = P+(m). Then∑
m∈M

1

φ(m)
>

∑
x+a

M log x
<m6x+a

M

1

φ(m)
−

∑
y<q6x+a

M

1

q − 1

∑
x+a

Mq log x
<m′6x+a

Mq

1

φ(m′)
.

The inner sum on m′ is at most C1 log2 x+O(1) by (6.7). Therefore, by Mertens’ theorems,

S1 >
x

log x
(C1 log2 x)

(
1− log

log(x/M)

log y
+ o(1)

)
=

x

log x
(C1 log2 x)

(
1− log

1− ξ
u

+ o(1)

)
.

(6.8)

Now we bound S2 from above. The terms corresponding to M < q 6M log x contribute, by the

Brun-Titchmarsh inequality,

� x

log x

∑
M<q6M log x

1

q

∑
M/q<`6(M log x)/q

1

φ(`)
� x(log2 x)2

log2 x
.
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Let E denote the set of n ∈ (M,M log x] such that π(x;n,−a) > λ x
φ(n) log x . By our hypothesis

(6.2) and the Brun-Titchmarsh inequality,∑
n∈E

π(x;n,−a)� x

log x

∑
n∈E

1

φ(n)
= o

(
x log2 x

log x

)
.

Using (6.7) gain, the terms with q 6M and q` 6∈ E contribute

6
λx

log x

∑
y<q6M

∑
M/q<`6(M log x)/q

q 6̀∈E

1

φ(q`)

6 (λ log(ξ/u) + o(1))
x

log x
(C1 log2 x) .

Therefore,

(6.9) S2 6 (λ log(ξ/u) + o(1))
x

log x
(C1 log2 x) .

Combining (6.8) and (6.9), we conclude that∑
p6x

g(p) >
x

log x
(C1 log2 x)

(
1− log

1− ξ
u
− λ log

ξ

u
+ o(1)

)
as x→∞. The hypothesis (6.3) implies that

1− log
1− ξ
u
− λ log

ξ

u
> 0.

Inserting the lower bound for
∑

p6x g(p) into (6.4) and recalling (6.5), the proof is complete. �

Now we turn to the problem of showing that P+(p+ a) is often large.

Definition 5. Let µ2 denote the supremum of all real numbers µ such that for any a 6= 0

#{p 6 x : P+(p+ a) > xµ} �µ
x

log x

The progression of records for the lower bound on µ2 is given in Table 3.

Lower bound on µ2 Author year

1− 1
2e
−1/4 = 0.6105 . . . Goldfeld [63] 1969

1− 1
2e
−1/4 = 0.6105 . . . Motohashi [112] 1970

1
2 + 3

2(1− e−1/12) = 0.61993 . . . Hooley [91] 1972

5/8 = 0.625 Hooley [92] 1973

0.6683 Fouvry [57] 3 1985

0.676 Baker and Harman [6] 1996

0.677 Baker and Harman [7] 1998

Table 3. Progression of results on large prime factors of shifted primes

Here we show the theorem proved independently by Goldfeld and Motohashi. We will then

indicate where in the proof the further improvements come from.
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Theorem 6.7. We have µ2 > 1− 1
2e
−1/4.

Proof. We use a device due to Chebyshev, in connection with the largest prime factor of polyno-

mials. Let 1/2 < θ < 1− 1
2e
−1/4 and define

M = log
∏

|a|<p6x

(p+ a).

Let B be the exponent in the Bombieri-Vinogradov Theorem (Theorem 3.4) corresponding to A = 2,

and let Q = x1/2(log x)−B. Let P denote the set of primes |a| < p 6 x so that there is a prime

power qb > Q with b > 2 and qb|(p+ a). Define exponents α(q) by the prime factorization∏
|a|<p6x
p6∈P

(p+ a) =
∏

q6x+a

qα(q).

Then

M = M1 +M2 +M3 +M4,

where

M1 = log
∏
p∈P

(p+ a),

M2 = log
∏
q6Q

qα(q).

M3 = log
∏

Q<q6xθ

qα(q),

M4 = log
∏

xθ<q6x+a

qα(q).

Our goal is to prove that M4 � x. We accomplish this by first observing that

(6.10) M ∼ x

by the Prime Number Theorem, and then upper bounding M1,M2,M3. For M1, if p ∈ P then

p+ a is divisible by d2 for some d > Q1/3. Hence

M1 � (log x)
∑

d>Q1/3

x

d2
� x6/7.

We handle M2 with the Bombieri-Vinogradov Theorem. Letting E(x; s, c) = π(x; s, c)− li(x)/φ(s)

we have

M2 =
∑
qb6Q

(log q)π(x; qb,−a)

=
∑
qb6Q

(log q)

(
li(x)

φ(qb)
+ E(x; qb,−a)

)
∼ li(x) logQ ∼ x

2
.
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We cannot evaluate M3 asymptotically, but a good upper bound will suffice. The most crude

method is to use the Brun-Titchmarsh inequality, Theorem 4.2 with explicit constant. This gives

M3 =
∑

Q<q6xθ

(log q)π(x; q,−a)

6 (2 + o(1))
∑

Q<q6xθ

x log q

(q − 1) log(x/q)

= (2 + o(1))x

∫ xθ

Q

dt

t log(x/t)

∼
(

2 log
1

2− 2θ

)
x.

Combining the estimates for M1,M2 and M3, we find that

M1 +M2 +M3 6 (1 + o(1))

(
1

2
+ 2 log

1

2− 2θ

)
x.

Recalling the bound on θ, and comparing this with (6.10), we find that M4 �θ x. As each number

p+ a is divisible by at most one prime > xθ we see that

#{p 6 x : P+(p+ a) > xθ} > M4

log(x+ a)
�θ

x

log x
,

as desired. �

Remarks. Most improvements to Theorem 6.7 come from better estimates of M3 using Hy-

pothesis BT(x,N, a;λ) (an exception is the work of Hooley [92], which makes use of a Selberg-type

sieve). These in turn rely on a variety of tools, from complicated sieves to bounds on Kloosterman

sums.

The bound µ2 > 2/3 of Fouvry enabled Adleman and Heath-Brown [1] to deduce that the first

case of Fermat’s Last Theorem is true for infinitely many primes p; this is now a historical point

in light of Wiles’s proof 10 years later.

The bound on µ2 also played an important role in the original AKS polynomial-time algorithm

[2] for determining the primality of numbers.

6.3. Application to Carmichael numbers. A composite number n is a Carmichael number if

for all (a, n) = 1, an−1 ≡ 1 (mod n). Such a number mimics a prime w.r.t. the Fermat congruence.

An old criteria of Korselt says that n is a Carmichael number if and only if n is squarefree and

(p− 1)|(n− 1) for every prime p|n. The smallest Carmichael numbers are 561, 1105 and 1729. One

way to construct Carmichael numbers is to observe that if k ∈ N, and 6k + 1, 12k + 1 and 18k + 1

are all prime, then n = (6k+ 1)(12k+ 1)(18k+ 1) is a Carmichael number. By the Prime k-tuples

conjecture (Conjecture 1.1), there are ∼ C x
log3 x

such numbers k 6 x.

Alford, Granville and Pomerance showed unconditionally in 1994 [3] that there are infinitely

many Carmichael numbers. Moreover, they showed a lower bound C(x) � x2/7 for the counting

function C(x) of Carmichael numbers. A key ingredient is finding many smooth shifted primes

p− 1. In fact, Alford, Granville and Pomerance proved that

C(x)� x
5
12

(1−µ1)−o(1).
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With Lichtman’s [103] value µ1 6 0.2844, we get an exponent of 0.2981 . . .. The 5
12 fraction comes

from lower bounds for prime in progressions to “virtually all” moduli. Harman [81, 83] improved

the exponent, showing

C(x)� x0.4736(1−µ1)−o(1),

where now the exponent is a bit larger than 1/3.

6.4. Applications to Euler’s function and the sum of divisors function.

6.4.1. Popular values of Euler’s function. Let A(m) = #{x : φ(x) = m}. Erdős [32] showed that

there is a constant c > 0 such that A(m) > mc infinitely often. A key ingredient in the proof is

Theorem 6.4. The argument was sharpened by Pomerance [121], to connect c with the exponent

in Theorem 6.4.

Theorem 6.8 (Erdős; Pomerance). For every ε > 0 there are infinitely many n such that A(n) >

n1−µ1−ε.

Currently, the best bound we know is µ1 6 0.2961 due to Baker and Harman [7], while it is

conjectured that µ1 = 0. The conclusion then would be best possible since trivially

A(m) 6 #{n : φ(n) 6 m} ∼ Cm,

where C = ζ(2)ζ(3)/ζ(6); this last asymptotic is due to Bateman [10].

Proof. Fix µ1 < ν < 1 and let z be large. Let

P = {p 6 (log z)1/ν : P+(p− 1) 6 log z}.

By hypothesis, #P > (log z)1/ν−o(1) as z →∞. Let

M =

⌊
ν log z

log log z

⌋
,

and let N denote the set of all integers which are the product of M distinct primes from P. Note

that for all n ∈ N , φ(n) 6 n 6 z and P+(φ(n)) 6 log z. Hence, there is an m ∈ {φ(n) : n ∈ N }
such that

A(m) >
#N

Ψ(z, log z)

By Theorem 5.1 ( inequality (5.1)), Ψ(z, log z) = zo(1). Also, as z →∞, we have

#N =

(
#P

M

)
>

(
#P

M

)M
>

(
(log z)(1−o(1))/ν

M

)M
> (log z)

[
1
ν
−1−o(1)

]
·
[
ν log z
log2 z

−1
]

= z1−ν−o(1).

Hence there is an m 6 z with A(m) > z1−ν−o(1). Taking ν arbitrarily close to µ1, the theorem

follows. �
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6.4.2. The range of Euler’s function. Let

V = {φ(n) : n ∈ N} = {1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, . . .}

denote the range of Euler’s totient function φ(n), and let V (x) = #{m ∈ V : m 6 x} be its

counting function. Evidently V contains only one odd number, namely 1, but what can we say

about the growth of V (x)? Since φ(p) = p− 1 for all primes p, trivially

V (x) > π(x) ∼ x

log x
.

Pillai [116] gave the first non-trivial upper bound on V (x), namely

V (x)� x

(log x)(log 2)/e
.

Using sieve methods, Erdős [32] improved this to

V (x) =
x

(log x)1−o(1)
(x→∞).

Upper and lower bounds for V (x) were sharpened in a series of papers by Erdős [35], Erdős and

Hall [41, 42], Pomerance [123], Maier and Pomerance [106], and finally by Ford [47]. The exact

order of V (x) is now known [47, Theorem 1], namely

V (x) =
x

log x
exp{C(log3 x− log4 x)2 +D log3 x− (D + 1/2− 2C) log4 x+O(1)},

where C = 0.81781464640083632231 . . . and D = 2.17696874355941032173 . . . are specific constants

defined in [47]. Sieve methods played a crucial role in these investigations. Below we use the results

about the normal behavior of ω(n) and ω(p+ a) to provide nontrivial upper and lower boudns for

V (x).

Theorem 6.9. We have

V (x)� x log2 x

log x
.

Proof. Let y = exp{
√

log x} and let

B = {pq : q 6 y < p 6 x/q, p and q prime}.

Evidently φ(m) 6 x for m ∈ B. Our goal is to show that there is little overlap among the numbers

φ(m). By simple inclusion-exclusion,

(6.11) V (x) > |B| − Z, Z := #{m1,m2 ∈ B : m1 6= m2, φ(m1) = φ(m2)}.

By Mertens,

|B| =
∑
q6y

π(x/q)− π(y)�
∑
q6y

x

q log x
� x log2 x

log x
.

Also, Z is the number of solutions of

(p− 1)(q − 1) = (p′ − 1)(q′ − 1) (p 6= p′, pq ∈ B, p′q′ ∈ B).

Fix q and q′, and write

g = (q − 1, q′ − 1), r =
q − 1

g
, s =

q′ − 1

g
.
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Then the above equation reduces to

(p− 1)r = (p′ − 1)s,

where (r, s) = 1. Thus, for some n 6 x/(qs) we have p′ = 1 + rn and p = 1 + sn. Apply Theorem

2.5 with the pair of linear forms rn+ 1, sn+ 1. Here E = rs|r − s| � x3. Hence

#{n 6 x/(qs) : nr + 1, ns+ 1 both prime} � x/(qs)

log2(x/(qs))
(log2 x)2

� x(log2 x)2

log2 x

g

qq′

We now sum over q, q′ using Exercise 2.12. This gives∑
q,q′6y
q 6=q′

(q − 1, q′ − 1)

qq′
6
∑
g6y/2

g

( ∑
q6y

q≡1 (mod g)

1

q

)2

� (log2 x)2
∑
g6y/2

g

φ(g)2

6 (log2 x)2
∏
p6y/2

(
1 +

p

(p− 1)2
+O

(
1

p2

))
� (log2 x)2

√
log x.

It follows that

Z � x(log2 x)4

(log x)3/2
.

Combined with (6.11), this completes the proof. �

Lemma 6.10 (Poisson tails). Let X be a Poisson random variable with parameter λ. Then

P(X 6 αλ) 6 e−Q(α)λ (0 6 α 6 1), P(X > αλ) 6 e−Q(α)λ (α > 1),

where

(6.12) Q(x) = x log x− x+ 1.

Proof. We use the idea behind Chernoff’s inequality, Markov’s inequality, and the easy identity

EcX = e(c−1)λ for c > 0. Let b = logα. Then

P(X 6 αλ) = P
(

ebX > ebαλ
)
6

EebX

ebαλ
=

e(eb−1)λ

ebαλ
= e−Q(α)λ.

Similarly,

P(X > αλ) = P
(

ebX > ebαλ
)
6

EebX

ebαλ
=

e(eb−1)λ

ebαλ
= e−Q(α)λ. �

Lemma 6.11. Uniformly for k > 1 we have

#{n 6 x : Ω(n) > k} � xk log x

2k
.
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Proof. Take y = 2−1/k and write yΩ(n) = (1?g)(n), where g is multiplicative, and g(pk) = yk−yk−1

for prime p. Since g(n) > 0 for all n,∑
n6x

yΩ(n) 6 x
∑
d6x

g(d)

d
6 x

∏
p6x

(
1 +

∞∑
k=1

yk − yk−1

pk

)

= x
∏
p6x

(
1 +

y − 1

p− y

)

6
x

2− y
exp

{ ∑
36p6x

y − 1

p− y

}
� (xk)(log x)y−1.

Then,

#{n 6 x : Ω(n) > k} 6
∑
n6x

yΩ(n)−k

� y−k(xk)(log x)y−1

6
xk

2k(1− 1
2k )k

(log x)1−1/k � xk log x

2k
. �

Theorem 6.12. We have

V (x)� x

log x
exp

{
3.5(log3 x)2

}
.

Proof. Let

ε = 0.0001, δ = Q(1− ε) > 0.

Let

S = {p : ω(p− 1) 6 (1− ε) log2 p}
and let S(x) be the counting function of S. By Theorem 6.2, and Lemma 6.10,

S(x) 6 #{p 6 x : ω(p− 1) 6 (1− ε) log2 x}

� x

log2 x

∑
k6(1−ε) log2 x

(log2 x+O(1))k−1

(k − 1)!

� x

log2 x

∑
k6(1−ε) log2 x

(log2 x)k−1

(k − 1)!

� x

(log x)1+δ
.

(6.13)

Also define

W (x) = max
y6x

log y

y
V (y).

Although log y
y V (y) may not be monotone, W (x) is and this will be convenient in the proof. We

note that V (2) = 2 and thus W (x) > log 2 for x > 2.

Let x0 be sufficiently large and assume that x > x0. Then there is a y 6 x with

(6.14) W (x) =
log y

y
V (y).
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By Theorem 6.9, W (x)→∞ as x→∞ and hence y →∞ as x→∞. We now bound V (y). Let

θ = 0.485, y1 = exp

{
(log y)θ

3 log2 y

}
.

Associate to each v ∈ V with v 6 y a preimage n, that is, φ(n) = v. We have n � y log2 y by a

classical estimate.

We divide these v into four classes:

(a) V1 = {v : Ω(v) > 2.9 log2 y or Ω(n) > 2.9 log2 y};
(b) V2 = {v : p2|n for some p > y1};
(c) V3 = {v 6∈ V1 ∪ V2 : p|n for some p > y1, p ∈ S};
(d) V4 = (V ∩ [1, y]) \ (V1 ∪ V2 ∪ V3) (the remaining v).

Lemma 6.11 implies immediately that

(6.15) |V1| �
y(log2 y)2

(log y)2.9 log 2−1
� y

(log y)1.01
.

Trivially,

(6.16) |V2| �
∑
p>y1

y log2 y

p2
� y

(log y)100
.

Now suppose that v ∈ V3. Then p|n for some p ∈ S, p > y1. Since v 6∈ V2, v = (p − 1)φ(n/p) =

(p− 1)w for some w ∈ V , w 6 y
p−1 . Thus,

|V3| 6
∑

y1<p6y
p∈S

V

(
y

p− 1

)
� S(y)︸︷︷︸

p>y/2

+W (y)y
∑

y1<p6y/2
p∈S

1

p log(y/p)
.

A standard partial summation argument, together with (6.13), yields∑
y1<p6y/2

p∈S

1

p log(y/p)
� S(y)

y
+

∫ y/2

y1

S(t)

t2 log(y/t)
dt

� 1

(log y)1+δ
+

1

(log y1)δ

∫ y/2

y1

dt

t(log t) log(y/t)

� (log2 y)2

(log y)1+δθ
.

Therefore, by the monotonicity of W (),

(6.17) |V3| �W (y)
y(log2 y)2

(log y)1+δθ
� yW (x)

(log y)1+δθ/2
.

Finally, suppose that v ∈ V4. Let

y2 = y
3 log2 y
1 = exp{(log y)θ}.

We claim that n has at most 5 prime factors > y1. Since v 6∈ V2, the prime factors of n which are

> y1 are distinct. Since v 6∈ V3, any prime factor p of n which is > y1 is not in S, and thus satisfies

ω(p− 1) > (1− ε) log2 p > (1− ε) log2 y1. If n has 6 or more such factors, then

Ω(v) > 6(1− ε) log2 y1 > 6(1− ε)(θ − o(1)) log2 y > 2.9 log2 y,
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for y large enough, contradicting that v 6∈ V1. This proves the claim. Thus, n = qm, where

P+(m) 6 y1, P−(q) > y1, q is squarefree and ω(q) 6 5. But then m 6 y
Ω(m)
1 6 y

Ω(n)
1 6 y2 since

v 6∈ V1 and φ(n) = φ(q)φ(m). Let Q denote the set of such numbers q which satisfy φ(q) 6 y.

Thus,

|V4| 6 V (y2) +
∑
q∈Q

V

(
min

(
y2,

y

φ(q)

))
.

For t 6 y2, V (t) 6 t
log tW (t) 6 t

log tW (y2). We have φ(q) � q for such q, so q � y. When

q > y/2, V (y/φ(q))� 1 and there are O(y(log2 y)4/ log y) such numbers q by the Hardy-Ramanujan

inequality. Therefore, since W (y2)� 1,

|V4| �W (y2)

[
y(log2 y)4

log y
+
∑
q6y/2
q∈Q

y

q log(y/q)

]

�W (y2)
y(log2 y)5

log y
.

Combining this with (6.14), (6.15), (6.16) and (6.17) gives

W (x)� 1

(log y)0.01
+

W (x)

(log y)δθ/2
+W (y2)(log2 y)5.

Again, using the monotonicity of W (), and the fact that x and y are sufficiently large,

W (y2) 6W
(

exp{(log x)θ}
)
.

Also recall that W (x)→∞ as x→∞, and we obtain

W (x) 6 K(log2 x)5W
(

exp{(log x)θ}
)

for some absolute constant K > 0. Iterating this expression yields

W (x) 6 Kkθ5k(k−1)/2(log2 x)5kW
(

exp{(log x)θ
k}
)

provided that (log x)θ
k
> x0. Taking

k =

⌊
log3 x

− log θ
− c
⌋

for a large enough constant c produces

W (x) 6 exp

{
2.5

− log(θ)
(log3 x)2 +O(log3 x)

}
� exp{3.5(log3 x)2}.

This completes the proof. �

6.5. Exercises.

Exercise 6.1. Show that for every α < 1
2 , a positive proportion of primes p satisfy both P+(p−

1) > pα and P+(p+ 1) > pα.

Exercise 6.2. Improve the upper estimate (6.5) for
∑

p6x g(p)2.

Exercise 6.3 (Ford, 1995 - see [47]). (a) Suppose than m > 2 and A(m) = k. Also suppose that

p > 2m+ 1 is a prime such that
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(i) 2p+ 1 and 2mp+ 1 are both prime;

(ii) dp+ 1 is composite for all d|2m except for d = 2, d = 2m.

Show that A(2mp) = k + 2.

(b) Assume the Prime k-tuples conjecture, Conjecture 1.1. Show that a prime p satisfying the

above conditions always exists as long as m > 2 and m 6≡ 2 (mod 3). Use this to conclude that for

any k > 2 that there is a number m with A(m) = k. [This is a conjecture of Sierpiński (see [128]

and [38]), which was proved for even k by Ford and Konyagin [56] and for odd k by Ford [48].]

Exercise 6.4. Carmichael [21, 22] conjectured that A(m) = 1 is impossible. Assume that A(m) =

1 and φ(n) = m.

(a) (Carmichael-Klee) Show that if d
∏
p|d p|n and q = 1 + d is prime, then q2|n.

(b) Show that 223272432|n.

(c) Show that either 132|n or 192|n. Hint: consider the two cases 32‖n and 33|n.
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7. Small gaps between primes

7.1. Introduction. Prior to 2005, there were only weak results know about small gaps between

primes. Let pn denote the n-th prime, and set

∆ = lim inf
n→∞

pn+1 − pn
log n

.

The Prime Number Theorem implies ∆ 6 1. Prior to 2005, it was not known that ∆ = 0, which is

itself a very weak bound in the direction of the Twin Prime Conjecture. Here we summarize the

major events:

• Hardy-Littlewood, 1926 [79] (unpublished): ∆ 6 2/3 assuming the Extended Riemann

Hypothesis for Dirichlet L-functions.

• Erdős, 1940 [34]: ∆ < 1 unconditionally.

• Bombieri and Davenport, 1966 [14] : ∆ 6 2+
√

3
8 = 0.466 . . .

• Maier, 1988 [105]: ∆ 6 0.248.

We begin by showing Erdős’ argument from 1940, which incorporated a basic sieve bound.

Theorem 7.1. Suppose that, uniformly for all even h 6 2 log x we have

(7.1) #{x/2 < n 6 x : n and n+ h are both prime} 6 (B + o(1))Ch
x/2

log2 x
(x→∞)

where

Ch = C
∏
p|h
p>2

p− 1

p− 2
, C = 2

∏
p>2

(
1− 1

(p− 1)2

)
.

Then ∆ 6 1− 1
2B .

Basic upper bound sieves, such as Theorem 2.5, show that (7.1) holds for some finite B, while

Theorem 4.5 implies that B = 4 is admissible.

Proof. The basic idea is that the Prime Number Theorem implies that the average gap between

primes up to x is ∼ log x, but (7.1) implies that there are not many gaps that are extremely close

to log x.

Let x be large and let pn+1, . . . , pn+m+1 be the primes in (x/2, x]. Put dj = pj+1 − pj for all j.

Fix 1
3B < ε < 1

2B and let

I =
[
(1− ε) log x, (1 + ε) log x

]
.

Assume that dj > (1− ε) log x for all n+ 1 6 j 6 n+m. For each even k ∈ I, let

Nk = #{n+ 1 6 j 6 n+m : dj = k},

so that by (7.1), we have

(7.2) Nk 6 (B + o(1))Ck
x/2

log2 x
.
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Now

x

2
>

n+m∑
j=n+1

dj =
∑

k>(1−ε) log x

kNk

>
∑
k∈I

kNk + (1 + ε) log x

(
m−

∑
k∈I

Nk

)
= (1 + ε)m log x−

∑
k∈I

Nk ((1 + ε) log x− k) .

The Prime Number Theorem gives m ∼ x/2
log x . Hence, by (7.2),

(7.3)
x

2
>

(
1 + ε

2
+ o(1)

)
x− (B/2 + o(1))x

log2 x

∑
k∈I

Ck ((1 + ε) log x− k) .

We claim that

(7.4)
∑
k6y

Ck = y +O(log2 y).

Assuming the claim, partial summation gives∑
k∈I

kCk ∼ 2ε log2 x,

and we conclude from (7.3) that

0 >
ε

2
− (B/2)

(
2ε(1 + ε)− 2ε

)
+ o(1) =

ε

2
−Bε2 + o(1).

This is a contradiction if ε < 1
2B , and proves the theorem.

Now we prove the claim (7.4). Write Ck = C
∑

d|k g(d), where g is multiplicative, supported on

squarefree integers, g(2) = 0 and g(p) = 1
p−2 for primes p > 2. Thus,

g(d)� 1

d

(
d

φ(d)

)2

� (log2 d)2

d
� log d

d
.

We then compute ∑
k6y

Ck = C
∑
d6y
d odd

g(d)
∑
k6y

(2d)|k

1 = C
∑
d6y
d odd

g(d)
⌊ y

2d

⌋

=
Cy

2

∑
d

g(d)

d
+O

(
y
∑
d>y

g(d)

d
+
∑
d6y

g(d)

)

=
Cy

2

∏
p>2

(
1 +

g(p)

p

)
+O(log2 y)

= y +O(log2 y),

which proves (7.4). �
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7.2. Improved gap detectors: GPY-Zhang-Maynard-Tao. In 2005 (the paper appeared in

2009), Goldston, Pintz and Yıldırım[64] showed that ∆ = 0 using a new type of prime detector.

Let (h1, . . . , hk) be an admissible k-tuple of non-negative integers; that is, the set of linear forms

(n + h1, . . . , n + hk) is admissible in the sense of Definition 1. For some non-negative “weight

function” w(n), consider

(7.5) S =
∑

N<n62N

( k∑
j=1

1n+hj prime − 1

)
w(n).

If S > 0 then there is an n ∈ (N, 2N ] such that at least two of the forms n+ hj are simultaneously

prime. The object is to choose w(n) so that

(a) w(n) is small when there are few primes among the n+ hj
(b) w(n) is large when n+ hj is prime ( or nearly prime) for many j;

(c) We can find a good upper bound for
∑

N<n62N w(n) and, for every j, a good lower bound

for the sum
∑

N<n62N w(n)1n+hj prime.

A naive choice is

w(n) = 1n+hj prime ∀j .

This satisfies (a) and (b) but not (c), because we need something like the Hardy-Littlewood con-

jectures (Conjecture 1.1) to get the required lower bounds. Motivated by Selberg’s sieve, Goldston,

Pintz and Yıldırım make the choice

w(n) =

( ∑
d|(n+h1)···(n+hk)

λd

)2

, λd = µ(d)

(
log(z/d)

log z

)k+`

, ` > 0.

Elaborating on the ideas in [64], they proved in [65] that

lim inf
n→∞

pn+1 − pn√
log n(log2 n)2

<∞.

More interestingly, they showed that any exponent improvement in the Bombieri-Vinogradov The-

orem would imply that bounded gaps exist infinitely often. More precisely,

Theorem 7.2 (Goldston-Pintz-Yıldırım, 2007). Assume that for some θ > 1
2 we have

(7.6) EH(θ) : ∀A > 0,
∑
q6xθ

max
(a,q)=1

max
y6x

∣∣∣∣π(y; q, a)− li(y)

φ(q)

∣∣∣∣�A
x

logA x
.

Then there is a constant C(θ) such that pn+1−pn 6 C(θ) infinitely often. In particular, C(0.971) =

16.

Unconditionally, the Bombieri-Vinogradov Theorem (Theorem 3.4) implies EH(θ) for all θ < 1/2,

while Elliott and Halberstam [31] conjectured EH(θ) for all θ < 1.

Conjecture 7.3 (Elliott-Halberstam Conjecture). We have EH(θ) for every θ < 1.

Motohashi and Pintz [113] showed in fact that the bounded gaps conclusion would follow from

a version of (7.6) restricted to smooth moduli up to xθ, where θ > 1/2, that is moduli with

P+(q) 6 xδ. Yitang Zhang [152] then surprised the world in May, 2013 by supplying such a proof

of the modified version of (7.6).
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Theorem 7.4 (Yitang Zhang, 2013 [152]). For infinitely many n, pn+1 − pn 6 70000000.

A large on-line collaborative Polymath project [119] refined Zhang’s ideas in the summer of 2013

and subsequently reduced the bound to about 4600. Then, in October, 2013, James Maynard [108]

introduced a better weight function w(n), which reduced the bound further to 600 and furthermore

showed that bounded gaps could contain arbitrarily many primes. Around the same time, Terence

Tao (unpublished) had a similar idea for improving the weight function.

Theorem 7.5 (Maynard-Tao). For any m > 2 there is a number Cm � m2e4m such that pn+m−1−
pn 6 Cm infinitely often. Assuming the Elliott-Halberstam Conjecture, we have C2 6 12 and

Cm � m2e2m.

A second Polymath project [120] resulted in further numerical improvements, culminating in

the bound pn+1 − pn 6 246 infinitely often. This is the current world record.

7.3. Bounded gaps between primes. We now prepare the ground for the proof of Theorem 7.5.

The method is robust enough to handle general linear forms (not only those of type n + hi), and

moreover the bounds can be made uniform in the coefficients of the forms, as in [109], with little

additional effort.

Theorem 7.6. For every m ∈ N there is a number Km such that the following holds. Fix k ∈ N
with k > Km. Uniformly over all N > 100 and every admissible set (a1n + b1, . . . , akn + bk) of

linear forms, with 1 6 ai 6 (logN)100 and −aiN/2 6 bi 6 N(logN)100 for all i, we have

#

{
N < n 6 2N :

k∑
j=1

1ain+bi prime > m

}
>

N

(logN)ck

for some constant ck depending only on k. Moreover, we have

(a) Km � me4m for all m > 2.

(b) Assuming the Elliott-Halberstam Conjecture, we have Km � me2m.

The PolyMath8b project [120] implies4 that K2 = 50 is admissible. Also, Maynard [108] showed

K2 = 5 is admissible assuming the Elliott-Halberstam conjecture.

Proof of Theorem 7.5 from Theorem 7.6. Let k = Km. Fix h1 < . . . < hk so that n+h1, . . . , n+hk
is an admissible set of linear forms (we say that the tuple (h1, . . . , hk) is admissible). Apply Theorem

7.6, we see that

lim inf
n→∞

pn+m−1 − pn 6 hk − h1.

When m = 2, there is an admissble tuple with h50 − h1 = 246, proved in [120]. For general m, let

h1, . . . , hk be the k smallest primes greater than k. Then n + h1, . . . , n + hk is clearly admissible,

and by the Prime Number Theorem,

hk − h1 ∼ k log k = Km logKm � m2e4m.

From Exercise 4.4, for any admissible tuple (h1, . . . , hk), hk − h1 > (1/2 + o(1))k log k, and the

asymptotic true minimum of hk − h1 is unknown. Assuming the Elliott-Halberstam Conjecture,

4The theorems in [120] are stated only in the case ai = 1 and bi fixed, however it is clear from the proof that the
same quantitative bounds hold in the range of uniformity of Theorem 7.6. The relevant parts of [120] to be adjusted
are Theorems 19 (i), 20 (i) and 26.
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the above calculation yields Cm � m2e2m. When m = 2, we may take k = 5, and we apply

Theorem 7.6 with the 5-tuple (0, 2, 6, 8, 12).

�

We now describe the prime-detector which we will use to prove Theorem 7.6. Let N > 100,

assume EH(θ) for some θ ∈ [1/3, 1), and suppose that the parameters s,R,D, z satisfy

(7.7)
log2N

2
6 s 6 2 log2N, N

θ
2
− 2
s 6 R 6 N

θ
2
− 1
s , D = R1/s, z = D1/s = R1/s2 .

For each k ∈ N we will construct a special sequence λ(d) (which depends only on k, z and R) for

d = (d1, . . . , dk) ∈ Nk, which is supported on the set

(7.8) D = D(N) := {d ∈ Nk : d1 · · · dk 6 R,µ2(d1 · · · dk) = 1, P−(d1 · · · dk) > z}.

We will frequently use the fact that D is divisor-closed, that is, if d ∈ D and rj |dj for all j then

r ∈ D .

Let µ+ denote an upper bound sieve which is guaranteed by Theorem 3.6, the Fundamental

Lemma (with respect to the parameters z,D). In particular we have

(7.9) |µ+(t)| 6 1 (t ∈ N).

Now let (a1n + b1, . . . , akn + bk) be an arbitrary admissible set of linear forms (in particular,

ai 6= 0 and (ai, bi) = 1 for all i), with respect to Definition 1. Let

(7.10) E = E(a,b) =
k∏
i=1

ai
∏
i<j

(aibj − ajbi), E = E (a,b) =
{

d ∈ Nk : (d1 · · · dk, E) = 1
}
.

Let

ρ(d) = #{n mod d : (a1n+ b1) · · · (akn+ bk) ≡ 0 (mod d)},
and note that ρ(p) < p for all p (because the set of forms is admissible) and ρ(p) = k for all p - E;

see Theorem 2.5. Let

(7.11) V =
∏
p6z

(
1− ρ(p)

p

)
.

Finally, motivated by Selberg’s sieve and using an idea from Koukoulopulos [100, Ch. 28], let

(7.12) w(n) =

( ∑
t|(a1n+b1)···(akn+bk)

µ+(t)

)( ∑
d∈D∩E

∀j:dj |ajn+bj

λ(d)

)2

.

By Theorem 3.6, w(n) > 0 for all n. The first factor is a familiar upper bound sieve that we used

in Theorem 2.5, for example, and very efficiently sieves out those n for which some ain + bi has

a prime factor 6 z. The second factor is the new ingredient, a kind of k-dimensional version of

the Selberg method. We will optimize λ(d) later, and at this point only impose the normalizing

condition

(7.13) |λ(d)| 6 1 (d ∈ D).

The purpose of imposing d ∈ E is to ensure that d1, . . . , dk are pairwise relatively prime.
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Our main object is to show that

S :=
∑

N<n62N

( k∑
j=1

1ajn+bj prime − (m− 1)

)
> 0,

which will show that for some n ∈ (N, 2N ], at least m of the forms ajn + bj are simultaneously

prime. We will in fact get a lower bound on S that will imply that there are many such n.

Lemma 7.7. Suppose that mj |ajn + bj for every j and m ∈ E . Then m1, . . . ,mk are pairwise

relative prime, and (mj , aj) = 1 for all j.

Proof. If p|mi and p|mj then p divides ai(ajn+ bj)− aj(ain+ bi) = aiaj − ajai, and so p|E. This

proves the first claim. Since (a1n + b1, . . . , akn + bk) is an admissible set, (aj , bj) = 1 for all j.

Hence, if p is prime, p|mj |(ajn+ bj) and p|aj then p|bj , a contradiction. Thus, (aj ,mj) = 1. �

Notational Convention. Throughout the remainder of this section, constants implied by O

and � symbols may depend on k and θ, but not on any other parameter. We also suppose that N

is sufficiently large, in terms of k and θ. In particular, our bounds are uniform in the coefficients

ai, bi in some range.

Proposition 7.8. Assume (7.7), (7.8), and let µ+ be an upper bound sieve function from Theorem

3.6 with parameters z,D. Let λ(d) satisfy (7.13) and be supported on D . For r ∈ D define

(7.14) ξ(r) =
∑
d

λ(r1d1, . . . , rkdk)

d1 · · · dk
.

Let (a1n+ b1, . . . , akn+ bk) be an admissible set of linear forms, with k > 2 and such that

(7.15) 1 6 |ai| 6 N2, |bi| 6 N2 (1 6 i 6 k).

Define E,E by (7.10), V by (7.11) and w(n) by (7.12). Then∑
N<n62N

w(n) = V N
∑
r∈D

ξ(r)2

r1 · · · rk
+O

(
N

(logN)99k

)
.

Proof. From (7.12), we have∑
N<n62N

w(n) =
∑
t6D

µ+(t)
∑

d,e∈D∩E

λ(d)λ(e)
∑

N<n62N
t|(a1n+b1)···(akn+bk)
∀j:[dj ,ej ]|(ajn+bj)

1.

Since d, e ∈ E , by Lemma 7.7 we have (diei, djej) = 1 for all i 6= j and (diei, ai) = 1 for all i. Thus,

the simultaneous conditions [dj , ej ]|(ajn + bj), 1 6 j 6 k, define a single residue class n modulo∏k
j=1[dj , ej ]. Also, the condition t|(a1n+b1) · · · (akn+bk) defines ρ(t) residue classes modulo t. But

P+(t) 6 z < P−(djej) for each j, hence n runs over ρ(t) residue classes modulo t[d1, e1] · · · [dk, ek].
Hence, ∑

N<n62N

w(n) =
∑
t6D

µ+(t)
∑

d,e∈D∩E

λ(d)λ(e)

(
ρ(t)N

t[d1, e1] · · · [dk, ek]
+O(ρ(t))

)
= NV +B + T,

(7.16)
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where

V + =
∑
t6D

µ+(t)ρ(t)

t
, B =

∑
d,e∈D∩E

λ(d)λ(e)

[d1, e1] · · · [dk, ek]
,

and, by (7.13) and (7.9),

|T | � |D |2
∑
t6D

ρ(t).

We begin with the error terms T . We have

|D | 6
∑
r6R

P−(r)>z

kω(r)µ2(r) 6 R
∑
r6R

P−(r)>z

kω(r)µ2(r)

r

6 R
∏

z<p6R

(
1 +

k

p

)
� R(s2)k = R(log2N)2k,

and ∑
t6D

ρ(t) 6 D
∑
t6D

ρ(t)

t
6 D

∏
p6D

(
1 +

k

p

)
� D(logN)k.

Hence,

(7.17) T � R2D(logN)3k � N θ � N

(logN)99k
.

The function g(t) = ρ(t)/t satisfies (Ω) with κ = k since ρ(p) 6 k for all p. Therefore, by the

Fundamental Lemma (Theorem 3.6),

(7.18) V + = V
(
1 +O(e−

1
2
s log s)

)
= V +O

(
1

(logN)100k

)
.

This is a genuine asymptotic since V � (log z)−k. We now record a very crude bound for B. For

any mi = [di, ei], there are at most 3ω(mi) choices for di, ei. Hence, from (7.13),

(7.19)

∣∣∣∣ ∑
d,e∈D

λ(d)λ(e)

m1 · · ·mk

∣∣∣∣ 6 k∏
i=1

∑
mi6R2

P−(mi)>z

3ω(mi)

mi
6

∏
z<p6R2

(
1 +

3

p

)k
� s6k � logN.

To asymptotically bound B, we first remove the conditions d, e ∈ E . Now from (7.10) and (7.15),

E � N2k+4(k2/2).

Hence there are � logN
log z � s2 prime factors of E which are > z. If d 6∈ E or e 6∈ E then there is a

p|E with p|mj for some j. Write mj = pm′j , then analogously to (7.19) we have∣∣∣∣ ∑
d,e∈D

d6∈E or e6∈E

λ(d)λ(e)

m1 · · ·mk

∣∣∣∣ 6 k∑
j=1

∑
p|E
p>z

∑
m′j6R

2

P−(m′j)>z

3ω(m′j)+1

m′jp

∏
i 6=j

∑
mi6R2

P−(mi)>z

3ω(mi)

mi
� s2

z
s6k � logN

z
.

Therefore,

(7.20) B = O

(
logN

z

)
+B′, B′ =

∑
d,e∈D

λ(d)λ(e)

[d1, e1] · · · [dk, ek]
.
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Combining (7.16) with (7.17), (7.18) and (7.20), plus the crude bound (7.19), we find that∑
N<n62N

w(n) = NV B′ + T +O

(
NV logN

z
+

NB′

(logN)100k

)
= NV B′ +O

(
N

(logN)99k

)
.

(7.21)

It remains to bound B′. Write

(7.22)
1

[d, e]
=

(d, e)

de
=

1

de

∑
r|(d,e)

φ(r).

Then

B′ =
∑
r∈D

φ(r1) · · ·φ(rk)

( ∑
∀j:rj |dj

λ(d)

d1 · · · dk

)( ∑
∀j:rj |ej

λ(e)

e1 · · · ek

)

=
∑
r∈D

φ(r1) · · ·φ(rk)

r2
1 · · · r2

k

ξ(r)2.

For any r 6 R, r has at most s2 prime factors > z. Hence, for all ri,

(7.23)
φ(ri)

ri
=
∏
p|ri

(1− 1/p) = 1 +O

(
s2

z

)
= 1 +

(
logN

z

)
.

We have the crude bound

(7.24) ξ(r) 6

( ∑
d6R

P−(d)>z

1

d

)k
6

∏
z<p6R

(
1 +

1

p

)k
� s2k � logN.

Therefore,

B′ =
∑
r∈D

ξ(r)2

r1 · · · rk

(
1 +O

(
logN

z

))
=
∑
r∈D

ξ(r)2

r1 · · · rk
+O

(
log4N

z

)
.

The big-O term is O(1/ log99kN). Combining this with (7.21) completes the proof. �

Proposition 7.9. Assume 1/3 < θ < 1 and EH(θ) holds. Assume (7.7), (7.8), and let µ+ be an

upper bound sieve function from Theorem 3.6 with parameters z,D. Let λ(d) satisfy (7.13) and be

supported on D . For r ∈ D and 1 6 m 6 k define

(7.25) ζm(r) = 1rm=1

∑
d∈D
dm=1

λ(r1d1, . . . , rkdk)

d1 · · · dk
.

Let (a1n+ b1, . . . , akn+ bk) be an admissible set of linear forms, with k > 2, such that

1 6 am 6 (logN)100, −N
2
am 6 bm 6 N log100N

1 6 |ai| 6 N2, |bi| 6 N2 (i 6= m).
(7.26)

Define E,E by (7.10), V by (7.11) and w(n) by (7.12). Then, for 1 6 m 6 k we have∑
N<n62N

w(n)1amn+bm prime =
V Ym∏

p6z(1− 1/p)

∑
r∈D

ζm(r)2

r1 · · · rk
+O

(
N

(logN)40k2

)
,
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where

Ym :=
li(2amN + bm)− li(amN + bm)

am
∼ N

logN
.

Proof. We begin with

(7.27)
∑

N<n62N

w(n)1amn+bm prime =
∑
t6D

µ+(t)
∑

d,e∈D∩E

λ(d)λ(e)
∑

N<n62N
t|(a1n+b1)···(akn+bk)
∀j:[dj ,ej ]|(ajn+bj)
amn+bm prime

1.

Since [dm, em] 6 R2 = N θ−2/s < N/2, p = amn+ bm is prime and

(7.28) p = amn+ bm >
amN

2
>
N

2
,

we see that

dm = em = 1.

The range of n implies that

amN + bm < p 6 2amN + bm.

Since d, e ∈ E , by Lemma 7.7 we have (diei, djej) = 1 for all i 6= j and (diei, ai) = 1 for all i.

Therefore, for each i 6= m, the condition [di, ei]|ain+ bi is equivalent to

p ≡ a−1
i (aibm − ambi) (mod [di, ei]),

and thus p lies in a single residue class modulo [di, ei], and moreover this residue class is coprime

to [di, ei] since d, e ∈ E . We have t|(a1n+ b1) · · · (akn+ bk) and (p, t) = 1, thus to∏
i 6=m

(ain+ bi) ≡ 0 (mod t), (amn+ bm, t) = 1.

This defines ρ∗(t) residue classes for nmodulo t, where ρ∗ is multiplicative by the Chinese Remainder

Theorem, and moreover for primes q we have

(7.29) ρ∗(q) =

{
ρ(q) if q|am
ρ(q)− 1 if q - am.

To see this, note that when q|am, the congruence amn+ bm ≡ 0 (mod q) has no solutions, and for

any n we have (amn+ bm, q) = 1 since (am, bm) = 1. When q - am, there are ρ(q) solutions of

(a1n+ b1) · · · (akn+ bk) ≡ 0 (mod q),

including the single solution of amn+ bm ≡ 0 (mod q), which must be removed.

Therefore, the prime p lies in one of ρ∗(t) reduced residue classes modulo amt. By assumption,

1 6 am 6 log100N < z, and so amt is coprime to [d1, e1] · · · [dk, ek]. Hence, the inner sum in (7.27)

defines precisely ρ∗(t) reduced residue classes for the prime p modulo amt[d1, e1] · · · [dk, ek]. Define

E(u) by

E(u) = max
(u,s)=1

∣∣∣∣π(2amN + bm;u, s)− π(amN + bm;u, s)− li(2amN + bm)− li(amN + bm)

φ(u)

∣∣∣∣
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and write u = amt[d1, e1] · · · [dk, ek]. Then, by (7.27),∑
N<n62N

w(n)1amn+bm prime =
∑
t6D

µ+(t)
∑

d,e∈D∩E
dm=em=1

λ(d)λ(e)

[
ρ∗(t)

amYm
φ(u)

+O(ρ∗(t)E(u))

]

= amYmV
∗B∗ + T ∗,

(7.30)

where, since P+(amt) 6 z < P−([d1, e1] · · · [dk, ek]),

V ∗ =
∑
t6D

µ+(t)ρ∗(t)

φ(amt)
,

B∗ =
∑

d,e∈D∩E
dm=em=1

λ(d)λ(e)

φ([d1, e1] · · · [dk, ek])
,

|T ∗| �
∑
t6D

P+(t)6z

ρ∗(t)
∑

d,e∈D∩E

E(u).

We use Hypothesis EH(θ) to handle the error term T ∗. Note that x := 2amN + bm > 3N/2 by

hypothesis, and since d, e ∈ D , the moduli u satisfy

u 6 amtd1 · · · dke1 · · · ek 6 amDR2 6 N θ− 1
2s 6 xθ

if N is large enough. For each squarefree q = [d1, e1] · · · [dk, ek], there are 6 (3k)ω(q) ways to choose

d1, e1, . . . , dk, ek. Also, ρ∗(t) 6 ρ(t) 6 kω(t). Thus, by Cauchy-Schwarz and the trivial bound

E(u)� x

u
� N(logN)100

u
,

we have the estimate

|T ∗| �
∑
t6D

P+(t)6z

µ2(t)kω(t)
∑

P−(q)>z
q6R2

µ2(q)(3k)ω(q)E(amtq)

6
∑

r6DR2

µ2(r)(3k)ω(r)E(amr)
1/2

(
N log100N

r

)1/2

� (N log100N)1/2

( ∑
P+(r)6N

µ2(r)(3k)2ω(r)

r

)1/2( ∑
r6DR2

E(amr)

)1/2

� (N log100N)1/2(logN)9k2/2

(
x

(logN)1000k2

)1/2

.

From the bound x� N(logN)100, we conclude that

(7.31) T ∗ � N

(logN)100k2
.

As in the proof of Proposition 7.8, we have
m∏
i=1

[di, ei]

φ([di, ei])
= 1 +O

(
logN

z

)
.
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Hence, by the argument in (7.19),

B∗ = O

(
log2N

z

)
+

∑
d,e∈D∩E
dm=em=1

λ(d)λ(e)

[d1, e1] · · · [dk, ek]
.

As in the proof of Proposition 7.8, the “missing terms”, those with either d 6∈ E or e 6∈ E , have

total O( logN
z ). Using (7.22) and (7.23) again, we get

(7.32) B∗ = O

(
log2N

z

)
+
∑
r∈D

ζm(r)2

r1 · · · rk
.

Finally, apply the Fundamental Lemma of the sieve (Theorem 3.6) with the function

g(t) =
ρ∗(t)φ(am)

φ(amt)
,

where, by (7.29), for primes p we have

g(p) =


ρ∗(p)
p = ρ(p)

p if p|am,

ρ∗(p)
p−1 = ρ(p)−1

p−1 if p - am.

Again, g(p) 6 2k/p for all p, thus (Ω) holds with κ = 2k. Then, by Theorem 3.6,

V ∗ =
1

φ(am)

(
1 +O(e−

1
2
s log s)

)∏
p6z

(1− g(p)) =

(
1 +O

(
1

(logN)100k2

))
V ∗∗,

where, using (7.29),

V ∗∗ =
1

φ(am)

∏
p|am

(
1− ρ(p)

p

) ∏
p6z
p-am

(
1− ρ(p)− 1

p− 1

)

=
V

φ(am)

∏
p6z
p-am

(
1− ρ(p)

p

)−1(
1− ρ(p)− 1

p− 1

)

=
V

φ(am)

∏
p6z

(
1− 1

p

)−1 ∏
p|am

(
1− 1

p

)

=
V

am

∏
p6z

(
1− 1

p

)−1

.

Therefore,

(7.33) V ∗ =
V

am

∏
p6z

p

p− 1
+O

(
1

(logN)90k2

)
.

The same argument leading to (7.19) yields B∗ � logN . Combining (7.30) with (7.31), (7.32) and

(7.33) yields the claimed asymptotic. �
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Comparing the conclusions of Propositions (7.8) and (7.9), we see that our goal is to maximize

the ratio

(7.34)

(∑
r∈D

ζm(r)2

r1 · · · rk

)/(∑
r∈D

ξ(r)2

r1 · · · rk

)
.

Next, we prove two relatively easy inversion formulas.

Lemma 7.10. For all r ∈ D and 1 6 m 6 k,

ζm(r) = 1rm=1

∑
b∈N

µ(b)ξ(r1, . . . , rm−1, b, rm+1, . . . , rk)

b
.

Proof. Let rm = 1. By (7.14), the right side equals

=
∑
b

µ(b)

b

∑
d

λ(r1d1, . . . , rm−1dm−1, dmb, rm+1dm+1, . . .)

d1 · · · dk

=
∑

di:i 6=m

1∏
i 6=m di

∑
`∈N

λ(r1d1, . . . , rm−1dm−1, `, rm+1dm+1, . . .)

`

∑
b|`

µ(b) = ζm(r). �

Lemma 7.11. For all d,

λ(d) = 1d∈D

∑
b

µ(b1) · · ·µ(bk)ξ(b1d1, . . . , bkdk)

b1 · · · bk
.

Proof. Let d ∈ D . By (7.14), the right side is

=
∑
b

µ(b1) · · ·µ(bk)

b1 · · · bk

∑
e

λ(b1d1e1, . . . , bkdkek)

e1 · · · ek

=
∑
l

λ(l1d1, . . . , lkdk)

l1 · · · lk

k∏
i=1

∑
bi|li

µ(bi) = λ(d). �

Now we describe how we will construct the functions ξ() and λ(). Let Fk denote the set of

functions F (x) that are continuously differentiable, symmetric and supported on the set

(7.35) Rk = {x ∈ [0, 1]k : x1 + · · ·+ xk 6 1},

and such that

(7.36) |F (x)| 6 1 (x ∈ Rk),

and F is not identically zero on Rk. For such an F , we then take

(7.37) ξ(r) = 1r∈Dµ(r1) · · ·µ(rk)
∏

z<p6R

(1 + k/p)−1

︸ ︷︷ ︸
constant

F

(
log r1

logR
, . . . ,

log rk
logR

)
.

In this way, by Lemma 7.11, for any d ∈ D we have∣∣∣λ(d)
∏

z<p6R

(1 + k/p)
∣∣∣ 6∑

b∈D

1

b1 · · · bk
6

∑
P−(`)>z
P+(`)6R

µ2(`)kω(`)

`
=

∏
z<p6R

(1 + k/p),
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that is, |λ(d)| 6 1 for all d ∈ D , as required by (7.36).

We next insert the definition (7.37) into Propositions 7.8 and 7.9, thus relating the sums in

question to integrals over F . We first need some general tools, first relating a sum over a 1-variable

function to an integral, and using it to handle multivariate functions.

Lemma 7.12. Suppose g ∈ C1[a, b], 0 6 a < b 6 1, with |g(t)| 6 1 and |g′(t)| 6 logR throughout

[a, b]. Suppose that e
√

logR 6 z 6 R and write R = zu. Then∑
Ra<n6Rb

P−(n)>z

1

n
g

(
log n

logR

)
= e−γ

logR

log z

(∫ b

a
g(t) dt+O

(
log u

u

))
.

Proof. Let δ = log u
u and a′ = max(δ, a). We separate the sum into two parts:

S1 =
∑

Ra<n6Ra
′

P−(n)>z

1

n
g

(
log n

logR

)
, S2 =

∑
Ra
′
<n6Rb

P−(n)>z

1

n
g

(
log n

logR

)
,

If δ < a then S1 = 0, otherwise we have the crude bound

|S1| 6
∑

P+(n)6Rδ

P−(n)>z

1

n
� logRδ

log z
= δ

logR

log z
.

We use partial summation on S2, first writing

S2 :=
∑

Ra
′
<n6Rb

P−(n)>z

1

n
g

(
log n

logR

)
=

∫ Rb

Ra′

1

t
g

(
log t

logR

)
dΦ(t, z).

By Hypothesis, log t
log z 6

√
log t for t 6 R. Hence, by Theorem 3.7 (iii), when t > Rδ = zuδ we have

Φ(t, z) =
e−γt

log z
+ E(t), E(t) = O

(
t

euδ log z

)
= O

(
t

u log z

)
.

Therefore,

S2 =
e−γ

log z

∫ Rb

Ra′
g

(
log t

logR

)
dt

t
+
E(t)g( log t

logR)

t

∣∣∣∣∣
Rb

Ra′
−
∫ Rb

Ra′
E(t)

[
g′( log t

logR)

t2 logR
−
g( log t

logR)

t2

]
dt

=
e−γ logR

log z

∫ b

a′
g(y) dy +O

(
logR

u log z

)
.

Recalling that δ = log u
u and our bound on S1, the lemma follows; if δ < a then S = S2 and otherwise

we use that
∫ a′
a |g| 6

∫ δ
0 1 = δ. �

Lemma 7.13. Suppose that f ∈ C1(Rk), |f(x)| 6 1 on Rk, and

max
x∈Rk

max
i

∣∣∣∣ ∂f∂xi (x)

∣∣∣∣ 6 logR.
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Let R = zu, where 3 6 u 6
√

logR. then∑
P−(n1···nk)>z
µ2(n1···nr)=1

f( logn1

logR , . . . ,
lognk
logR )

n1 · · ·nk
=

(
e−γ

logR

log z

)k[ ∫
Rk
f +Ok

(
log u

u

)]
.

Proof. We first insert “missing” summands corresponding to µ2(n1 · · ·nk) = 0. These have total

at most ∑
P−(n1···nk)>z
µ2(n1···nk)=0

1

n1 · · ·nk
6 k2

∑
p>z

1

p2

( ∑
P−(m)>z
m6R

1

m

)k
�k

1

z

(
logR

log z

)k
,

which is tiny. Repeated application of Lemma 7.12 (each time with a = 0) shows that∑
P−(n1···nk)>z

f( logn1

logR , . . . ,
lognk
logR )

n1 · · ·nk
=

(
e−γ logR

log z

)k [ ∫
Rk
f +Ok

(
log u

u

)]
,

which implies the desired conclusion. �

Proposition 7.14. Let F ∈ Fk with I(F ) > 0 and J(F ) > 0. Define ξ by (7.37).

(i) Under the hypotheses of Proposition 7.8, we have∑
N<n62N

w(n) ∼ V N
(
e−γ

log z

logR

)k
I(F ) (N →∞),

where

(7.38) I(F ) =

∫
Rk
F 2(x) dx.

(ii) Under the hypotheses of Proposition 7.9, we have∑
N<n62N

k∑
m=1

w(n)1amn+bm prime ∼ V N
(
e−γ

log z

logR

)k kθ
2
J(F ) (N →∞),

where

(7.39) J(F ) =

∫
· · ·
∫

x2,...,xk

(∫
F (x) dx1

)2

dx2 · · · dxn.

Proof. From the definitions (7.7), we have R = zu, where

u = s2

(
θ

2
− 1

s

)
� s2.

By hypothesis, all first-order partial derivatives of F are bounded, and the same is true of the

functions F (x)2 and (
∫
F (x) dx1)2.

(i) From Proposition 7.8, the definition (7.37) of ξ and Lemma 7.13, we have∑
N<n62N

w(n) = σ2V N

(
e−γ

logR

log z

)k
I(F )

(
1 +O

(
log s

s2

))
+O

(
N

(logN)99k

)
,
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where

σ =
∏

z<p6R

(1 + k/p)−1 ∼
(

log z

logR

)k
.

The final error term is negligible since

(7.40) V >
∏
p62k

(
1− p− 1

p

) ∏
2k<p6z

(
1− k

p

)
�k

1

(logN)k
.

(ii) From the symmetry of F , we see that ζm(r) is independent of m. By Lemma 7.10,∑
r

ζ2
1 (r)

r1 · · · rk
= σ2

∑
r2,...,rk

1

r2 · · · rk

(∑
r1

1

r1
F

(
log r1

logR
, . . . ,

log rk
logR

))2

.

For each i set xi = log ri
logR . With x2, . . . , xk fixed we have 0 6 x1 6 1− (x2 + · · ·+ xk).

By Lemma 7.13, the sum on r1 is equal to

e−γ
logR

log z

[ ∫ 1−x2−···−xk

0
F (x) dx1 +OF

(
log s

s2

)]
.

Lemma 7.13, applied to the function f(x2, . . . , xk) = (
∫
F (x) dx1)2, then implies that∑

r

ζ2
1 (r)

r1 · · · rk
∼ σ2

(
e−γ

logR

log z

)k+1

J(F ).

Recalling Proposition 7.9, we have

k∑
m=1

∑
N<n62N

w(n)1amn+bm prime ∼
kV N/ logN∏
p6z(1− 1/p)

∑
r∈D

ζ1(r)2

r1 · · · rk
.

Now
∏
p6z(1−1/p) ∼ e−γ/ log z by Mertens, and logR

logN ∼
θ
2 , and the desired asymptotic follows. �

Armed with Proposition 7.14, we can now apply these results to prime gaps and prime k-tuples.

Theorem 7.15. Fix k ∈ N and m ∈ N, and assume Hypothesis EH(θ). There is a constant ck
such that the following holds. Suppose that there is a function F ∈ Fk and such that

Mk(F ) :=
kJ(F )

I(F )
>

2(m− 1)

θ
,

where I(F ), J(F ) are defined in (7.38) and (7.39), respectively. Then, for all sufficiently large N ,

and all admissible tuples (a1n+ b1, . . . , akn+ bk) of linear forms, with

1 6 ai 6 log100N, −aiN/2 < bi 6 N log100N (1 6 i 6 k),

there are� N/(logN)ck integers n ∈ (N, 2N ] for which at least m of the numbers a1n+b1, . . . , akn+

bk are prime.

In particular, unconditionally the conclusion holds provided that Mk(F ) > 4(m− 1).

Proof. Let

S =
∑

N<n62N

v(n)w(n), v(n) :=

k∑
j=1

1ajn+bj prime − (m− 1).
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By the two parts of Proposition 7.14, we have

S ∼ V N
(
e−γ

log z

logR

)k [kJ(F )θ

2
− (m− 1)I(F )

]
.

By hypothesis, the bracketed expression is positive. From (7.40) we have

S′ :=
∑

N<n62N
v(n)>1

w(n) >
∑

N<n62N

v(n)w(n)

k
=
S

k
� N

(logN)k
.

It follows that there are many values of n with v(n) > 0. More precisely, by Cauchy-Schwarz,

(S′)2 6 #{N < n 6 2N : v(n) > 1}
( ∑
N<n62N

w(n)2

)
.

Thus,

(7.41) #{N < n 6 2N : v(n) > 1} � N2

(logN)2k

( ∑
N<n62N

w(n)2

)−1

By (7.12), we have the crude bound

0 6 w(n) 6
k∏
j=1

τ(ain+ bi)
2.

Hence, by Hölder’s inequality and the bound ain+ bi 6 3N(logN)100,∑
N<n62N

w(n)2 6
∑

N<n62N

k∏
j=1

τ(ain+ bi)
4

6
k∏
j=1

( ∑
N<n62N

τ(ajn+ bj)
4k

)1/k

6
∑

d63N(logN)100

τ4k(d)

� N(logN)100+24k−1.

Combined with (7.41), this completes the proof of the first claim, with ck = 2k + 100 + 24k − 1.

The final statement follows from the Bombieri-Vinogradov Theorem, which implies Hypothesis

EH(θ) for all θ < 1/2. �

7.4. Bounds on Mk(F ).

Definition 6. Let

Mk := sup
F∈Fk

Mk(F ) = sup
F∈Fk

kJ(F )

I(F )
.

We begin with a simple upper bound for Mk from [120].

Theorem 7.16 ([120]). We have Mk 6
k
k−1 log k = log k +O( log k

k ).
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Proof. Let x2, . . . , xk be given and set y = 1− (x2 + · · ·+xk). The integral over those x with y = 0

has measure zero and can be discarded. Thus, we may assume that y > 0. For any A > 0, by

Cauchy-Schwarz we have(∫ y

0
F (x) dx1

)2

6
∫ y

0
(1 +Ax1)F (x)2 dx1

∫ y

0

dx1

1 +Ax1

=
log(1 +Ay)

A

∫ y

0
(1 +Ax1)F (x)2 dx1.

Put A = B/y for some constant B to be determined, then integrate over x2, . . . , xk. From y(1 +

Ax1) = y +Bx1 we get

J(F ) 6
log(1 +B)

B

∫
Rk

(1− x2 − · · · − xk +Bx1)F (x)2 dx.

Since F (x) is symmetric, we may interchange x1 and xi. Doing this for each i and summing gives

kJ(F ) 6
log(1 +B)

B

∫
Rk

(k − (k − 1)
∑

xi +B
∑

xi)F (x)2 dx.

Taking B = k − 1, the integral above equals kI(F ) and this completes the proof. �

Theorem 7.17. We have

Mk > log k − log2 k −O(1).

Proof. Let δ > 0, and let g : [0, δ] → [0,∞) be a function with |g(t)| 6 1 for all t. We’ll specialize

to functions of the type

F (x) = g(x1) · · · g(xk)1(x1 + · · ·+ xk 6 1).

For short, let

m1 =

∫ δ

0
g(t) dt, m2 =

∫ δ

0
g2(t) dt.

We interpret I(F ) and J(F ) probabilistically. Let Z1, . . . , Zk be independent random variables

with density function 1
m2
g2(t), 0 6 t 6 δ. Then

I(F ) =

∫
Rk
g2(x1) · · · g2(xk) dx = mk

2 P(Z1 + · · ·+ Zk 6 1).

Also,

J(F ) >
∫
· · ·
∫

x2+···+xk61−δ

g2(x2) · · · g2(xk)

(∫ δ

0
g(x1) dx1

)2

dx2 · · · dxk

= m2
1m

k−1
2 P(Z2 + · · ·+ Zk 6 1− δ).

Thus,

(7.42) Mk(F ) >
km2

1

m2
· P(Z2 + · · ·+ Zk 6 1− δ)

P(Z1 + · · ·+ Zk 6 1)
>
km2

1

m2
P(Z2 + · · ·+ Zk 6 1− δ).

We will choose g so that the probability on the RHS is about 1. If

µ := EZi =
1

m2

∫ δ

0
tg2(t) dt,
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then we want

(7.43) µ <
1− δ
k − 1

so that

E(Z2 + · · ·+ Zk) = (k − 1)µ < 1− δ.
We can bound the probability of a large deviation from the mean using Chebyshev’s inequality and

the calculated variance

σ2 := E(Zi − µ)2 = EZ2
i − µ2 =

1

m2

∫ δ

0
t2g2(t) dt− µ2.

Then

E(Z2 + · · ·+ Zk − (k − 1)µ)2 = (k − 1)σ2.

Thus, under the assumption of (7.43), we have

P (Z2 + · · ·+ Zk > 1− δ) 6 P
(
|Z2 + · · ·+ Zk − (k − 1)µ| > 1− δ − (k − 1)µ

)
6

(k − 1)σ2

(1− δ − (k − 1)µ)2
.

(7.44)

We will choose parameters so that the right side of (7.44) is very small.

It then remains to maximize m2
1/m2 subject to µ . 1/k. Motivated by the proof of Theorem

7.16, for any A > 0, Cauchy-Schwarz gives

m2
1 6

(∫ δ

0
(1 +At)g2(t) dt

)(∫ δ

0

dt

1 +At

)
= (m2 +Am2µ)

log(1 +Aδ)

A
.

Moreover, equality holds only for g(t) = 1
1+At . That is,

(7.45)
m2

1

m2
6 min

A>0

(
1

A
+ µ

)
log(1 +Aδ).

The minimum occurs when (
1

A
+ µ

)
δ

1 +Aδ
=

log(1 +Aδ)

A2
,

and then taking g(t) = 1
1+At gives equality in (7.45). With this function g(t) and assuming that

Aδ is large, we compute

m1 =
log(1 +Aδ)

A
, m2 =

δ

1 +Aδ
≈ 1

A
,

and

µ =
1

m2A2

(
log(1 +Aδ)− 1 +

1

1 +Aδ

)
≈ log(1 +Aδ)

A
.

We will take a convenient choice of A, δ satisfying the simpler relation

(7.46) A = k log(1 +Aδ).

Then

µ =
1

k
− 1

A
+

1

kAδ
, m1 =

1

k
, 1/m2 = A+ 1/δ,

and hence
m2

1

m2
=

1

k2

(
A+

1

δ

)
>
A

k2
.
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Thus, by (7.42) and (7.44),

(7.47) Mk(F ) >
A

k

(
1− (k − 1)σ2

(1− δ − (k − 1)µ)2

)
.

Crudely,

σ2 6 EZ2
i 6

1

m2

(
Aδ

1 +Aδ

)2 ∫ δ

0

t2 dt

(At)2
=

δ2

1 +Aδ
<
δ

A
.

Also, using (7.46), we compute (after some algebra)

1− δ − (k − 1)µ = (k − eA/k)
(

1

A
− 1

k(eA/k − 1)

)
.

In particular, for this to be positive, we need A < k log k. Combined with (7.47), we conclude that

Mk(F ) >
A

k

(
1− (k − 1)(eA/k − 1)

(k − eA/k)2(1− A
k(eA/k−1)

)2

)
.

A good choice for A is

A = k(log k − log2 k).

(this gives δ ∼ 1
log2 k

). Then eA/k = k/ log k and we see that

Mk > (log k − log2 k)

(
1−O

(
1

log k

))
= log k − log2 k +O(1),

as required. �

Together with Theorem 7.15, Theorem 7.17 immediately implies Theorem 7.6. To obtain the

claimed bounds on Km, notice that by Theorem 7.17 there is a k � me4m with Mk > 4(m− 1).

The PolyMath8b project provides better bounds on Mk, as well as numerical bounds when k is

small.

Theorem [120, Theorem 3.9 (vii), (xi)]. We have

(i) M54 > 4;

(ii) Mk = log k −O(1).

In what follows, it is convenient to adopt a definition of the minimum of numbers Km that imply

a weaker form of the conclusion Theorem 7.6.

Definition. For integers m > 2, K̃m is the least number k so that for any system of admissible

system of linear forms (a1n+ b1, . . . , akn+ bk), there are infinitely many n such that at least k of

the forms are prime.

The prime k−tuples conjecture implies that K̃m = m. By a modification of the analysis in this

section, it was proved in [120] that K̃2 6 50.

Under the assumption of the Elliott-Halberstam Conjecture (Conjecture 7.3), Maynard [108]

showed that M5 > 2 and hence K̃2 6 5, improving the bound K̃2 6 6 proved by Goldston,

Pintz and Yıldırım[64] under the same hypothesis. A generalized version of the Elliot-Halberstam

conjecture (in the notation of [120], this is the statement that GEH[θ] holds for all θ < 1), implies

that K̃2 6 3 [120, Theorem 16 (xii)].

We next show some applications using linear forms ain+ bi with ai 6= 1. Central to the topic is

the following special case of the prime k-tuples conjecture.
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Hypothesis P(a, b): there are infinitely many n ∈ N such that both an+ 1 an bn+ 1 are prime.

We note that for any set {a1, . . . , ak} of k positive integers, the k-tuple of forms (a1n+b1, . . . , akn+

bk) is admissible, since for any prime p, if p|n then p - (a1n+ 1) · · · (akn+ 1). We then have

Theorem 7.18. If k > K̃2 and {a1, . . . , ak} is an set of k positive integers, then there are i 6= j

such that Hypothesis P(ai, aj) holds.

7.5. Consecutive integers with large prime factors. One special case of the prime k-tuples

conjecture, Conjecture 1.1 states that for infinitely many primes p, p + 1 = 2q for a prime q. In

this direction, we prove

Theorem 7.19 (K. Ford and J. Maynard, 2014; unpublished). There is a constant B so that for

infinitely many n ∈ N, P+(n) > n/B and P+(n+ 1) > (n+ 1)/B.

Lemma 7.20 (Heath-Brown [86]). For any k there is a set of k positive integers a1, . . . , ak such

that

(7.48) ai − aj = (ai, aj) (i > j).

Examples are

k = 4 : {6, 8, 9, 12}
k = 5 : {60, 63, 64, 66, 72}.

The condition (7.48) is equivalent to (ai − aj)|ai for all i 6= j. Thus, Lemma 7.20 is one of the

assertions in Lemma 1 of Heath-Brown [86]. As we do not require the other properties of the ai
from [86], our proof is much shorter.

Proof. By induction. If {a1, . . . , ak} satisfies (7.48), then so does the k + 1 element set

{M,M − a1, . . . ,M − ak},

where M is the least common multiple of the numbers a1, . . . , ak and the differences |ai − aj | for

i < j. �

Proof of Theorem 7.19. Let k > K̃2 and {a1, . . . , ak} satisfy (7.48). By Theorem 7.18, Hypothesis

P(ai, aj) holds for some i < j. Suppose that n ∈ N, and ain+ 1 and ajn+ 1 are both prime. By

(7.48), aj − ai = (ai, aj) and hence

aj
(ai, aj)

(ain+ 1) and
ai

(ai, aj)
(ajn+ 1)

are consecutive integers. Thus the theorem follows with

B = max
i 6=j

ai
(ai, aj)

.

�
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7.6. Locally repeated values of Euler’s function. We partially solve a longstanding conjecture

about the solubility of

(7.49) φ(n+ k) = φ(n),

where φ is Euler’s function and k is a fixed positive integer.

Hypothesis Sk. The equation (7.49) holds for infinitely many n.

Erdős conjectured in 1945 that for any m, the simultaneous equations

(7.50) φ(n) = φ(n+ 1) = · · · = φ(n+m− 1)

has infinitely many solutions n. If true, this would immediately imply hypothesis Sk for every

k. However, there is only one solution of (7.50) known when m > 3, namely n = 5186, m = 3.

In 1956, Sierpiński [138] showed that for any k, (7.49) has at least one solution n (e.g. take

n = (p − 1)k, where p is the smallest prime not dividing k). This was extended by Schinzel [129]

and by Schinzel and Wakulicz [132], who showed that for any k 6 2 · 1058 there are at least two

solutions of (7.49). In 1958, Schinzel [129] explicitly conjectured that Sk is true for every k ∈ N.

There is good numerical evidence for Sk, at least when k = 1 or k is even [68]. Information

about solutions for k ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} can also be found in OEIS [115] sequences

A001274, A001494, A330251, A179186, A179187, A179188, A179189, A179202, A330429, A276503,

A276504 and A217139, respectively. Below 1011 there are very few solutions of (7.49) when k ≡ 3

(mod 6) [68], e.g. only the two solutions n ∈ {3, 5} for k = 3 are known. A further search by G.

Resta (see [115], sequence A330251) reveals 17 more solutions in [1012, 1015].

There is a close connection between Hypothesis Sk for even k and generalized prime twins.

Schinzel [129] observed that Hypothesis P(1, 2) implies Sk for every even k. The proof is simple:

if n+ 1 and 2n+ 1 are prime and larger than k, then

φ(k(2n+ 1)) = φ((n+ 1)2k) = 2nφ(k).

Graham, Holt and Pomerance [68] generalized this idea, showing the following.

Lemma 7.21 ([68, Theorem 1]). For any k and any number j such that j and j+k have the same

prime factors, Hypothesis P( j
(j,j+k) ,

j+k
(j,j+k)) implies Sk.

This also has an easy proof: if j
(j,j+k)r+1 and j+k

(j,j+k)r+1 are both prime, then n = j( j+k
(j,j+k)r+1)

satisfies (7.49). Note that for odd k there are no such numbers j, and for each even k there are

finitely many such j (see [68], Section 3). Extending a bound of Erdős, Pomerance and Sárkőzy

[45] in the case k = 1, Graham, Holt and Pomerance showed that the solutions of (7.49) not

generated from Lemma 7.21 are very rare, with counting function Ok(x exp{−(log x)1/3}). Yamada

[151] sharpened this bound to Ok(x exp{−(1/
√

2+o(1))
√

log x log log log x}). Assuming the Hardy-

Littlewood conjectures [78], when k is even we conclude that there are ∼ Ckx/ log2 x solutions n 6 x
of (7.49), where Ck > 0.

Using the fact that K̃2 6 50, we will prove the following.

Theorem 7.22 (Ford [52], 2020). We have

(a) For any k that is a multiple of 442720643463713815200, Sk is true;

(b) There is some even ` 6 3570 such that Sk is true whenever `|k; consequently, the number

of k 6 x for which Sk is true is at least x/3570.
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Improvements to K̃2 allow us to improve significantly on Theorem 7.22.

Theorem 7.23 (Ford [52], 2020). If K̃2 6 5, then Sk is true for all k with 30|k. If K̃2 6 4, then

Sk is true for all k with 6|k. In particular, the Elliot-Halberstam conjecture implies Sk for all k

with 30|k, and the Generalized Elliot-Halberstam conjecture implies Sk for all k with 6|k.

Incidentally, the conclusion of Theorem 7.23 when K̃2 6 4 is not improved if we have the stronger

bound K̃2 6 3.

Using Theorem 7.6, we also make progress toward Erdős’ conjecture that (7.50) has infinitely

many solutions.

Theorem 7.24 (Ford [52], 2020). For any m > 3 there is a tuple of distinct positive integers

h1, . . . , hm so that for any ` ∈ N, the simultaneous equations

φ(n+ `h1) = φ(n+ `h2) = · · · = φ(n+ `hm)

have infinitely many solutions n.

Now we get to the proofs. Throughout, 1 6 a < b are integers. We first show that P(a, b)

implies Sk for certain k, inverting Lemma 7.21. Define

(7.51) κ(a, b) = (b′ − a′)
∏
p|a′b′

p, a′ =
a

(a, b)
, b′ =

b

(a, b)
.

We observe that κ(a, b) is always even.

Lemma 7.25. Assume P(a, b). Then Sk holds for every k which is a multiple of κ(a, b).

Proof. Define a′ = a
(a,b) , b

′ = b
(a,b) and observe that P(a, b) ⇒ P(a′, b′). Let s =

∏
p|a′b′ p, and

suppose that r ∈ NN is such that a′r + 1 and b′r + 1 are both prime. Let ` ∈ N and set

m1 = b′`s(a′r + 1), m2 = a′`s(b′r + 1).

As all of the prime factors of a′b′ divide `s, we have φ(b′`s) = b′φ(`s) and φ(a′`s) = a′φ(`s). If

r > a′b′`, it follows than φ(m1) = φ(m2). Finally, m1 −m2 = (b′ − a′)`s = `κ(a, b). �

Proof of Theorem 7.22. Let

{a1, . . . , a50} = {1, 2, 4, 5, 6, . . . , 48, 49, 52, 56},

By K̃2 6 50 and Theorem 7.18, for some i, j with 1 6 i < j 6 50, P(ai, aj) is true. We compute

lcm{κ(ai, aj) : 1 6 i < j 6 50} = 442720643463713815200 = 253352
∏

76p647

p,

and thus (a) follows from Lemma 7.25.

For part (b), we take

{a1, . . . , a50} = {15, 20, 30, 36, 40, 45, 60, 72, 75, 80, 90, 96, 100, 108, 120, 135, 144, 150, 180, 192, 200,

216, 225, 240, 250, 270, 288, 300, 320, 324, 360, 375, 384, 400, 405, 450, 480, 500, 540, 600,

720, 750, 810, 900, 960, 1080, 1200, 1440, 1500, 1800},
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numbers that only have prime factors 2, 3, 5. We also compute that

max
16i<j650

κ(ai, aj) = 3570,

and again invoke Lemma 7.25. This proves (b). �

We believe that 3570 is the smallest number than can be produced for Theorem 7.22 (b), and have

conducted extensive computer searches for sets {a1, . . . , a50} with smaller value of maxi 6=j κ(ai, aj).

Proof of Theorem 7.23. Same as the proof of Theorem 7.22 (a), but take {a1, a2, a3, a4, a5} =

{1, 2, 3, 4, 6} if K̃2 6 5 and {a1, . . . , a4} = {1, 2, 3, 4} if K̃2 6 4. �

Proof of Theorem 7.24. Let m > 2, k = K̃m and consider any set {a1, a2, . . . , ak} of k positive

integers. Then there are 1 6 i1 < i2 < · · · < im 6 k such that for infinitely many r, the m numbers

ai1r + 1, . . . , aimr + 1 are all prime. Let r be such a number. Define

hj =
(ai1 · · · aim)2

aij
(1 6 j 6 m).

Let ` ∈ N and set n = `(ai1 · · · aim)2r. Then, since aij |hj for all j, it follows that if r is sufficiently

large then for any j,

φ(n+ `hj) = φ(`hj(aijr + 1)) = φ(`hj)aijr = φ(`hjaij )r. �

7.7. Locally repeated values of σ. One can ask analogous questions about the sum of divisors

function σ(n). As σ(p) = p+ 1 vs φ(p) = p− 1, oftentimes one can port theorems about φ over to

σ. This is not the case here, since our results depend heavily on the existence of solutions of

aφ(b) = bφ(a),

which is true if and only if a and b have the same set of prime factors. The analogous equation

aσ(b) = bσ(a) ⇔ σ(a)

a
=
σ(b)

b

has more sporadic solutions, e.g. if a, b are both perfect numbers or multiply perfect numbers.

Theorem 7.26 (Ford [52], 2020). For a positive proportion of all k ∈ N, the equation

σ(n) = σ(n+ k)

has infinitely many solutions n.

As we shall see from the proof, there is a specific number A and a finite set B such that for

some element b ∈ B, the equation σ(n) = σ(n + k) has infinitely many solutions for all numbers

k = `b where (`, A) = 1. Unfortunately, our methods cannot specify any particular k for which the

conclusion holds. Our method requires finding, for t = K̃2, numbers a1, . . . , at so that

(7.52)
σ(a1)

a1
= · · · = σ(at)

at
= y.

Such collections of numbers are sometimes referred to as “friends” in the literature, e.g. [118].

Finding larger collections of ai satisfying (7.52) leads to stronger conclusions.
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Theorem 7.27 (Ford [52], 2020). Let m > 2, let t = K̃m and assume that there is a y and positive

integers a1, . . . , at satisfying (7.52). Then there are positive integers h1 < h2 < · · · < hm so that

for a positive proportion of integers `, there are infinitely many solutions of

σ(n+ `h1) = · · · = σ(n+ `hm).

It is known [114] that for y = 9, there is a set of 2095 integers satisfying (7.52). The number

y = 9 has the largest known multiplicity of σ(n)/n. Also K̃2 6 50 [120], and hence Theorem 7.26

follows from the case m = 2 of Theorem 7.27. We cannot make the conclusion unconditional when

m > 3, since the best known bounds for K̃3 is K̃3 6 35410 [120, Theorem 3.2 (ii)]. When y = 2,

the numbers ai are perfect numbers, and it is a famous problem since antiquity to determine if

there are infinitely many perfect numbers. As of April, 2023, there are 51 known perfect numbers

[70].

Conjecture 7.28. For any t, there is an y such that σ(a)/a = y has at least t solutions. That is,

there are arbitrarily large circles of friends.

Clearly, Conjecture 7.28 implies the conclusion of Theorem 7.27 for all m. In [40], Erdős mentions

Conjecture A and states that he doesn’t know of any argument that would lead to its resolution.

In the opposite direction, Wirsing [147] showed that the number of n 6 z with σ(n)/n = y is is

O(zc/ log log z) for some c, uniformly in y. Pollack and Pomerance [118] studied the solutions of

(7.52), gathering data on pairs, triples and quadruples of friends, but did not address Conjecture

A.

Using (7.52) and prime pairs an−1 and bn−1, one can generate many solutions of σ(n) = σ(n+k),

analogous to Lemma 7.21; see Yamada [151, Theorem 1.1]. For example, one can generate solutions

with k = 1 if there is an integer m with σ(m)/m = σ(m+ 1)/(m+ 1) = y (the ratios need not be

integers as claimed in [151]). Indeed, if r > m+ 1, and rm− 1 and r(m+ 1)− 1 are both prime,

then

σ(m(r(m+ 1)− 1)) = σ(m)r(m+ 1) = rm(m+ 1)y,

σ((m+ 1)(mr − 1)) = σ(m+ 1)rm = rm(m+ 1)y.

Yamada [151, Theorem 1.2] showed that there are � x exp{−(1/
√

2 + o(1))
√

log x log log log x}
solutions n 6 x not generated in this way.

Proof of Theorem 7.27. Let t = K̃m and a1, . . . , at satisfy (7.52). Put A = lcm[a1, . . . , at] and for

each i define bi = A/ai. By Theorem 7.6 applied to the collection of linear forms bin− 1, 1 6 i 6 t,
there exist i1, . . . , im such that for infinitely many r ∈ N, the m numbers bijr− 1 are all prime. Let

r be such a number, and let ` ∈ N such that (`, A) = 1 (this holds for a positive proportion of all

`). Let

tj = `aij (bijr − 1) = A`r − `aij (1 6 j 6 m).

By (7.52), if r is sufficiently large then for every j we have

σ(tj) = σ(`)σ(aij )bijr = σ(`)yaijbijr = yσ(`)Ar. �
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8. Large gaps bewteen consecutive primes

8.1. Introduction. Let pn denote the nth prime, and let

G(X) := max
pn+16X

(pn+1 − pn)

denote the the maximum gap between consecutive primes less than X. It is clear from the prime

number theorem that

G(X) > (1 + o(1)) logX,

as the average gap between the prime numbers which are 6 X is ∼ logX. Explicit gaps of (at

least) this size may be constructed by observing that P (n)+2, P (n)+3, . . . , P (n)+n is a sequence

of n − 1 composite numbers, where P (n) is the product of the primes 6 n; by the prime number

theorem, P (n) = e(1+o(1))n.

In 1931, Westzynthius [146] proved that infinitely often the gap between consecutive prime

numbers can be an arbitrarily large multiple of the average gap. His bound is5

G(X)� logX log3X

log4X
.

In 1934, Ricci [126] slightly improved this to G(X) � logX log3X. In 1935 Erdős [33] made a

much larger improvement, showing

G(X)� logX log2X

(log3X)2

and in 1938 Rankin [124] added a quadruple-log, showing

(8.1) G(X) > (c+ o(1))
logX log2X log4X

(log3X)2

with c = 1
3 . The constant c was increased several times [134, 125, 107, 117], ultimately getting

to c = 2eγ by Pintz [117].

It was a well-known open problem (and Erdős prize problem) to show that one could take c→∞.

In August 2014, in two independent papers of Ford-Green-Konyagin-Tao [53] and Maynard [110],

it was shown that c could be taken to be arbitrarily large. The methods of proof in [53] and [110]

are quite different. The arguments in [53] used recent results [72] on the number of solutions to

linear equations in primes, whereas the arguments in [110] instead relied on a multidimensional

prime-detecting sieve of the type introduced in [110] (but more complicated). Later, in [54], a

quantitative improvement to Rankin’s bound was given, namely

Theorem 8.1 (Ford-Green-Konyagin-Maynard-Tao [54, Theorem 1]). For sufficiently large X,

one has

G(X)� logX log2X log4X

log3X
.

Here we present a proof of the original theorem from [53] and [110] that the c in (8.1) may be

taken arbitrarily large (without a specific rate of growth), which is much simpler than that in either

of the two original papers. It is based on a hybrid approach, utilizing ideas worked out in [54], but

without the need to make various estimates quantitative.

5Recall that log2 x = log log x, log3 x = log log log x, and so on.
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Figure 1. G(x) vs. various approximations

Theorem 8.2. The bound (8.1) holds for any real number c > 0, if x is large enough, depending

on c.

Based on a probabilistic model of primes, Cramér [25] conjectured that

lim sup
X→∞

G(X)

log2X
= 1.

Granville [69] offered a refinement of Cramér’s model and has conjectured that the lim sup above

is in fact at least 2e−γ = 1.1229 . . .. Recently, Banks, Ford and Tao [9] made a specific conjecture

about the largest gap which is dependent on a problem called the interval sieve. We will discuss

this in much more detail in Section 9. These conjectures are well beyond the reach of our methods.

Numerical evidence is inconclusive, in fact maxX64·1018 G(X)/ log2X ≈ 0.9206, slightly below the

predictions of Cramér and Granville. This bound is a consequence of the gap of size 1132 following

the prime 1693182318746371. See also Figure 1 for a plot of G(x) versus various approximations.

Unconditional upper bounds for G(X) are far from the conjectured truth, the best being G(X)�
X0.525 and due to Baker, Harman and Pintz [8]. Even the Riemann Hypothesis only6 furnishes the

weak bound G(X)� X1/2 logX [24].

8.1.1. Notational conventions. Our arguments will rely heavily on probabilistic arguments using

discrete random variables. We will use boldface symbols such as X or a to denote random variables

(and non-boldface symbols such as X or a to denote deterministic counterparts of these variables).

Vector-valued random variables will be denoted in arrowed boldface, e.g. ~a = (as)s∈S might denote

6Some improvements in the logarithmic factor are available if one also assumes some form of the pair correlation
conjecture for zeros of ζ(s); see [84].
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a random tuple of random variables as indexed by some index set S. The letters p and q will always

denote primes.

8.2. Overall plan of the proof. We construct many consecutive integers in (X/2, X], each of

which has a “very small” prime factor. By the Chinese Remainder Theorem, this is equivalent to

sieving out an interval by progressions to small primes.

Definition 7 (Jacobsthal’s function). Let x be a positive integer. Define Y (x) to be the largest gap

in the integers with no prime factor 6 x. Equivalently, Y (x) is the largest integer y for which one

may select residue classes ap mod p, one for each prime p 6 x, which together “sieve out” (cover)

a whole interval of integers of length y.

The equivalence of the two definitions of Y (x) is easy by the Chinese remainder theorem. Let

P (x) =
∏
p6x p. One consequence is that (P (x), 2P (x)] contains Y (x) consecutive numbers that

have a prime factor 6 x, and thus these numbers are all composite. We conclude that

(8.2) G(2P (x)) > Y (x).

Since logP (x) ∼ x by the Prime Number Theorem, this essentially says that

G(X) & Y (logX).

All known lower bounds in G(X) are based on lower bounds for Y (x).

Fix a positive real number c, let x be a large integer and define

(8.3) y :=

⌊
cx

log x log3 x

(log2 x)2

⌋
,

Also let

(8.4) z := xlog3 x/(5 log2 x),

and introduce the three disjoint sets of primes

S := {s prime : log20 x < s 6 z},
P := {p prime : x/2 < p 6 x},
Q := {q prime : x < q 6 y}.

We will show that Y (x) > y− x by covering (x, y] with residue classes modulo primes 6 x. Now

P (x) = e(1+o(1)x by the prime number theorem, so (8.2) and (8.3) imply that

G(e(1+o(1))x) > (1 + o(1))cx log x
log3 x

(log2 x)2
.

AS G is monotone, Theorem 8.2 follows upon taking c arbitrarily large.

We first reduce the problem to finding residue classes modulo the primes in S ∪ P which cover

most of the primes in Q. For residue classes ~a = (as mod s)s∈S and ~b = (bp mod p)p∈P , define

the sifted sets

S(~a) := {n ∈ Z : n 6≡ as (mod s) for all s ∈ S}
and likewise

T (~b) := {n ∈ Z : n 6≡ bp (mod p) for all p ∈ P}.
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Theorem 8.3 (Sieving primes). Let c > 0 be arbitrary, let x be sufficiently large and suppose that

y obeys (8.3). Then there are vectors ~a = (as mod s)s∈S and ~b = (bp mod p)p∈P , such that

(8.5)
∣∣Q∩ S(~a) ∩ T (~b)

∣∣ 6 x

5 log x
.

Proof the Theorem 8.3 implies Theorem 8.2. We will first take

ap = 0 (p 6 log20 x, z < p 6 x/4).

This is a “big gun” and eliminates all numbers from (x, y] except primes and a negligible set of

z-smooth numbers. It dates from work of Westzynthius [146], Erdős [33] and Rankin [124]. Let ~a

and ~b be as in Theorem 8.3, and consider the sifted set

U := (x, y] ∩ S(~a) ∩ T (~b) ∩ V,

where

V = {n ∈ Z : n 6≡ 0 (mod p) for all p 6 log20 x and z < p 6 x/4}.
The elements of U , by construction, are not divisible by any prime in (0, log20 x] ∪ (z, x/4]. Thus,

each element must either be a z-smooth number (i.e., a number with all prime factors at most z),

or must consist of a prime greater than x/4, possibly multiplied by some additional primes that

are all at least log20 x. However, from (8.3) we know that y = o(x log x). Thus, we see that an

element of U is either a z-smooth number or a prime in (x/4, y]. In the second case, the element

lies in Q∩S(~a)∩T (~b). Conversely, every element of Q∩S(~a)∩T (~b) lies in U . Thus, U only differs

from Q ∩ S(~a) ∩ T (~b) by a set R consisting of z-smooth numbers in [1, y]. Let u := log y
log z ∼ 5 log2 x

log3 x
.

By Theorem 5.1 and (8.3),

(8.6) |R| 6 Ψ(y, z)� y

(log x)5+o(1)
� x

log2 x
.

Thus, we find that

|U| 6 (1 + o(1))
x

5 log x
.

By matching each of these surviving elements to a distinct prime in (x/4, x/2] and choosing con-

gruence classes appropriately, we thus find congruence classes ap mod p for p 6 x which cover all

of the integers in (x, y]. This proves Y (x) > y − x = (1− o(1))y, and hence Theorem 8.2. �

8.2.1. The Westzynthius-Erdős-Rankin argument giving (8.1) for some c > 0. It is very easy to

show that (8.5) holds for some value of c > 0. Indeed, by the pigeonhole principle, for any finite set

R and prime p there is a residue class ap so that |R ∩ (ap mod p)| > |R|/p. Consequently, there

are chocies of as for s ∈ S and bp for p ∈ P such that∣∣Q∩ S(~a) ∩ T (~b)
∣∣ 6 |Q|∏

s∈S

(
1− 1

s

)∏
p∈P

(
1− 1

p

)
� |Q| log2 x

log z

� y(log2 x)2

(log x)2 log3 x
6

cx

log x
.

Hence, if c is small enough, then (8.5) holds.
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8.2.2. Improving the Westzynthius-Erdős-Rankin method. We argue in two stages:

Stage 1. For each prime s ∈ S, we select each as mod s uniformly at random from Z/sZ, indepen-

dently for each s. Let ~a := (as mod s)s∈S ;

Stage 2. For each prime p ∈ P, we select the residue class bp mod p also at random, but in a

strategic way which is dependent on the choice of ~a; this is done in such a way so that each

bp mod p covers many primes in Q left uncovered by Stage 1.

What we gain in Stage 1 is only what is typical for residue classes for these primes, but the random

choice will be advantagoeus for Stage 2, which is much more complicated. Greatly improving upon

arguments from Maier and Pomerance [107] and Pintz [117], we show in Stage 2 that for any fixed

r, there are residue classes bp mod p for p ∈ P which cover an average of at least r numbers left

uncovered by Stage 1.

8.3. Concentration of S(~a). The sifted set S(~a) is a random periodic subset of Z, each element

surviving with probability

σ :=
∏
s∈S

(
1− 1

s

)
=

∏
log20 x<s6z

(
1− 1

s

)
.

From Mertens’ bound and (8.4),

(8.7) σ ∼ log(log20 x)

log z
=

100(log2 x)2

log x log3 x
.

In particular, we have

(8.8) E
∣∣Q∩ S(~a)

∣∣ =
∑
q∈Q

P(q ∈ S(~a)) = σ|Q| ∼ 100c
x

log x
.

We now show that |Q∩S(~a)| is concentrated about its mean. To accomplish this, we first show that

for any reasonably sized integers n1, . . . , nt, the events ni ∈ S(~a) are close to being independent.

Lemma 8.4. Let t 6 log x, and let n1, . . . , nt be distinct integers in [−x2, x2]. Then

P(n1, . . . , nt ∈ S(~a)) =

(
1 +O

(
1

log16 x

))
σt.

Proof. For each s ∈ S, the probability that n1, . . . , nt are all avoid as mod s is equal to 1− m(s)
t ,

where m(s) is the number of distinct residue classes modulo s occupied by n1, . . . , nt. We have

m(s) = t unless s divides one of the numbers ni − nj for 1 6 i < j 6 t. Since |ni − nj | 6 2x2, each

difference ni − nj has O(log x) prime factors. Therefore, m(s) < t occurs for at most O(t2 log x) =

O(log3 x) primes s ∈ S. Byt the independence of the choices as for s ∈ S, the events “{n1, . . . , nt}
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doesn’t intersect as mod s” are independent. Thus,

P(n1, . . . , nt ∈ S(~a)) =
∏
s∈S

(
1− m(s)

s

)

=
∏
s∈S

(
1− t

s

) ∏
s∈S

m(s)<t

(
1− t

s

)−1(
1− m(s)

s

)

=

(
1 +O

(
1

log19 x

))O(log3 x) ∏
s∈S

(
1− t

s

)

=

(
1 +O

(
1

log16 x

))
σt
∏
s∈S

(
1 +O

(
t2

s2

))
=

(
1 +O

(
1

log16 x

))
σt. �

Corollary 8.5. With probability > 1−O(1/ log8 x), we have

(8.9)
∣∣Q∩ S(~a)

∣∣ =

(
1 +O

(
1

log4 x

))
σ|Q| ∼ 100c

x

log x
.

Proof. From Lemma 8.4, we have

E
∣∣(Q∩ S(~a))

∣∣2 =
∑

q1,q2∈Q
P(q1, q2 ∈ S(~a))

= σ|Q|︸︷︷︸
q1=q2

+

(
1 +O

(
1

log16 x

))
σ2|Q| · (|Q| − 1)︸ ︷︷ ︸

q1 6=q2

= σ2|Q|2
(

1 +O

(
1

log16 x

))
,

using that σ|Q| � (x/ log x)2. Thus, by (8.8), (8.3), (8.7),

E
(∣∣Q∩ S(~a)

∣∣− σ|Q|)2 = E
∣∣Q∩ S(~a)

∣∣2 − (σ|Q|)2 � (σ|Q|)2

log16 x
.

Combining this last estimate with Chebyshev’s inequality, we conclude that

P
(∣∣ |Q ∩ S(~a)| − σ|Q|

∣∣ > σ|Q|
log4 x

)
� (σ|Q|)2/ log16 x

(σ|Q|)2(log x)−8
=

1

log8 x
. �

8.4. The weight function w∗(p, n). We will also choose the vector ~b at random, but in a strategic

way which is dependent on ~a. Each residue class bp mod p must cover many primes in Q (in fact,

many primes in Q ∩ S(~a)), and accomplishing this is the key to success of the whole enterprise.

This is done via showing the existence of a good “weight” function w∗(p, n).

Let k be a fixed positive integer, large in terms of the constant c (in fact, k =
⌊
exp(c2)

⌋
will

do), and let (h1, . . . , hk) be a fixed admissible k-tuple of positive integers (that is, for any prime,

(h1, . . . , hk) does not cover (Z/pZ)). For instance, (1, 32, 52, . . . , (2k − 1)2).
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Theorem 8.6 (Existence of good sieve weight). Let k be a fixed, large positive integer and (h1, . . . , hk)

a fixed admissible k−tuple of distinct positive integers. Suppose x is large and y is defined by (8.3),

with c > 0 fixed. Then there are quantities τ , u satisfying

(8.10) τ = xo(1), u� log k (x→∞)

and a non-negative weight function w∗(p, n) defined on P × ([−y, y] ∩ Z) satisfying

• Uniformly for every p ∈ P, one has

(8.11)
∑
n∈Z

w∗(p, n) ∼ τ y

logk x
.

• Uniformly for every q ∈ Q and i = 1, . . . , k, one has

(8.12)
∑
p∈P

w∗(p, q − hip) ∼ τ
u

k

x/2

logk x
.

• Uniformly for all p ∈ P and n ∈ Z,

(8.13) w∗(p, n)� xo(1) (x→∞).

Remark 2. One should think of w∗(p, n) as being a smoothed out indicator function for the event

that n + h1p, . . . , n + hkp are all almost primes in [1, y]. It is thus natural to bring into play the

technology from Section 7.

Proof. We first recall the construction of sieve weights from Section 7. Set θ = 1/3, let k be large

and for large x define

s = log2 x, R = x
θ
2
− 3/2

s , D = R1/s, z = D1/s = R1/s2 ,

and define D by (7.8). Let µ+ be an upper bound sieve guaranteed by the Fundamental Lemma

(Theorem 3.6) with parameters D, z. Fix F ∈ Fk, so that

Mk(F ) =
kJ(F )

I(F )
> 0.9 log k,

which exists by Theorem 7.17 if k is large enough. Define ξ(r) by (7.37) and define λ(d) from

Lemma 7.11. Note that with k and F fixed, λ(d) depends only on R and z.

We will be applying Proposition 7.14 with N = x/2 and with N = 2y, and also with many

different k-tuples of admissible forms (a1n+ b1, . . . , akn+ bk). With these two choices of N , we see

that (7.7) holds.

For p ∈ P and −y 6 n 6 y we define

(8.14) w∗(p, n) =

( ∑
t|(n+h1p)···(n+hkp)

µ+(t)

)( ∑
∀j:dj |n+hjp

λ(d)

)2

(−y < n 6 y),

We are ready to deploy Proposition 7.14 (i), with N = 2y and with the forms m+(hip−3y), 1 6
i 6 k, where now the variable m runs over (N, 2N ]; that is, we set m = n+ 3y. For this collection

of forms, we have (recalling the definition (7.10))

E =

∣∣∣∣pk(k−1)/2
∏
i<j

(hj − hi)
∣∣∣∣.
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Since all prime factors of E are either O(1) or > x/2 > R, we see that for all d ∈ D we have d ∈ E .

Hence, setting ai = 1 and bi = hip − 3y for 1 6 i 6 k, as have w∗(p, n) = w(n + 3y), where w(m)

is define in (7.12). We also have the required bounds (7.15) for ai and bi. Thus, Proposition 7.14

(i) implies that ∑
−y<n6y

w∗(p, n) =
∑

N<m62N

w(m) ∼ 2yV

(
e−γ

log z

logR

)k
I(F ),

where I(F ) is defined in (7.38) and

V =
∏

primev6z

(
1− ρ(v)

v

)
.

Here, for prime v 6 z,

ρ(v) = #

{
n mod v :

k∏
j=1

(n+ hjp) ≡ 0 (mod v)

}

= #

{
n mod v :

k∏
j=1

(n+ hj) ≡ 0 (mod v)

}
is independent of p (since v < p). This proves (8.11) with

(8.15) τ = 2V

(
e−γ(log x)

log z

logR

)k
I(F ) = xo(1).

Next, fix a prime q ∈ Q and an index i ∈ {1, . . . , k}. By (8.14) and the fact that q is prime > z,

∑
p∈P

w∗(p, q − hip) =
∑

x/2<n6x

1n prime

( ∑
t|
∏
j(q+(hj−hi)n)

µ+(t)

)( ∑
dj |q+(hj−hi)n ∀j

λ(d)

)2

.

This corresponds exactly to the sum in Proposition 7.14 (ii) applied to the linear forms ajn + bj ,

1 6 j 6 k, where ai = 1, bi = 0 and for j 6= i, aj = hj − hi and bi = q. Here we have N = x/2. By

(7.10), for these forms we have

E =

∣∣∣∣∏
j 6=i

(hj − hi) · qk−1 ·
∏
j1<j2

j1 6=i,j2 6=i

(hj1 − hj2)q

∣∣∣∣,
which again has all of its prime factors > x > R or O(1). Thus, for all d ∈ D , d ∈ E as well. We

also have the required bounds (7.26) on ai and bi. Therefore, Proposition 7.14 (i) implies (8.10),

where

u =
logR

2 log x
Mk(F ).

Since Mk(F )� log k, u� log k.

Finally, (8.13) holds since the definition of w∗(p, n) implies that w∗(p, n) is bounded by a divisor

function, and |µ+(t)| 6 1 and |λ(d)| 6 1. �
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8.5. Strategic choice of ~b. Our goal is to first choose a “good” vector ~a and then choose residue

classes bp modulo p ∈ P such that bp mod p contains many elements of Q∩ S(~a).

For each p ∈ P, let ñp denote the random integer with probability density

(8.16) P(ñp = n) :=
w∗(p, n)∑

n′∈Zw
∗(p, n′)

(−y 6 n 6 y),

and chosen independently for each p ∈ P. Notice that the random numbers ñp are chosen inde-

pendently of the vector ~a. Roughly speaking, this gives more weight to n for which many of the

numbers n+ hip are prime.

In order to capture the event that bp mod p contains many elements of S(~a), for each p ∈ P
and fixed (non-random) ~a, we consider the quantity

(8.17) Xp(~a) := P(ñp + hip ∈ S(~a) for all i = 1, . . . , k),

over the random integer ñp. In light of Lemma 8.4, we expect that Xp(~a) ∼ σk for most choices of

p and ~a, and this will be confirmed below (Lemma 8.8). With this in mind, let P(~a) denote the set

of all the primes p ∈ P such that

(8.18)
∣∣∣Xp(~a)− σk

∣∣∣ 6 σk

log3 x
.

We now define the random variables np. Suppose we are in the event ~a = ~a. If p ∈ P\P(~a),

we set np = 0. Otherwise, if p ∈ P(~a), we define np to be the random integer with conditional

probability distribution

(8.19) P(np = n|~a = ~a) :=
Zp(~a;n)

Xp(~a)
,

where, for any ~a, any p ∈ P and any n,

(8.20) Zp(~a;n) :=

{
P(ñp = n) if n+ hjp ∈ S(~a) for j = 1, . . . , k

0 otherwise,

with the np (p ∈ P(~a)) jointly independent, conditionally on the event ~a = ~a. From (8.17) we see

that these random variables are well defined; indeed,∑
n

Zp(~a;n) = P(ñp + hip ∈ S(~a) for all i = 1, . . . , k) = Xp(~a).

Observe that if ~a = ~a and p ∈ P(~a), the support of np is contained in those n for which

n + hip ∈ S(~a) for all i, that is, the residue class n mod p contains at least k elements of S(~a).

Also, recalling Remark 2, we see that, conditionally on ~a = ~a, np is very likely to be a number for

which there are � log k of the numbers n + h1p, . . . , n + hkp which are prime (and hence in Q).

For a fixed vector ~a and p ∈ P, define the random set

(8.21) ep(~a) := {np + hip : 1 6 i 6 k} ∩ Q ∩ S(~a).

Here the course of randomness is the random number np. Thus, we expect that ep(~a) will be a

large set, which implies that the residue class np mod p has many elements of Q∩S(~a), as desired.

Unlike ñp, the random numbers np are very much dependent on the vector ~a. However, conditional

on ~a = ~a, all of the np (p ∈ P) are independent.

Our main objective is to show that Zp(~a; q − hip) is often large.
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Lemma 8.7. Fix c, k, and let u be the value guaranteed by Theorem 8.6. Define Zp(~a;n) by (8.20).

Then, as x→∞, with probability 1− o(1) in the random vector ~a we have

(8.22) σ−k
k∑
i=1

∑
p∈P(~a)

Zp(~a; q − hip) >
u

250c

for all but at most x
100 log x of the primes q ∈ Q ∩ S(~a).

Proof of Theorem 8.3 from Lemma 8.7. By Corollary 8.5 and Lemma 8.7, there is some vector ~a

such that

(8.23) |Q ∩ S(~a)| 6 110c
x

log x

and also (8.22) holds for all but o(x/ log x) primes q ∈ Q ∩ S(~a). Fix this vector ~a (it is no longer

random), and choose random integers np according to the laws (8.19). Let Q′ denote the set of

primes q ∈ Q ∩ S(~a) for which (8.22) holds. By Lemma 8.7,

(8.24)
∣∣(Q∩ S(~a)) \ Q′

∣∣ = o

(
x

log x

)
(x→∞).

Substituting definition (8.19) into the left hand side of of (8.22), using (8.18), and observing that

q = np + hip is only possible if p ∈ P(~a) (since otherwise np = 0 and q = hip is not possible; here

we use the fact that hi > 0), we find that

σ−k
k∑
i=1

∑
p∈P(~a)

Zp(~a; q − hip) = σ−k
k∑
i=1

∑
p∈P(~a)

Xp(~a)P(np = q − hip|~a = ~a)

=

(
1 +O

(
1

log3 x

)) k∑
i=1

∑
p∈P(~a)

P(np = q − hip|~a = ~a)

=

(
1 +O

(
1

log3 x

))∑
p∈P

P(q ∈ ep(~a)).

By (8.22), we conclude that if x is large enough then

(8.25)
∑
p∈P

P(q ∈ ep(~a)) >
u

300c
.

Observe that each random set ep is contained in a single arithmetic progression modulo p. Now

we set bp = np mod p for each p ∈ P. Then, for any q ∈ Q′, by the independence of the np,

P(q ∈ T (~b)) = P (q 6≡ bp (mod p) ∀p ∈ P)

=
∏
p∈P

(1− P(q ≡ bp (mod p)))

6
∏
p∈P

(1− P(q ∈ ep(~a)))

6 exp
{
−
∑
p∈P

P(q ∈ ep(~a))
}

= exp
{
− u

300c

}
.

(8.26)
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Hence, by (8.23) and (8.24), if x is large enough then

E
∣∣Q∩ S(~a) ∩ T (~b)

∣∣ 6 ∣∣(Q∩ S(~a)) \ Q′
∣∣+

∑
q∈Q′

exp
{
− u

300c

}
6

x

log x

(
1

100
+ 110c exp

{
− u

300c

})
.

The right hand side is 6 x
5 log x if k is large enough, thanks to (8.10) which states u � log k.

Therefore, there is some choice of the vector ~b so that (8.5) holds, and this completes the proof of

Theorem 8.3. �

It remains to prove Lemma 8.7. We first confirm that P\P(~a) is small with high probability.

Lemma 8.8. We have

E|P(~a)| = |P|+O

(
x

(log x)11

)
= |P|

(
1 +O

( 1

log10 x

))
.

Proof. It suffices to show that for each p ∈ P, we have

(8.27) P (p ∈ P(~a)) = 1−O
(

1

log10 x

)
.

From (8.27), we get

E
∣∣P\P(~a)

∣∣ =
∑
p∈P

P (p 6∈ P(~a))� |P|
log10 x

� x

log11 x
,

and the claim follows. We will prove (8.27) by computing first and second moments of Xp(~a).

Recall that, by (8.17),

Xp(~a) :=
∑
n

1n+hip∈S(~a)∀i P(ñp = n).

Since the quantities P(ñp = n), for −y 6 n 6 y, are independent of ~a, Lemma 8.4 implies that

EXp(~a) =
∑
n

P(n+ hip ∈ S(~a) for all i = 1, . . . , k) P(ñp = n)

=

(
1 +O

(
1

log16 x

))
σk
∑
n

P(ñp = n) =

(
1 +O

(
1

log16 x

))
σk.

(8.28)

Similarly,

EXp(~a)2 =
∑
n1,n2

P(nj + hip ∈ S(~a) for 1 6 i 6 k; j = 1, 2)P(ñp = n1)P(ñp = n2).

When n1 6≡ n2 (mod p), we have

#{nj + hip : i = 1, . . . , k; j = 1, 2} = 2k

and Lemma 8.4 implies that

P(nj + hip ∈ S(~a) for 1 6 i 6 k; j = 1, 2) =

(
1 +O

(
1

log16 x

))
σ2k.
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There are O(y(y/p)) = O(y2/x) = O(x log2 x) pairs n1, n2 with n1 ≡ n2 (mod p). Therefore,

EXp(~a)2 =

(
1 +O

(
1

log16 x

))
σ2k +O

(
(x log2 x) max

n
(P(ñp = n))2

)
.

From (8.16), (8.11), (8.13), and (8.10) one has P(ñp = n)� x−0.99 for all p ∈ P and n ∈ Z. Also,

σ � 1/ log x by (8.7), hence

(8.29) EXp(~a)2 =

(
1 +O

(
1

log16 x

))
σ2k.

Combining (8.28) and (8.29), we compute

E
∣∣∣Xp(~a)− σk

∣∣∣2 � σ2k

log16 x
.

By Chebyshev’s inequality, for any p ∈ P,

P (p 6∈ P(~a)) = P
(∣∣Xp(~a)− σk

∣∣ > 1

log3 x

)
� 1

log10 x
,

which proves (8.27). �

Proof of Lemma 8.7. We first show that replacing P(~a) with P has negligible effect on the sum,

with high probability. The purpose is to set up an application of (8.12) and to decouple some

expressions involving ~a.

By Lemma 8.4 and the definition (8.20) of Zp(~a;n), we have

E
∑
n

σ−k
∑
p∈P

Zp(~a;n) = σ−k
∑
p∈P

∑
n

P(ñp = n)P(n+ hjp ∈ S(~a) for j = 1, . . . , k)

=

(
1 +O

(
1

log16 x

))∑
p∈P

∑
n

P(ñp = n)

=

(
1 +O

(
1

log16 x

))
|P|.

Next, by (8.18) and Lemma 8.8 we have

E
∑
n

σ−k
∑

p∈P(~a)

Zp(~a;n) = σ−k
∑
~a

P(~a = ~a)
∑

p∈P(~a)

Xp(~a)
∑
n

P(np = n|~a = ~a)︸ ︷︷ ︸
equals 1

=

(
1 +O

(
1

log3 x

)) ∑
~a

P(~a = ~a)
∑

p∈P(~a)

1

=

(
1 +O

(
1

log3 x

))
E |P(~a)| =

(
1 +O

(
1

log3 x

))
|P|.

Subtracting these two expectations, we conclude that

(8.30) E
∑
n

σ−k
∑

p∈P\P(~a)

Zp(~a;n)� |P|
log3 x

� x

log4 x
.
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We substitute n = q − hip and find that

E
∑

q∈Q∩S(~a)

σ−k
k∑
i=1

∑
p∈P\P(~a)

Zp(~a; q − hip) 6 E
∑

p∈P\P(~a)

k∑
i=1

σ−k
∑
n

Zp(~a;n)

= k · E
∑
n

σ−k
∑

p∈P\P(~a)

Zp(~a;n)

� x

log4 x
.

By Markov’s inequality, with probability 1−O(1/ log x), we have∑
q∈Q∩S(~a)

σ−k
k∑
i=1

∑
p∈P\P(~a)

Zp(~a; q − hip) 6
x

log3 x
.

Hence, with probability 1−O(1/ log x), we have

σ−k
k∑
i=1

∑
p∈P\P(~a)

Zp(~a; q − hip) 6
1

log x

for all but at most x/ log2 x primes q ∈ Q ∩ S(~a). Recalling our goal (8.22), it therefore suffices to

show that with probability 1− o(1), for all but at most x/(200 log x) primes q ∈ Q∩ S(~a), one has

(8.31) F (q;~a) := σ−k
k∑
i=1

∑
p∈P

Zp(~a; q − hip) >
u

240c
.

We accomplish this with another first-second moment calculation.

First, we note that from Theorem 8.6, (8.11) and (8.12), we have

(8.32)
∑
p∈P

P(q = ñp + hip) =

∑
p∈P w

∗(p, q − hip)∑
mw

∗(p,m)
∼ u

k

x

2y
(q ∈ Q, 1 6 i 6 k).

Hence, combining (8.32) with Lemma 8.4 and (8.16), we get

E
∑

q∈Q∩S(~a)

F (q;~a) = σ−k
∑
q∈Q

k∑
i=1

∑
p∈P

P(q + (hj − hi)p ∈ S(~a) ∀j)P(ñp = q − hip)

=

(
1 +O

(
1

log16 x

))∑
q∈Q

k∑
i=1

∑
p∈P

P(ñp = q − hip)

∼
∑
q∈Q

k∑
i=1

ux

2ky
∼ σy

log x

(
ux

2σy

)
.

This shows that F (q;~a) is about ux/(2σy) on average, since by Corollary 8.5, |Q∩S(~a)| ∼ σy/ log x

with high probability. Similarly,

E
∑

q∈Q∩S(~a)

F (q;~a)2 = σ−2k
∑
q∈Q

∑
p1,p2∈P

∑
i1,i2

P(q + (hj − hi`)p` ∈ S(~a) for j = 1, . . . , k; ` = 1, 2)

× P(ñp1 = q − hi1p1)P(ñp2 = q − hi2p2).
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The terms with p1 = p2 contribute negligibly; indeed, since P(ñ = n) � x−0.99, these terms

contribute an amount which is

� σ−2k|Q| · |P|k2(x−0.99)2 � x0.03.

When p1 6= p2 and q ∈ Q, there are 2k − 1 distinct numbers q + (hj − hi`)p`, 1 6 j 6 k, 1 6 ` 6 2,

since the terms j = i1,` = 1 and j = i2, ` = 2 are both equal to q and no other terms are equal;

this is the case whether or not i1 = i2. Therefore, by Lemma 8.4

E
∑

q∈Q∩S(~a)

F (q;~a)2 ∼ σy

log x

(
ux

2σy

)2

.

Putting the first and second moment bounds together, and using (8.8), we get

E
∑

q∈Q∩S(~a)

(
F (q;~a)− xu

2σy

)2

= E
∑

q∈Q∩S(~a)

F (q;~a)2 − 2
xu

2σy
E

∑
q∈Q∩S(~a)

F (q;~a) +

(
xu

2σy

)2

E
∣∣Q∩ S(~a)

∣∣
= o

(
σy

log x

(
xu

2σy

)2
)
.

Using Chebyshev’s inequality, we find that the left side is o( σy
log x( xu2σy )2) with probability 1− o(1).

In this event, F (q;~a) ∼ xu
2σy for all but o(σy/ log x) primes q ∈ Q ∩ S(~a). Now σy/ log x � x/ log x

and
xu

2σy
∼ u

200c
and Lemma 8.7 follows. �

8.6. Remarks: quantitative improvements. The proof described above may be adapted to the

case where k → ∞ (x → ∞). The relevant estimates needed for the analog of Theorem 8.6 may

be found in [109]. The error terms corresponding to bounds for primes in progressions from the

sum (8.12) need to be of the form x/(log x)100k2 , and this is achieved (as in [109]) by a careful

analysis of Siegel exceptional zeros. With k ≈ (log x)1/5, the analog of Theorem 8.6 will have a

factor u� log log x in (8.12). Inserted into the final estimate (8.26) in the proof of Theorem 2, we

find that to succeed we need

u� c log c,

which means that we can improve Y (x) be a factor � u/ log u (and hence G(x) improved by a

factor � log u
log log u . In light of (8.25), however, we may expect an improvement of order � u for

Y (x), and of order � log u for G(x). This is achieved by dealing effectively with overlaps among

the random sets ep(~a), using techniques from hypergraph covering (§4-5 of [54]).
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8.7. The influence of Siegel exceptional zeros on large gaps. In this subsection, we show

that the existence of exceptional zeros of a certain type implies a lower bound for G(x) which is

larger than the bound in Theorem 8.1. More generally, we derive a similar conclusion whenever

there are arithmetic progressions containing few primes. We recall that π(x; q, b) the number of

primes p 6 x satisfying p ≡ b (mod q).

All of the methods used to prove lower bounds on G(x) utilize a simple connection between G(x)

and Jacobsthal’s function Y (u), defined in Definition 7. Recall the simple relation (8.2) giving a

lower bound for G(x) in terms of Y (x), and that P (x) = e(1+o(1))x by the prime number theorem.

Theorem 8.9 (Ford, 2019 [50]). Suppose that x is large, q > b > 1, (b, q) = 1, x > 2q, and

π(x; q, b) 6 δx
φ(q) with 0 6 δ 6 1. Then

G(e2u) > Y (u) >
x− b
q
>

x

2q
,

where u is the smallest integer satisfying u > 2
√
x and u

log u >
6δx
q .

Proof. Let u be as in the theorem, and let

(8.33) y =
x− b
q

.

Too show that Y (u) > y, it suffices to find residue classes ap mod p, one for each prime p 6 u,

which together cover [0, y]. For each prime p 6 u/2 with p - q, define ap by

qap + b ≡ 0 (mod p).

Recall that (b, q) = 1. In this way, if 0 6 n 6 y and n 6≡ ap (mod p) for all such p, then m = qn+ b

has no prime factor 6 u/2. Also, x = qy + b < (u/2)2 by hypothesis, and thus m is prime. Let

N = {0 6 n 6 y : n 6≡ ap (mod p), ∀p 6 u/2 with p - q}.

It follows from the hypothesis of the theorem that

|N | 6 π(qy + b; q, b) = π(x; q, b) 6
δx

φ(q)
.

Next, we choose residue classes ap for primes p|q with p 6 u/2 using a greedy algorithm, successively

selecting for each p a residue class ap mod p which covers at least a proportion 1/p of the elements

remaining uncovered. As u > 2
√
x > 2

√
q, there is at most one prime p|q satisfying p > u/2.

Letting N ′ denote the set of n ∈ [0, y] not covered by {ap mod p : p 6 u/2}, we have

|N ′| 6 |N |
∏

p|q,p6u/2

(
1− 1

p

)
6 2|N |φ(q)

q
6

2δx

q
.

By hypothesis,

|N ′| 6 u

3 log u
,

which, by the prime number theorem, is less than the number of primes in (u/2, u] for u large

enough (as u > 2
√
x, this happens if x is large enough). Thus, we may associate each number

n ∈ N ′ with a distinct prime in pn ∈ (u/2, u). Choosing apn ≡ n (mod pn) for each n ∈ N ′ then

ensures that {ap mod p : p 6 u} covers all of [0, y], as desired. �
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An immediate corollary gives a lower bound on G(x) assuming a lower bound on L(q, b), the

least prime in the progression b mod q. We take δ = 0 and u = d2
√
xe.

Corollary 8.10 (Ford [50]). Suppose that (q, b) = 1, x > 2q and L(q, b) > x. Then

G(e4
√
x+2) >

x

2q
.

Theorem 8.9 is a partial converse to a theorem of Pomerance [122, Theorem 1], which provides

a lower bound on max(b,q)=1 L(q, b) given a lower bound on the maximal gap between numbers

coprime to m, where (m, q) = 1 and m 6 q1−o(1).

Linnik’s theorem [104] states that for (q, b) = 1, L(q, b) � qL for some constant L; the best

published result of this kind is due to Xylouris [149], who showed that the bound holds with

L = 5.18 7. Assuming the Extended Riemann Hypothesis (ERH) for Dirichlet L-functions, we

obtain a stronger bound L(q, b)�ε q
2+ε for every ε > 0.

Corollary 8.11 (Ford [50]). Suppose that c > 2 and there are infinitely many pairs (q, b) with

L(q, b) > qc (a violation of ERH). Then

lim sup
X→∞

G(X)

(logX)2− 2
c

> 0.

Proof. Apply Theorem 8.9 with x = qc and X = e4
√
x+2. Then

G(X) >
x

2q
� qc−1 � (logX)2−2/c. �

It is, however, conjectured that L(q, b) � φ(q) log2 q; see [102] for a precise version of this

conjecture and for the best known lower bounds on max(b,q)=1 L(q, b).

We may also exceed the bound in Theorem 8.1 under the assumption that exceptional zeros of

Dirichlet L-functions exist. Roughly speaking, an exceptional zero of L(s, χ) is a zero which is real

and very close to 1. As such, their existence violates ERH for L(s, χ). Classical results (see [26,

§14]) imply that if c0 > 0 is small enough, and q > 3, then there is at most one character χ modulo

q for which L(s, χ) has a zero in the region

{σ + it ∈ C : σ > 1− c0/ log(qt)},

and moreover the character is real and the zero is real. We shall refer to such zeros as “exceptional

zeros” with respect to c0. Moreover, by reducing c0 if necessary, it is known that moduli q for which

an exceptional zero exists are very rare.

Siegel’s theorem [26, Sec. 21] implies that

(8.34) 1− βq �ε q
−ε (∀ ε > 0),

for (hypothetical) exceptional zeros βq, although we cannot say any rate at which this occurs (the

bound is ineffective). The exceptional zeros are also known as Siegel zeros or Landau-Siegel zeros

in the literature. Their existence implies a great irregularity in the distribution of primes modulo

q, given by Gallagher’s Prime Number Theorem [62].

7In his Ph.D. thesis [150], Xyloris claims a better bound L = 5.
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Proposition 8.12. For some absolute constant B > 1, we have the following. Suppose that χ is

a real character with conductor q and L(1 − δ, χ) = 0 for some 1
2 6 δ < 1. Then, for all b with

χq(b) = 1 and all x > qB, we have

π(x; q, b)� min(1, δ log x)x

φ(q) log x
6

δx

φ(q)
.

Proof. We prove this with B = 12 using the main result from Thorner and Zaman [143]. By

hypothesis, x > q12 and therefore we may apply [143, Corollary 1.4], obtaining

π(x; q, b) 6
√
x+

2

log x

∑
√
x<p6x

p≡1 (mod q)

log p

�
√
x+

λx

φ(q) log x
,

where

λ := 1− x−δ/(1− δ)� min(1, δ log x).

We have the effective estimate δ � q−2/3, hence

δx

φ(q)
>
δx

q
� q−5/3x� x3/4

and the proposition follows. �

One can leverage this irregularity to prove regularity results about primes that are out of reach

otherwise, the most spectacular application being Heath-Brown’s [85] deduction of the twin prime

conjecture from the existence of exceptional zeros (for an appropriate c0). See Iwaniec’s survey

article [97] for background on attempts to prove the non-existence of exceptional zeros and discus-

sion about other applications of their existence. There are also a variety of problems where one

argues in different ways depending on whether or not exceptional zeros exist, a principal example

being Linnik’s Theorem on primes in arithmetic progressions (see, e.g., [61, Ch. 24]).

Apply Proposition 8.12 with x = qB. Recalling (8.34), we see that the quantity u in Theorem

8.9 satisfies

u � δx log x

q
= qB−1+o(1) (q →∞)

and consequently that log u � log q. Setting X = e2u, we conclude the following:

Theorem 8.13 (Ford [50]). Suppose that χ is a real character with conductor q and that L(1 −
δ, χ) = 0 for some 1

2 6 δ < 1. Then there is some X with log logX � log q and

(8.35) G(X)� logX

δ log2X
.

For example, if k is fixed and there exist infinitely many exceptional zeros δ = δq satisfying

δq 6 (log q)−k, we see that there is an unbounded set of X for which

G(X)�k (logX)(log2X)k−1.
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this improves upon Theorem 8.1 for k > 2. Similarly, if m > 2 and there is an infinite set of q

satisfying δ = δq = q−1/ logm q, then for an unbounded set of X,

G(X) > (logX) exp

{
cm

log2X

logm+1X

}
,

for some constant cm > 0.

Remark. We have made no use in the proof of estimates for numbers lacking large prime factors,

as in the proof of Theorem 8.2. There does not seem to be any advantage to this in our argument.
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9. Random models for primes, gaps, and correlations

9.1. Cramér’s model. In 1936, Cramér [25] introduced a random model of primes and used it

to predict that G(x)� log2 x. His model is based on the fact that if a random number is sampled

near x, it has a likelihood of about 1/ log x of being prime. Now let X3, X4, X5, . . . be independent

random variables taking values 0, 1 and with

P(Xn = 1) =
1

log n
.

Then let C = {n : Xn = 1} be a random set of positive integers. Cramér argued that C behaves

globally like the primes and ought to behave locally like the primes as well. We will analyze the

global and local behavior, showing that with probability 1, the count of elements of C is similar to

π(x) under the Riemann Hypothesis, but that local correlations do not match those of primes. We

will then show almost surely that the largest gap, GC(x), between elements of C up to x, satisfies

GC(x) ∼ log2 x as x→∞.

We recall the Borel-Cantelli lemma from probability theory.

Lemma 9.1 (Borel-Cantelli). Let E1, E2, . . . be events in a probability space.

(i) If
∑∞

j=1 P(Ej) <∞, then with probability 1, only finitely many of the Ei occur;

(ii) If
∑∞

j=1 P(Ej) =∞ and the the Ej are mutually independent, then with probability 1, infin-

itely many of the Ei occur.

Theorem 9.2. Fix c > 3/2. With probability 1, we have

#{n 6 x : n ∈ C} = li(x) +O(x1/2 logc x).

Proof. Fix c > 3/2. For any integers u > 2 and v > 0, we let

N(u, v) := #{u < n 6 v : n ∈ C }

If u < v 6 2u then

EN(u, v) =
∑

u<n6v

1

log n
=

∫ v

u

dt

log t
+O(1)

and

EN(u, v)2 =
∑

u<n1,n26v

P
(
n1 ∈ C and n2 ∈ C

)
=

∑
u<n1,n26v
n1 6=n2

1

(log n1)(log n2)
+
∑

u<n6v

1

log n

=

( ∑
u<n6v

1

log n

)2

+
∑

u<n6v

(
1

log n
− 1

log2 n

)
=
(
EN(u, v)

)2
+O

(
v − u
log u

)
.

Now let

∆(u, v) = N(u, v)−
∫ v

u

dt

log t
.
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For u < v 6 2u it follows that

(9.1) E∆(u, v)2 � v − u
log u

.

Let x be a large power of two. For integers h,m with
√
x 6 2m 6 x and 0 6 h 6 x/2m − 1, let

Gm,h be the event that ∣∣∆(x+ h · 2m, x+ (h+ 1)2m)
∣∣ 6 x1/2(log x)c−1.

For large x, (9.1) and Chebyshev’s inequality imply that

P
(
not Gh,m

)
� 2m

x(log x)2c−1
.

Let Fx denote the event that Gh,m holds for all such h,m. By a union bound, we see that

PFx = 1−O((log x)2−2c).

Since 2c − 2 > 1, the Borel-Cantelli lemma implies that with probability one, F2s is true for all

large integers s, say s > s0. On this event, for all s > s0, x = 2s and 1 6 y 6 x we have

|∆(x, x+ y)| =
∣∣∣∣ ∑

2
√
x62m6y

∆
(
x+

⌊
y/2m+1

⌋
2m+1, x+ by/2mc2m

)∣∣∣∣+O(
√
x)

6
∑

2
√
x62m6y

x1/2(log x)c−1 +O(
√
x)

� x1/2(log x)c.

Therefore, for any u satisfying 2t 6 u < 2t+1 with t > s0, we have

#{n 6 x : n ∈ C } = O(2s0) +
∑

s06s6t

2s/2sc � x1/2 logc x. �

Using the Law of the Iterated Logarithm from probability theory (e.g., Chapter VIII.5 in [46]),

one can be more precise about the almost sure behavior of the counting function #{n 6 x : n ∈ C},
and we get

lim sup
x→∞

∣∣∣∣∣#{n 6 x : n ∈ C} −
∫ x

2 dt/ log t(
2x log2 x

log x

)1/2

∣∣∣∣∣ = 1.

Now we analyze the largest gap below x in the random set C, which we denote by GC(x).

Theorem 9.3. Suppose that `(n) and u(n) are increasing sequences of positive integers such that

for large n,
1

2
log2 n 6 `(n) 6 2 log2 n, `(n+

⌈
5 log2 n

⌉
) 6 `(n) + 1.

Suppose further that
∞∑
n=2

e−`(n)/ logn

log n
=∞,

∞∑
n=2

e−u(n)/ logn

log n
<∞.

With probability 1, we have GC(x) > `(x) for infinitely many integers x and GC(x) 6 u(x) for all

sufficiently large x.
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For example, fix an integer t > 4, and the following sequences satisfy the conditions of Theorem

9.3 for sufficiently large n:

`(n) = b(log n)(log n+ log3 n+ log4 n+ · · ·+ logt n)c,
u(n) =

⌊
(log n)(log n+ log3 n+ log4 n+ · · ·+ logt−1 n+ 2 logt n)

⌋
.

Proof. For n > 3 and k > 1, let Yn,k be the event that n ∈ C and none of the numbers n + 1, n +

2, . . . , n+ k lies in C. That is, there is a gap of size > k following n. By the independence,

PYn,k =
1

log n

(
1− 1

log(n+ 1)

)
· · ·
(

1− 1

log(n+ k)

)
.

In particular, if k 6 10 log2 n then for 1 6 j 6 k we have

1

log(n+ j)
=

1

log n+O
(

log2 n
n

) =
1

log n
+O

(
1

n

)
and it follows that

PYn,k =
1

log n

(
1− 1

log n
+O

(
1

n

))k
=

(
1

log n

)
exp

{
k

(
− 1

log n
+O

(
1

2 log2 n

))}
� e−k/ logn

log n
.

(9.2)

The rough idea is that for fixed ε > 0 and k =
⌊
(1 + ε) log2 n

⌋
, PYn,k � n−1−ε and

∑
n n
−1−ε

converges, therefore with probability 1 only finitely many such events occur; on the other hand, if

k =
⌊
(1− ε) log2 n

⌋
then PYn,k � n−1+ε(log n)−1 and

∑
n−1+ε(log n) diverges, so we expect that

almost surely infinitely many such events occur (one must be somewhat careful here, since Yn1,k1

and Yn2,k2 are independent only if the intervals [n1 + 1, n1 + k1] and [n2 + 1, n2 + k2] are disjoint).

We now make this kind of argument completely rigorous and more precise. Fix an integer t > 4

and for large enough n (in terms of t) let k = u(n). By (9.2), for sufficiently large n0 we have

∞∑
n=n0

PYn,u(n) �
∞∑

n=n0

e−u(n)/ logn

log n
� 1.

By Borel-Cantelli, with probability 1, Yn,u(n) fails for all sufficiently large n. On this event, for

all sufficiently large x, G(x) 6 u(x) since u(x) is increasing. This proves the second part of the

theorem.

For the lower bound, define the event

Wn,k =
(
Yn,k or Yn+1,k or · · · or Yn+k−1,k

)
.

The events Yn,k, . . . , , Yn+k−1,k are mutually disjoint, hence (9.2) implies that if k 6 2 log2 n then

(9.3) PWn,k �
ke−k/ logn

log n
.
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Let n1, n2, . . . and k1, k2, . . . be sequences of positive integers such that nj+1 > nj + 2kj for each j.

Since the event Wnj ,kj depends only on whether or not the integers nj , . . . , nj + 2k1 − 1 are in C,

we see that the events Wnj ,kj are independent. In particular, we may take

n1 = 10, nj+1 = nj +
⌈
5 log2 nj

⌉
(j > 1)

and

kj = `(nj+1) (j > 1).

We have nj+1 ∼ nj as j →∞ and for large enough j we have

nj + 2kj 6 nj + 4 log2 nj+1 < nj + 5 log2 nj 6 nj+1.

Thus, for some j0, the events Wnj ,kj , j > j0, are mutually independent. With these definitions, if j

is sufficiently large and Wnj ,kj holds then there is some x 6 nj+1 with Yx,`(nj+1) holding, and hence

GC(nj+1) > `(nj+1).

To prove the first part of the theorem, it suffices to show that with probability 1, there are infinitely

many j with Wnj ,kj holding. By Corel-Cantelli, it thus suffices to prove that
∑

j PWnj ,kj diverges.

By hypothesis, when nj 6 n 6 nj+1 we have `(n) = `(nj+1) +O(1) and

1

log n
=

1

log nj+1
+O

(
1

nj+1

)
.

Thus, by (9.3) and the assumed lower bound `(nj+1) > 1
2 log2 nj+1 > 1

2 log2 nj , we have for suffi-

ciently large j0 the bounds ∑
j>j0

PWnj ,kj �
∑
j>j0

`(nj+1)e−`(nj+1)/ lognj

log nj

�
∑
j>j0

(log nj)e
−`(nj+1)/ lognj

�
∑
j>j0

∑
nj6n<nj+1

e−`(n)/ logn

log n

=
∑
n>nj0

e−`(n)/ logn

log n
.

By hypothesis, the right side diverges and this completes the proof. �

The Cramér model has a number of flaws, that is, statistical behavior which is known to be

different from that of the primes. In particular, if (h1, . . . , hk) is any tuple of distinct integers then

E#{n 6 x : n+ hi ∈ C ∀i} ∼
∑
n6x

1

logk n
∼ x

logk x

as x → ∞. Using a 2nd moment argument similar to that in Theorem 9.2, one can show that

with probability 1, #{n 6 x : n + hi ∈ C ∀i} ∼ x/ logk x. This not only has the wrong predictive

constant (missing S(H) factor) compared to the prime k-tuples conjecture (Conjecture 1.1), but

when (h1, . . . , hk) is inadmissible it predicts the wrong order of magnitude; for actual primes the

analog of the left side is O(1). For example, the Cramér model C has ∼ x/ log2 x pairs of consecutive

elements below x. As these correlations are “local statistics” and the gap function GC(x) is also a
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“local statistic”, it casts some doubt in the validity that the maximal prime gap function G(x) has

similar behavior to GC(x).

9.2. Granville’s refinement of Cramér’s model. Unlike the random Cramér set C, the actual

primes lie in one progression modulo 2 (with one exception), two progressions modulo 3 (with

one exception), and so on. In 19908, Granville [69] proposed a variation of Cramér’s random

construction which corrects these flaws, by selecting only integers which are not divisible by small

primes p.

For simplicity we describe Granville’s model within a dyadic interval (x/2, x]. Let T = log x
log2 x

,

and let

P =
∏
p6T

p, θ =
∏
p6T

(1− 1/p).

The integers coprime to P form a periodic set, S, with period P = xo(1) and density θ, and there

are x1−o(1) complete periods inside [1, x]. We now for a random set G by choosing n ∈ (x/2, x] to

be in G with probability {
0 if (n, P ) > 1
1/θ

logn if (n, P ) = 1; that is, n ∈ S.
As with the Cramér model, the choices are independent for different n. It is easy to compute the

expected size of G:

E|G| =
∑

36n6x
(n,P )=1

1/θ

log n

=
1

θ

∑
16m6P
m∈S

∑
x/2<n6x

n≡m (mod P )

1

log n
.

By Euler’s summation formula, the inner sum is 1
P (li(x)− li(x/2)) +O(1) and thus

(9.4) E|G| = li(x)− li(x/2)

Pθ

∑
16m6P
m∈S

1 +O(P/θ) = li(x)− li(x/2) +O(xo(1)).

Using a second moment method similarly to the proof of Theorem 9.2, one can show that |G| is

concentrated near li(x), thus matching the global distribution of primes. Moreover, for any fixed

k-tuple of non-negative integers H = (h1, . . . , hk) with 0 6 h1 < h2 < · · · < hk, let G(H) denote

the number of n 6 x for which n+ hi ∈ G for all i.

Let x be so large that T > maxhi. It is clear that G(H) is empty if H is inadmissible, since

there is a prime 6 maxhi for which H covers all residue classes modulo p and thus for any n ∈ Z,

p|(n+ hi) for some i.

Now suppose thatH is admissible and let ρ(p) be the number of residue classes modulo p occupied

by H. Let S(H) be the set of integers n for which n+ hi ∈ S for all i; that is, (n+ hi, P ) = 1 for

8Andrew Granville announced his new model at the 1990 Illinois Number Theory Conference, with KF in
attendance



SIEVE METHODS LECTURE NOTES, SPRING 2023 121

all i. This set is also periodic modulo P and has density

ν =
∏
p6T

(
1− ρ(p)

p

)
.

By a similar computation to that leading to (9.4), we find

E|G(H)| = 1

θk

∑
16m6P
m∈S(H)

∑
x/2<n6x−hk
n≡m (mod P )

1

log(n+ h1) log(n+ h2) · · · log(n+ hk)

=
ν

θk

∫ x

x/2

dt

(log t)k
+O(xo(1)).

Since

ν

θk
=
∏
p6T

(
1− ρ(p)

p

)(
1− 1

p

)−k
= S(H)

(
1 +Ok

(
1

T

))
.

We conclude that

E|G(H)| ∼ S(H)
x/2

logk x
,

matching the conjectured asymptotic from the prime k-tuples conjecture (see Conjecture 1.1).

We now analyze the maximal gap, GG(x), in Granville’s random set. As in the proof of Theorem

9.3, we consider the events Yn,k that n ∈ G and none of n+ 1, . . . , n+ k are in G. Then

PYn,k =
1n∈S
θ log n

∏
16`6k
n+`∈S

(
1− 1

θ log(n+ `)

)
∼ 1n∈S
θ log n

(
1− 1

θ log n

)|S∩[n+1,n+k]|
.

Notice that if n ∈ S then the probability is greatly affected by the number of elements of S in he

interval [n+1, n+k]. In particular, for any m ∈ N, mP +1 ∈ S but none of mP +2, . . . ,mP +T are

in S as each is divisible by some prime p 6 T . Then PYmP+1,T−1 = 1/(θ log(mP + 1)). To make

PYn,k large, we should choose an interval where there are few elements of S. As P = xo(1), any

such interval will be repeated x1−o(1) times in [1, x]. We are interested in gaps of size k � log2 x.

The average size of S ∩ [n+ 1, . . . , n+ k] equals θk ∼ k
eγ log2 x

. However, if k ≈ (log x)2 = T 2+o(1),

the set S ∩ [2, k+ 1] contains only the primes in (T, k+ 1] together with products p1p2 where p1, p2

are primes and T < p1 < p2, p1p2 6 k + 1. The number of primes is ∼ k/ log k ∼ k/(2 log2 x) and

the number of products p1p2 is

6
∑

T<p16
√
k+1

π

(
k + 1

p1

)
− π(p1)� k

log k

∑
T<p16

√
k+1

1

p1
� k log3 x

(log2 x)2
.

Thus, letting Ak = |S ∩ [2, k + 1]|, we have

Ak ∼
k

2 log2 x
,

which is smaller than k
eγ log2 x

by a factor 1/(2eγ). Thus, for any m ∈ Z,

|S ∩ [mP + 2,mP + k + 1]| = Ak
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as well. When k =
⌊
c(log x)2

⌋
and mP + 1 ∈ (x/2, x−k], a similar argument as that in (9.2) yields

PYmP+1,k ∼
1

θ log x

(
1− 1

θ log x

)Ak
� e−Ak/(θ log x)

θ log x
= n−ce

γ/2+o(1).

If we choose c < 2e−γ then the exponent of n is > −1. As these events YmP+1,k are independent

(since P > k), the probability that none of them occur is(
1− n−ceγ/2+o(1)

)x/(2P )+O(1)
= exp{−n1−ceγ/2+o(1)},

which is very tiny. Repeating the argument for x = 2m, m ∈ N , we see that by Borel Cantelli,

almost surely we have

(9.5) lim sup
n→∞

GG(x)

log2 x
> 2e−γ = 1.122918 · · · .

This is larger than the largest almost sure gap in the Cramér model by a factor 2e−γ = 1.229 . . ..

Notice that this argument only provides a lower bound on the largest gap. Is it possible that

there is another number h ∈ [1, P ] so that

|S ∩ [h+ 1, h+ k]| 6 λ k

log2 x

with λ < 1
2 ? If so, then this would produce a lower bound with a larger constant. The answer

to this question is unknown, and is known as the “interval sieve problem”, since we are effectively

sieving [h + 1, h + k] by the primes below T . In 2019, Banks, Ford and Tao [9] showed that if

exceptional zeros of Dirichlet L-functions exist then there are intervals with λ→ 0 as x→∞. This

gives a lower bound on the maximal gap which is of a larger order than what Cramér’s model gives.

Definition 8. We say that exceptional zeros exist if there is an infinite set E ⊂ N, such that for

every q ∈ E there is a real Dirichlet character χq and a zero 1 − δq with L(1 − δq, χq) = 0 and

δq = o(1/ log q) as q →∞.

Theorem 9.4 ([9], Section 2). Suppose that exceptional zeros exist. Then

lim sup
x→∞

GG(x)

log2 x
=∞.

Proof. By the argument leading to (9.5), it suffices to show that for every c > 0, if k =
⌊
c log2 x

⌋
and x is large enough then there is a number h ∈ [1, P ] ∩ S so that

(9.6) |S ∩ [h+ 1, h+ k]| 6 log2 x

2 log2 x
,

for then

PYmP+h > n−e
γ/2+o(1),

and the exponent is > −1.

We use Gallagher’s prime number theorem, Proposition 8.12, in a similar way to the proof of

Theorem 8.9. To show (9.6) it suffices to find reside classes ap mod p for p 6 T such that the

number of elements of [1, k] left uncovered by these residue classes is at most log2 x
2 log2 x

. From Definition
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8, take a q with δq 6 ε/ log q, where ε > 0 is a function of c. Let x be a large power of two such

that

k � q1/
√
ε.

In this way, T > q. For p 6 T and p - q, choose ap satisfying qap + 1 ≡ 0 (mod p), and choose ap
for p|q is a greedy way, similar to the proof of Theorem 8.9. Let U1 be the set of n ∈ [1, k] with

n 6≡ ap (mod p) for all p 6 T , p - q. For such n ∈ U1, qn + 1 6 qk + 1 6 k1.1 6 T 2.5 and qn + 1

has no prime factor < T . Hence, qn + 1 is either prime or the product of two primes > T . By

Proposition 8.12,

π(qk + 1; q, 1)� δqqk

φ(q)
,

Hence, letting U2 be the the set of n ∈ [1, k] with n 6≡ ap (mod p) for all p 6 T ,

|U2| 6
φ(q)

q

[
π(qk + 1; q, 1) +

∑
T<p6

√
qk+1

π

(
qk + 1

p
; q, p

)]
,

where p is the inverse of p modulo q. Applying the Brun-Titchmarsh theorem (Theorem 2.7) to

the sum over p, and recalling that k/p�
√
k/q > k1/3 if ε is small enough, we see that∑

T<p6
√
qk+1

π

(
qk + 1

p
; q, p

)
� qk

φ(q) log k

∑
T<p6

√
qk+1

1

p

� qk

φ(q) log k
· log(

√
qk/T )

log T
.

Since q � k
√
ε, we then conclude that

|U2| � δqk +
k

log k
· log(

√
qk/T )

log T
�
√
ε

k

log k
�
√
ε
c log2 x

log2 x
.

Taking ε sufficiently small completes the proof of (9.6). �

9.3. The Banks-Ford-Tao model of primes [9]. To be added.

9.4. The Wintner-Montgomery model of primes based on zeros of ζ(s). To be added.
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