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Abstract

We show that for a prime p the smallest a with ap−1 6≡ 1 (mod p2)
does not exceed (log p)463/252+o(1) which improves the previous bound
O((log p)2) obtained by H. W. Lenstra in 1979. We also show that for
almost all primes p the bound can be improved as (log p)5/3+o(1).

Keywords: Fermat quotients, smooth numbers, Heilbronn sums, large
sieve.

AMS Mathematics Subject Classification: 11A07, 11L40, 11N25

1 Introduction

For a prime p and an integer a the Fermat quotient is defined as

qp(a) =
ap−1 − 1

p
.

It is well known that divisibility of Fermat quotients qp(a) by p has numer-
ous applications which include the Fermat Last Theorem and squarefreeness
testing, see [5, 6, 7, 15].

In particular, the smallest value `p of a for which qp(a) 6≡ 0 (mod p) plays
a prominent role in these applications. In this direction, H. W. Lenstra [15,
Theorem 3] has shown that

`p ≤
{

4(log p)2, if p ≥ 3,
(4e−2 + o(1)) (log p)2, if p→∞, (1)

see also [6]. A. Granville [8, Theorem 5] has shown that in fact

`p ≤ (log p)2 (2)

for p ≥ 5.
A very different proof of a slightly weaker bound `p ≤ (4 + o(1)) (log p)2

has recently been obtained by Y. Ihara [11] as a by-product of the estimate∑
`k<p
`∈W(p)

log `

`k
≤ 2 log log p+ 2 + o(1), (3)
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as p → ∞, where the summation is taken over all prime powers up to p of
primes ` from the set

W(p) = {` prime : ` < p, qp(`) ≡ 0 (mod p)}.

However, the proof of (3), given in [11], is conditional under the Extended
Riemann Hypothesis.

It has been conjectured by A. Granville [7, Conjecture 10] that

`p = o
(
(log p)1/4

)
. (4)

It is quite reasonable to expect a much stronger bound on `p. For example,
H. W. Lenstra [15] conjectures that in fact `p ≤ 3; this has been supported
by extensive computation, see [4, 13]. The motivation to the conjecture (4)
comes from the fact that this has some interesting applications to the Fermat
Last Theorem [7, Corollary 1]. Although this motivation relating `p to the
Fermat Last Theorem does not exist anymore, improving the bounds (1)
and (2) is still of interest and may have some other applications.

Theorem 1. We have

`p ≤ (log p)463/252+o(1)

as p→∞.

Following the arguments of [15], we derive the following improvement
of [15, Theorem 2].

Corollary 2. For every ε > 0 and a sufficiently large integer n, if an−1 ≡ 1
(mod n) for every positive integer a ≤ (log p)463/252+ε then n is squarefree.

The proof of Theorem 1 is based on the original idea of H. W. Lenstra [15],
which relates `p to the distribution of smooth numbers, which we also supple-
ment by some recent results on the distribution of elements of multiplicative
subgroups of residue rings of J. Bourgain, S. V. Konyagin and I. E. Shparlin-
ski [3] combined with a bound of D. R. Heath-Brown and S. V. Konyagin [9]
for Heilbronn exponential sums. Also, using these results we can prove the
following.

Theorem 3. For every ε > 0, there is δ > 0 such that for all but one prime
Q1−δ < p ≤ Q, we have `p ≤ (log p)59/35+ε.
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The proof of the next result is based on a large sieve inequality with
square moduli which is due to S. Baier and L. Zhao [1].

Theorem 4. For every ε > 0, there is δ > 0 such that for all but O(Q1−δ)
primes p ≤ Q, we have `p ≤ (log p)5/3+ε.

We note that

463

252
= 1.8373 . . .

59

35
= 1.6857 . . .

5

3
= 1.6666 . . . .

Throughout the paper, the implied constants in the symbols ‘O’, and
‘�’ may occasionally depend on the positive parameters ε and δ, and are
absolute otherwise. We recall that the notations U = O(V ) and V � U are
both equivalent to the assertion that the inequality |U | ≤ cV holds for some
constant c > 0.

2 Smooth Numbers

For any integer n we write P (n) for the largest prime factor of an integer n
with the convention that P (0) = P (±1) = 1.

For x ≥ y ≥ 2 we define S(x, y) as the set y-smooth numbers up to x,
that is

S(x, y) = {n ≤ x : P (n) ≤ y}
and put

Ψ(x, y) = #S(x, y).

We make use of the following explicit estimate, which is due to S. Konya-
gin and C. Pomerance [14, Theorem 2.1], (see also [10] for a variety of other
results).

Lemma 5. If x ≥ 4 and x ≥ y ≥ 2, then

Ψ(x, y) > x1−log log x/ log y.

3 Heilbronn Sums

For an integer m ≥ 1 and a complex z, we put

em(z) = exp(2πiz/m).

4



Let Zn be the ring of integers modulo an n ≥ 1 and let Z∗n be the multiplica-
tive subgroup of Zn.

Now, for a prime p and an integer λ, we define the Heilbronn sum

Hp(λ) =

p∑
b=1

ep2(λbp).

For x ∈ Zp denote

f(x) = x+
x2

2
+ . . .+

xp−1

p− 1
∈ Zp. (5)

Also, define for u ∈ Zp
F(u) = {x ∈ Zp : f(x) = u}. (6)

We now recall the following two results due to D. R. Heath-Brown and
S. V. Konyagin which are [9, Theorem 2] and [9, Lemma 7], respectively.

Lemma 6. Uniformly over all s 6≡ 0 mod p, we have
p∑
r=1

|Hp(s+ rp)|4 � p7/2.

Lemma 7. Let U be a subset of Zp and T = #U . Then∑
u∈U

#F(u)� (pT )2/3.

Since Hp(rp) = 0 if r 6≡ 0 mod p and Hp(rp) = p if r ≡ 0 mod p, we
immediately derive from Lemma 6 that

p2∑
u=1

|Hp(u)|4 � p9/2. (7)

4 Distribution of Elements of Multiplicative

Subgroups in Residue Rings

Given a multiplicative subgroup G of Z∗n, we consider its coset in Z∗n (or,
multiplicative translate) A = λG, where λ ∈ Z∗n. For an integer K and a
positive integer k, we denote

J(n,A, k,K) = # ({K + 1, . . . , K + k} ∩ A) .

We need the following estimate from [3].
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Lemma 8. Let A be a coset of a multiplicative subgroup G of Z∗n of order t.
Then, for any fixed ε > 0, we have

J(n,A, k,K)� kt

n
+

k

tn

∑
w∈Zn

Mn(w;Z,G)

∣∣∣∣∣∑
u∈A

en(uw)

∣∣∣∣∣ ,
where

Z = min
{
n1+εk−1, n/2

}
and Mn(w;Z,G) is the number of solutions to the congruence

w ≡ zu (mod n), 1 ≤ |z| ≤ Z, u ∈ G.

Let N(n,G, Z) be the number of solutions of the congruence

ux ≡ y (mod n), where 0 < |x|, |y| ≤ Z and u ∈ G.

We use Lemma 8 in a combination with yet another result from [3], which
gives an upper bound on N(n,G, Z).

Lemma 9. Let ν ≥ 1 be a fixed integer and let n→∞. Assume #G = t�√
n. Then for any positive number Z we have

N(n,G, Z) ≤ Zt(2ν+1)/2ν(ν+1)n−1/2(ν+1)+o(1) + Z2t1/νn−1/ν+o(1).

5 Large Sieve for Square Moduli

We make use of the following result of S. Baier and L. Zhao [1, Theorem 1].

Lemma 10. Let α1, . . . , αN be an arbitrary sequence of complex numbers
and let

Y =
N∑
n=1

|αn|2 and S(u) =
N∑
n=1

αn exp(2πiun).

Then, for any fixed ε > 0 and arbitrary Q ≥ 1, we have

∑
1≤q≤Q

q2∑
a=1

gcd(a,q)=1

∣∣S(a/q2)
∣∣2 � (QN)ε

(
Q3 +N + min{NQ1/2, N1/2Q2}

)
Y.
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6 Proof of Theorem 1

For a positive integer k < p2, let Np(k) denote the number of elements
v ∈ [1, k] of the subgroup G ⊆ Z∗p2 of order p − 1, consisting of nonzero pth
powers in Zp2 . We fix some ε > 0.

To get an upper bound on Np(x) we use Lemma 8, which we apply with
n = p2, A = G, t = p − 1 and K = 0. For every integer a with ap−1 ≡ 1
(mod p2) there is a unique integer b with 1 ≤ b ≤ p − 1 such that a ≡ bp

(mod p2). Thus the corresponding exponential sums of G are Heilbronn sums,
defined in Section 3. We derive

Np(k) = J(p2,G, k,K)� k

p
+
k

p3

∑
w∈Zp2

Mp2(w;Z,G) (|Hp(w)|+ 1) . (8)

By the Hölder inequality, we obtain ∑
w∈Zp2

Mp2(w;Z,G) |Hp(w)|

4

=

 ∑
w∈Zp2

Mp2(w;Z,G)1/2
(
Mp2(w;Z,G)2

)1/4 (|Hp(w)|4
)1/4

4

≤

 ∑
w∈Zp2

Mp2(w;Z,G)

2 ∑
w∈Zp2

Mp2(w;Z,G)2
∑
w∈Zp2

|Hp(w)|4 .

(9)

Trivially, we have∑
w∈Zp2

Mp2(w;Z,G) = 2[Z](p− 1)� p3+2εk−1. (10)

We also see that∑
w∈Zp2

Mp2(w;Z,G)2 = (p− 1)N(p2,G, Z).

We now choose
k =

⌊
p463/252+3ε

⌋
.
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Lemma 9 applies with ν = 6 and leads to the estimate

N(p2,G, Z) ≤ Zp13/84(p2)−1/14+o(1) + Z2p1/6(p2)−1/6+o(1)

≤ Zp13/84(p2)−1/14+o(1)

(since for Z ≤ p41/252 the first term dominates). Hence,

N(p2,G, Z) ≤ p2+1/84+3εk−1.

Therefore ∑
w∈Zp2

Mp2(w;Z,G)2 � p3+1/84+3εk−1. (11)

Substituting (7), (10) and (11) in (9) and then using (8), we deduce that

Np(k) � k

p
+
k

p3

(
p3+2εk−1

)1/2 (
p3+1/84+3εk−1

)1/4
(p9/2)1/4 + p2ε

� k

p
+ k1/4p127/336+2ε,

provided p is large enough.
Recalling our choice of k, we see that

Np(k)� k

p
(12)

for the above choice of k and sufficiently large p.
Since ap−1 ≡ 1 (mod p2) for all positive integers a ≤ `p, this also holds

for any a which is composed of primes ` < `p. In particular it holds for any
a ∈ S(k, `p). Thus

Ψ(k, `p) ≤ Np(k). (13)

Now, using Lemma 5 and the bound (12), we derive from (13) that

k1−log log k/ log `p � k

p

which implies that

log log k/ log `p ≥
log p

log k
+O(1/ log k) =

(
463

252
+ 3ε

)−1

+O(1/ log p).
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Therefore

log `p ≤
(

463

252
+ 3ε

)
log log k +O

(
log log p

log p

)
=

(
463

252
+ 3ε

)
log log p+O(1) ≤

(
463

252
+ 4ε

)
log log p,

provided that p is large enough. Taking into account that ε is arbitrary, we
conclude the proof.

7 Proof of Theorem 3

7.1 Preliminaries

We need several statements about the groups of pth powers modulo p2, which
may be of independent interest.

Fix a prime p. Let again G be the group of order p − 1, consisting of
nonzero pth powers modulo p2.

Lemma 11. If n1, n2 ∈ G are such that n1 ≡ n2 (mod p) then we also have

n1 ≡ n2 (mod p2).

Proof. Since n1, n2 ∈ G we can write

n1 ≡ mp
1 (mod p2) and n2 ≡ mp

2 (mod p2) (14)

for some integers m1 and m2. Therefore

m1 −m2 ≡ mp
1 −m

p
2 ≡ n1 − n2 ≡ 0 (mod p).

Then m1 = m2 + pk for some integer k, which, after substitution in (14),
yields the desired congruence. ut

For v ∈ Zp2 , let

Dp(v) = {(m1,m2) : 0 ≤ m1,m2 ≤ p− 1, mp
1 −m

p
2 ≡ v (mod p2)}. (15)

We can rewrite Lemma 7 in the following form.
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Lemma 12. Let V be a subset of Z∗p2, T = #V and v1/v2 6∈ G for any distinct
v1, v2 ∈ V. Then ∑

v∈V

#Dp(v)� (pT )2/3.

Proof. We follow the arguments of the proof of Lemma 2 from [9]. For v ∈ Z∗p2

denote
λ(v) = v1−p ∈ Z∗p2 .

Since the cardinality #Dp(v) is invariant under multiplication by elements of
the group G we have #Dp(λ(v)) = #Dp(v). Next, we always have λ(v) ≡ 1
(mod p). Therefore, the congruence

λ(v) ≡ mp
1 −m

p
2 (mod p2)

implies m1 −m2 ≡ λ(v) ≡ 1 (mod p). Hence

λ(v) ≡ mp
1 − (m1 − 1)p (mod p2).

But
mp

1 − (m1 − 1)p ≡ 1− pf(m1) (mod p2)

where the function f(x) is defined by (5). Hence,

#Dp(v) = #F(U(v)) (16)

where
U(v) = (1− λ(v))/p ∈ Zp

and the set F(u) is defined by (6).
The assumption that v1/v2 6∈ G for any distinct v1, v2 ∈ V implies

λ(v1)/λ(v2) 6∈ G and U(v1) 6= U(v2). Applying Lemma 7 to the set

U = {U(v) : v ∈ V}

and using (16) we get∑
v∈V

#Dp(v) =
∑
u∈U

#F(u)� (pT )2/3

as required. ut
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Now we consider two primes p1 6= p2 and the corresponding subgroups
Gν ⊆ Z∗p2

ν
consisting of nonzero pν-th powers modulo p2

ν , ν = 1, 2.

Also, we denote by Gν the subsets of Z formed by the integers belonging
to Gν modulo p2

ν . That is, while Gν is represented by some elements from the
set {1, . . . , p2

ν − 1}, the set Gν is infinite, ν = 1, 2.

Lemma 13. Let x, K and L be positive integers with x < p2
1p

2
2. Suppose

that a set A ⊆ [1, x] ∩ G1 ∩ G2 satisfies the following conditions:

(i) there are at least L pairs (n1, n2) ∈ A2 with n1 > n2 and such that
n1 ≡ n2 (mod p2);

(ii) there are at most K elements of A in any residue class modulo p1.

Then
L

K
� p

2/3
1 Z1/3N(p2

1,G1, Z)1/3

where Z = bx/p2
2c.

Proof. Denote

Mi = #{n ∈ A : n− ip2
2 ∈ A}, i = 1, . . . , Z.

By Lemma 11 and the condition (i) we have

Z∑
i=1

Mi ≥ L.

Next, let

mi = #{n ∈ G1 : n− ip2
2 ∈ G1}, i = 1, . . . , Z.

Then by the condition (ii) we have

Z∑
i=1

mi ≥
1

K

Z∑
i=1

Mi ≥ L/K. (17)

We observe also that for i = 1, . . . , Z

mi ≤ #Dp1(ip2
2). (18)
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Moreover, we have Z < p2
1. In particular, due to Lemma 11 if a positive

integer i ≤ Z is divisible by p1 then

mi = #Dp1(ip2
2) = 0.

Assume that the residues of ip2
2 modulo p2

1, i = 1, . . . , Z, are contained in
J distinct cosets C1, . . . , CJ of the group G1. For j = 1, . . . , J , we denote

sj = #{i : 1 ≤ i ≤ Z, ip2
2 ∈ Cj}.

and also
tj = #Dp1(v)

for some element v ∈ Cj (clearly, this quantity depends only on the coset Cj
and does not depend on the choice of v ).

Therefore, using (18) we can rewrite (17) as

J∑
j=1

sjtj ≥ L/K. (19)

To estimate the left-hand side of (19) from above we consider that the cosets
C1, . . . , CJ are ordered so that the sequence {t1, . . . , tJ} is nonincreasing. By
Lemma 12 we have for j = 1, . . . , J

t1 + . . .+ tj � (p1j)
2/3.

Hence,
tj � p

2/3
1 j−1/3. (20)

Clearly,
J∑
j=1

sj = Z. (21)

By the definition of N(p2
1,G1, Z), we have

J∑
j=1

s2
j ≤ N(p2

1,G1, Z). (22)

We notice that Z ≥ 1; otherwise there are no (n1, n2) ∈ A2 with n1 > n2

and such that n1 ≡ n2 (mod p2). Define

J0 =
⌊
Z2/N(p2

1,G1, Z)
⌋

and J1 = min{J0, J}.
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It is easy to see that J0 ≥ 1. Therefore, J1 ≥ 1.
To estimate the left-hand side of (19) we consider separately the cases

j ≤ J1 and j > J1 (the second case can occur only if J0 = J1). By (20), (22),
and the Cauchy-Schwarz inequality, we have(

J1∑
j=1

sjtj

)2

≤
J1∑
j=1

s2
j

J1∑
j=1

t2j ≤
J∑
j=1

s2
j

J0∑
j=1

t2j � N(p2
1,G1, Z)p

4/3
1 J

1/3
0 .

Therefore,
J1∑
j=1

sjtj � p
2/3
1 Z1/3N(p2

1,G1, Z)1/3. (23)

If J0 = J1 then we also have to estimate the sum over j > J0. To do so
we use (20) and (21):

J∑
j=J0+1

sjtj ≤ tJ0Z � p
2/3
1 Z1/3N(p2

1,G1, Z)1/3. (24)

Combining (19), (23) and (24), we complete the proof. ut

Now we prove a combinatorial statement demonstrating that if a set
[1, x]∩G1∩G2 is large then we can choose a set A ⊆ [1, x]∩G1∩G2 satisfying
the conditions of Lemma 13 with satisfying L/K � p2.

Let I1 and I2 be nonempty finite sets. For a set A ⊆ I1 × I2 we denote
the following horizontal and vertical “lines”

A(x, ·) = {y ∈ I2 : (x, y) ∈ A}, A(·, y) = {x ∈ I1 : (x, y) ∈ A}.

Lemma 14. For any set A ⊆ I1×I2 there exists a subset B ⊆ A and positive
integers k1 and k2 such that:

(i) #B ≥ 1

2
#A;

(ii) #B(x, ·) ≤ k1 for any x ∈ I1;

(iii) #B(·, y) ≤ k2 for any y ∈ I2;

(iv)
∑
x∈I1

#B(x,·)>k1/2

#B(x, ·)� 1

log(#I1 + #I2)
#A;
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(v)
∑
y∈I2

#B(·,y)>k2/2

#B(·, y)� 1

log(#I1 + #I2)
#A.

Proof. The case A = ∅ is trivial, so we now consider that #A > 0. Let U be
the smallest integer such that 2U ≥ #I1 + #I2, so 1 ≤ U � log(#I1 + #I2).

We construct the following sequence of sets {Aν}, ν = 0, 1, . . .. Set
A0 = A. Assume that Aν has been constructed. We now define uν as the
smallest integer u such that∑

x∈I1
#Aν(x,·)>2u

#Aν(x, ·) ≤
1

8U
#A. (25)

Similarly, let vν be the smallest integer v such that∑
y∈I2

#Aν(·,y)>2v

#Aν(·, y) ≤ 1

8U
#A. (26)

Define

Aν+1 = Aν \
⋃
x∈I1

#Aν(x,·)>2uν

{(x, y) : y ∈ Aν(x, ·)}

\
⋃
y∈I2

#Aν(·,y)>2vν

{(x, y) : x ∈ Aν(·, y)}.
(27)

Clearly, for any ν = 0, 1, . . . we have

Aν+1 ⊆ Aν , 0 ≤ uν+1 ≤ uν < U, 0 ≤ vν+1 ≤ vν < U.

There exists a number N < 2U such that

uN+1 = uN and vN+1 = vN .

Set
B = AN+1, k1 = 2uN , k2 = 2vN .

Now, from (25), (26) and (27), we derive

# (A \ B) ≤
N∑
ν=0

∑
x∈I1

#Aν(x,·)>2uν

#Aν(x, ·) +
N∑
ν=0

∑
y∈I2

#A(·,y)>2vν

#Aν(·, y)

≤ 2(N + 1)

8U
#A ≤ 1

2
#A.
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So, the condition (i) is satisfied.
By the definition of B, k1, and k2 we see that the conditions (ii) and (iii)

are satisfied too.
Next, if k1 = 1 then ∑

x∈I1
#B(x,·)>k1/2

#B(x, ·) = #B.

If k1 > 1 then we deduce from the equality uN+1 = uN that∑
x∈I1

#B(·,y)>k1/2

#B(·, y) >
1

8U
#A.

In either case the the condition (iv) holds. Analogously, we also have the
condition (v) satisfied. ut

7.2 Conclusion of the proof

We suppose that Q is large enough while ε and δ are small enough and define

x = Q59/24−3δ and y = ((1− δ) logQ)59/35+ε.

Assume, that there are two primes p1 6= p2 with Q1−δ < p1, p2 ≤ Q and
such that

ap1−1 ≡ 1 (mod p2
1), ap2−1 ≡ 1 (mod p2

2)

for all positive integers a ≤ y.
As before, for ν = 1, 2, we use Gν to denote the subgroup of Z∗p2

ν
consisting

of nonzero pν-th powers modulo p2
ν and use Gν for the subset of Z formed by

the integers belonging to Gν modulo p2
ν .

Then S(x, y) ⊆ G1∩G2 (here we take into account that y < min{p1, p2}).
Since

(59/24− 3δ)

(
1− 1

59/35 + ε

)
> 1 + δ

provided δ is small enough compared to ε, we derive from Lemma 5 that

Ψ(x, y) > Q1+δ (28)

(provided ε and δ are small enough).
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We now associate with any integer n ∈ S(x, y) the pair of residues

(n (mod p1), n (mod p2)) ∈ Zp1 × Zp2 .

Using Lemma 14 we conclude the existence of a set

A ⊆ S(x, y) ⊆ [1, x] ∩ G1 ∩ G2

and positive integers k1, k2 and an absolute constant c0 satisfying the follow-
ing conditions:

(a) #A ≥ Ψ(x, y)/2;

(b) there are at most k1 elements of A in any residue class modulo p1;

(c) there are at most k2 elements of A in any residue class modulo p2;

(d) there are at least c0Ψ(x, y)/(k1 logQ) residue classes modulo p1 con-
taining at least k1/2 elements from A;

(e) there are at least c0Ψ(x, y)/(k2 logQ) residue classes modulo p2 con-
taining at least k2/2 elements from A.

Without loss of generality we can assume that that k2 ≥ k1.
In particular, we see from the above property (a) and (28) that

#A � Q1+δ.

Therefore, by the above properties (a) and (e) that

Q ≥ p2 ≥ c0
Ψ(x, y)

k2 logQ
� Q1+δ

k2 logQ
.

Hence,

k2 �
Qδ

logQ
,

provided that Q is large enough. If a residue class modulo p2 contains at least
k2/2 elements from A, then there are at least k2

2/10 pairs (n1, n2) ∈ A2 such
that n1 > n2 and n1 ≡ n2 (mod p2). Therefore, the conditions of Lemma 13
are fulfilled with K = k1 and

L =
⌈
k2

2/10
⌉
×
⌈
c0Ψ(x, y)

k2 logQ

⌉
� Ψ(x, y)k2

logQ
� Q1+δk2

logQ
.
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Considering again that Q is large enough we obtain that

L

K
≥ k2Q/k1 ≥ Q.

Applying Lemma 13, we obtain

p
2/3
1 Z1/3N(p2

1,G1, Z)1/3 � Q (29)

where
Z =

⌊
x/p2

2

⌋
≤ Q11/24−δ ≤ p

11/24−δ/2
1 .

On the other hand, Lemma 9 applies with ν = 2 and yields

N(p2
1,G1, Z) ≤ Zp

5/12
1 (p2

1)−1/6+o(1) + Z2p
1/2
1 (p2

1)−1/2+o(1) ≤ p
13/24−δ/2+o(1)
1 .

Consequently,

p
2/3
1 Z1/3N(p2

1,G1, Z)1/3 ≤ p
1−δ/3+o(1)
1 ≤ Q1−δ/3+o(1),

which disagrees with (29) for Q large enough. This contradiction completes
the proof.

8 Proof of Theorem 4

Let Py be the set of all primes p for which

ap−1 ≡ 1 (mod p2) (30)

for all primes a ≤ y.
We need the following estimate, from which Theorem 4 follows quickly.

Lemma 15. Suppose Q ≥ 2y ≥ 2. Then for all δ > 0 and any x ≥ 2, we
have

#{p ∈ Py : Q/2 < p ≤ Q} �
(xQ)δ

(
Q2 + xQ−1 + min

(
xQ−1/2, x1/2Q

))
Ψ(x, y)

.

Proof. For real u, let

T (u) =
∑

n∈S(x,y)

exp(2πiun)

17



and put Y = T (0) = Ψ(x, y).
Let p ∈ Py. By the Parseval identity, we have for each prime p

p2∑
a=1

(a,p)=1

∣∣∣∣T( a

p2

)∣∣∣∣2 =

p2∑
a=1

∣∣∣∣T( a

p2

)∣∣∣∣2 − p∑
b=1

∣∣∣∣T( bp
)∣∣∣∣2

= p2

p2∑
a=1

N(p2, a)2 − p
p∑
b=1

N(p, b)2,

(31)

where N(q, a) is the number of elements of n ∈ S(x, y) in the progression
n ≡ a (mod q). For p ∈ Py we see that np−1 ≡ 1 (mod p2) for every n ∈
S(x, y). By Lemma 11, for each b ∈ {1, . . . , p− 1} there is a unique residue
ab modulo p2 with ab ≡ b (mod p) and ap−1

b ≡ 1 (mod p). Consequently,
N(p2, ab) = N(p, b). Therefore

p2∑
a=1

N(p2, a)2 =

p∑
b=1

N(p2, ab)
2 =

p∑
b=1

N(p, b)2,

which, after substitution in (31), implies that

∑
1≤a≤p2

(a,p)=1

∣∣∣∣T( a

p2

)∣∣∣∣2 = p(p− 1)

p∑
b=1

N(p, b)2.

Since
p∑
b=1

N(p, b) = Y

and clearly N(p, 0) = 0 for p > Q/2 ≥ y, by the Cauchy-Schwarz inequality,
we obtain ∑

1≤a≤p2

(a,p)=1

∣∣∣∣T( a

p2

)∣∣∣∣2 = p(p− 1)

p−1∑
b=1

N(p, b)2 ≥ pY 2,

Therefore∑
p∈Py

Q/2<p≤Q

∑
1≤a≤p2

(a,p)=1

∣∣∣∣T( a

p2

)∣∣∣∣2 � QY 2#{p ∈ Py : Q/2 < p ≤ Q}, (32)

18



By Lemma 10∑
q≤Q

∑
1≤a≤q2

(a,q)=1

∣∣∣∣T( a

q2

)∣∣∣∣2 � (xQ)δ
(
Q3 + x+ min{xQ1/2, x1/2Q2}

)
Y. (33)

Comparing (32) and (33), we obtain the desired estimate. ut

To finish the proof of Theorem 4, we take x = Q5/2 and y = (logQ)5/3+ε

in Lemma 15. Inserting the bound from Lemma 5, we have

Ψ(x, y) > x1−1/(5/3+ε) � Q1+5δ

for a suitable δ > 0. Therefore, for the above choice of y we obtain

#{p ∈ Py : Q/2 < p ≤ Q} � Q1−δ,

which implies the desired estimate.

9 Comments

Lemmas 6, 8 and 9 can easily be obtained in fully explicit forms with con-
crete constants. Thus, the bound of Theorem 1 can also be obtained in a
fully explicit form, which can be important for algorithmic applications. For
example, it would be interesting to get an explicit formula for n0(ε) such that
for n ≥ n0 the conclusion of Corollary 2 holds.

It is interesting to establish the limits of our approach. For example, the
bound

Np(k)� kp−1+o(1)

for values of k = p1+o(1) (or larger), which is the best possible result about
Np(k), leads only to the estimate

`p ≤ (log p)1+o(1)

which is still much higher than the expected size of `p. Furthermore, if
instead of Lemma 10 we have the best possible bound

∑
1≤q≤Q

q2∑
a=1

gcd(a,q)=1

∣∣S(a/q2)
∣∣2 � Qδ

(
Q3 +N

)
Y,
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the exponent 5/3 of Theorem 4 can be replaced with 3/2.
Certainly improving and obtaining unconditional variants of the esti-

mate (3) and, more generally, investigating other properties of set W(p),
is of great interest due to important applications outlined in [11]. It is quite
possible that Lemma 6 can be used for this purpose as well.

Congruences with Fermat quotients qp(a) modulo higher powers of p have
also been considered in the literature, see [5, 12]. Using our approach with
bounds of generalized Heilbronn sums

Hp,m(λ) =

p∑
b=1

epm(λbp
m−1

)

due to J. Bourgain and M.-C. Chang [2] or Y. V. Malykhin [16] (which is
fully explicit), one can estimate the smallest a with

qp(a) 6≡ 1 (mod pm)

for fixed m ≥ 2.
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[5] R. Ernvall and T. Metsänkylä, ‘On the p-divisibility of Fermat quo-
tients’, Math. Comp., 66 (1997), 1353–1365.

20
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