## Cycling Via Common Divisors

11019 [2003, 542]. Proposed by Bernardo Recamán Santos, Universidad Sergio Arboleda, Bogotá, Colombia.
(a) Find an integer $N$ so that there is a block $B$ of $N$ consecutive integers that can be arranged cyclically so that adjacent pairs have a nontrivial common divisor.
(b)* Show that this can be done for all sufficiently large $N$.

Solution to (a) by Michail Reid, University of Central Florida, Orlando, FL. The smallest length of such a block is 47 , and the first such block of length 47 begins at 29056075343306. For $0 \leq i<47$, define $a_{i}=29056075343306+b_{i}$, where $b_{i}=0,11,22,33,44,27,10,3$, $17,31,38,45,24,39,34,29,19,14,9,4,35,6,28,41,15,2,21,40,43,37,25,13,7,1$, $16,36,32,30,26,20,18,12,8,42,5,46,23$ for $i=0,1,2, \ldots, 46$, respectively. We check that $\operatorname{gcd}\left(a_{i}, a_{i+1}\right)=11,11,11,11,17,17,7,7,7,7,7,7,5,5,5,5,5,5,5,31,29,2,13$, $13,13,19,19,3,3,3,3,3,3,3,2,2,2,4,2,2,2,2,2,37,41,23,23$, for $i=0,1,2, \ldots, 46$, where subscripts are considered modulo 47 .

Solution to (b) by Kevin Ford, University of Illinois, Urbana, IL, and Sergei Konyagin, Moscow State University, Moscow, Russia. For integer $N$, let $I$ be the integer interval $[-\alpha, \beta]$ of size $N$, where $\alpha=\beta=\frac{N-1}{2}$ when $N$ is odd and $\beta=\alpha+1=\frac{N}{2}$ when $N$ is even. For large enough $N$, we will specify a set $P=\left\{p_{1}, \cdots, p_{j}\right\}$ of primes (with $p_{1}=2$ and $\left.p_{2}=3\right)$, a residue $a_{i}\left(\bmod p_{i}\right)$ for each $p_{i} \in P$, and distinct numbers $x_{2}, \ldots, x_{j}, y_{2}, \ldots, y_{j}$ in $I$ to satisfy the following properties:
(i) every $n \in I$ satisfies $n \equiv a_{i}\left(\bmod p_{i}\right)$ for some $i$,
(ii) $x_{i} \equiv y_{i} \equiv a_{i}\left(\bmod p_{i}\right)$ for each $i$,
(iii) each $x_{i} \equiv a_{1}(\bmod 2)$, and
(iv) for each $i, y_{i} \equiv a_{1}(\bmod 2)$ or $y_{i} \equiv a_{2}(\bmod 3)$.

Given these properties, choose $k$ such that $k \equiv-a_{i}\left(\bmod p_{i}\right)$ for all $p_{i} \in P$, and let $B=\{k+n: n \in I\}$. Note that $p_{i} \mid(k+n)$ if and only if $n \equiv a_{i}\left(\bmod p_{i}\right)$. By (i), every element of $B$ is divisible by a prime in $P$. Reorder the indices $3, \ldots, r$ so that $y_{i} \equiv a_{2}(\bmod 3)$ for $2 \leq i \leq r$ and $y_{i} \equiv a_{1}(\bmod 2)$ for $r+1 \leq i \leq j$ (note that this also holds for $i=1$ by (ii)). Here $3 \leq r \leq j$. Let $S=\left\{x_{2}, \ldots, x_{j}\right\} \cup\left\{y_{2}, \ldots, y_{j}\right\}$. Let $B^{\prime}=\{k+n: k+n \in B, n \notin S\}$. Let $E$ be a list of the even elements of $B^{\prime}$ in some order. For each $i$, set $u_{i}=k+x_{i}$ and $v_{i}=k+y_{i}$. By (ii) and (iii), $2 \mid u_{i}$ and $p_{i} \mid u_{i}$ for all i. In particular, $6 \mid u_{2}$. By (ii) and (iv), $3 \mid v_{i}$ and $p_{i} \mid v_{i}$ for $2 \leq i \leq r$ and $2 p_{i} \mid v_{i}$ for $r+1 \leq i \leq j$. For $2 \leq i \leq j$, let $Q_{i}$ denote a list $u_{i}, b_{1}, \ldots, b_{s}, v_{i}$, where $b_{1}, \ldots, b_{s}$ are the elements of $B^{\prime}$ whose smallest prime factor is $p_{i}$ (it may happen that $s=0$ and this central sublist is empty). In particular, every element of the list $Q_{i}$ is divisible by $p_{i}$. Let $R_{i}$ be the list $Q_{i}$ for $r+1 \leq i \leq j$ and for $2 \leq i \leq r$ with $r-i$ odd, and let $R_{i}$ be the reverse of $Q_{i}$ for $2 \leq i \leq r$ with $r-i$ even. The concatenation of the lists $E, R_{2}, \ldots, R_{j}$ now has the desired cyclic property, since 2 or 3 is a common factor at the boundaries of the sublists.

It remains to construct the desired sets. The set $P$ will contain all primes that are at $\operatorname{most} N / 4$ together with some larger primes. Let $a_{1}=1$. For $3 \leq p_{i} \leq N / 4$, let $a_{i}=0$, $x_{i}=-p_{i}$, and $y_{i}=p_{i}$. Every $n \in I$ lies in at least one residue class of the form $a_{i}\left(\bmod p_{i}\right)$ except for $n \in M=I \cap\left\{ \pm 2^{d}: d \geq 1\right\}$. Write $M=\left\{m_{t+1}, \ldots, m_{j}\right\}$, where $t$ is the number
of primes $\leq N / 4$, and $\left|m_{i}\right| \geq\left|m_{h}\right|$ for $i<h$. We will find distinct primes $p_{t+1}, \ldots, p_{j}$, each $>N / 4$, and put $a_{i}=m_{i}$. Then (i) is satisfied.

There is flexibility in choosing $p_{i}, x_{i}, y_{i}$, but for large $N$ we use the following. If $\left|m_{i}\right| \leq \frac{N}{16}$, we take

$$
\begin{equation*}
x_{i}=m_{i}-p_{i}, y_{i}=m_{i}+p_{i}, \quad \frac{5 N}{16}<p_{i}<\frac{7 N}{16} . \tag{1}
\end{equation*}
$$

If $\left|m_{i}\right|>\frac{N}{16}$, we take
(2) $\max \left(\frac{N}{4}, \frac{N}{8}+\frac{\left|m_{i}\right|}{2}\right)<p_{i}<\frac{N}{4}+\frac{\left|m_{i}\right|}{2}, \quad\left(x_{i}, y_{i}\right)=\left\{\begin{array}{ll}\left(m_{i}-p_{i}, m_{i}-2 p_{i}\right) & m_{i}>0 \\ \left(m_{i}+p_{i}, m_{i}+2 p_{i}\right) & m_{i}<0\end{array}\right.$,
and also impose the conditions

$$
\begin{equation*}
p_{i} \equiv 11\left|m_{i}\right| \quad(\bmod 15), \quad p_{i}-\left|m_{i}\right| \neq \pm 5 \tag{3}
\end{equation*}
$$

By (1) and (2), each $x_{i}, y_{i}$ lies in $I$ and (ii) and (iii) hold. By (1) and (3), $y_{i} \equiv 1(\bmod 2)$ when $\left|m_{i}\right| \leq \frac{N}{16}$ and $y_{i} \equiv 0(\bmod 3)$ when $\left|m_{i}\right|>\frac{N}{16}$. Thus (iv) follows. By (1) and (2), $\left|y_{i}\right|>N / 4$ for $i \geq t+1$ and $\left|x_{i}\right|>N / 4$ when $\left|m_{i}\right| \leq \frac{N}{16}$. If $\left|m_{i}\right|>\frac{N}{16}$, then $\left|x_{i}\right| \leq \frac{N}{4}$, but (3) implies that $5 \mid x_{i}$ and $x_{i} \neq \pm 5$. Hence no member of $x_{t+1}, y_{t+1}, \ldots, x_{j}, y_{j}$ equals any member of $x_{2}, y_{2}, \ldots, x_{t}, y_{t}$. Therefore, if

$$
\begin{equation*}
p_{i} \nmid\left(x_{l}-m_{i}\right), p_{i} \nmid\left(y_{l}-m_{i}\right) \quad(t+1 \leq l<i \leq j) \tag{4}
\end{equation*}
$$

then all the $x_{i}, y_{i}$ will be distinct. For a given $i$, there are at most $2(i-t-1)$ primes $p_{i}$ failing (4). Thus, we find appropriate $p_{t+1}, \ldots, p_{j}$ if for each $i$ there are at least $3(i-t-1)+1$ primes $p_{i}$ satisfying the appropriate conditions (1), (2) and (3). There are at most 6 numbers $m_{i}$ with $\left|m_{i}\right|>\frac{N}{16}$ and $|M| \leq \frac{2 \log (N / 2)}{\log 2}$. Thus, we succeed if there are at least 18 primes in every open interval of length $\frac{N}{32}$ contained in $\left(\frac{N}{4}, \frac{N}{2}\right)$ in each reduced residue class modulo 15 and if there are at least $\frac{6 \log (N / 2)}{\log 2}$ primes in the open interval $\left(\frac{5 N}{16}, \frac{7 N}{16}\right)$. For large $N$, this occurs by the Prime Number Theorem for progressions modulo 15. Using explicit bounds for prime counts (O. Ramaré and R. Rumely, Math. Comp. 65 (1996), 397-425), these conditions hold for $N \geq 82000$.

Editorial comment. The GCHQ Problems Solving Group also asserted that 47 is the smallest $N$ for which a solution exists. They gave another solution with $N=49$ starting at the smaller integer 21176048208324. Ward obtained a solution with $N=200$.

Ford and Konyagin noted that a computer search for triples $\left(p_{i}, x_{i}, y_{i}\right)$ for $t+1 \leq i \leq j$ reveals that such configurations are possible for $517 \leq N<82000$ and also for $330 \leq N \leq$
507. For example, the following works for $N=330$.

| $m_{i}$ | $p_{i}$ | $x_{i}$ | $y_{i}$ |
| :---: | :---: | :---: | :---: |
| -128 | 83 | -45 | 121 |
| 128 | 103 | 25 | -78 |
| -64 | 113 | 49 | 162 |
| 64 | 89 | -25 | 153 |
| -32 | 97 | -129 | 65 |
| 32 | 101 | -69 | 133 |
| -16 | 107 | -123 | 91 |
| 16 | 109 | -93 | 125 |
| -8 | 127 | -135 | 119 |
| 8 | 139 | -131 | 147 |
| -4 | 149 | -153 | 145 |
| 4 | 131 | -127 | 135 |
| -2 | 157 | -159 | 155 |
| 2 | 163 | -161 | 165 |

Part (a) also solved by GCHQ Problem Solving Group (U. K.), University of LouisianaLafayette Math Club, and J. T. Ward.

