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Abstract

We show that for a prime p the smallest a with a?~! # 1 (mod p?)
does not exceed (log p)*63/252+0(1) \which improves the previous bound
O((logp)?) obtained by H. W. Lenstra in 1979. We also show that for
almost all primes p the bound can be improved as (log p)5/ 3+o(1),
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1 Introduction

For a prime p and an integer a the Fermat quotient is defined as

It is well known that divisibility of Fermat quotients g,(a) by p has numer-
ous applications which include the Fermat Last Theorem and squarefreeness
testing, see [5, 6, 7, 15].

In particular, the smallest value ¢, of a for which g,(a) # 0 (mod p) plays
a prominent role in these applications. In this direction, H. W. Lenstra [15,
Theorem 3] has shown that

4(logp)?, if p> 3,
by = { (472 + 0(1)) (log p)?, if p — oo, (1)

see also [6]. A. Granville [8, Theorem 5] has shown that in fact
ty < (logp)* (2)

for p > 5.
A very different proof of a slightly weaker bound £, < (4 + o(1)) (log p)?
has recently been obtained by Y. Thara [11] as a by-product of the estimate

log ¢
> i < 2loglogp +2+o(1), (3)
th<p
LeW(p)



as p — 0o, where the summation is taken over all prime powers up to p of
primes ¢ from the set

W(p) = {¢ prime : { <p, ¢,(¢) =0 (mod p)}.

However, the proof of (3), given in [11], is conditional under the Extended
Riemann Hypothesis.
It has been conjectured by A. Granville [7, Conjecture 10] that

l,=o0 ((logp)1/4) ) (4)

It is quite reasonable to expect a much stronger bound on ¢,. For example,
H. W. Lenstra [15] conjectures that in fact ¢, < 3; this has been supported
by extensive computation, see [4, 13]. The motivation to the conjecture (4)
comes from the fact that this has some interesting applications to the Fermat
Last Theorem [7, Corollary 1]. Although this motivation relating ¢, to the
Fermat Last Theorem does not exist anymore, improving the bounds (1)
and (2) is still of interest and may have some other applications.

Theorem 1. We have

0, < (lng)463/252+0(1)

as p — oo.

Following the arguments of [15], we derive the following improvement
of [15, Theorem 2].

Corollary 2. For every € > 0 and a sufficiently large integer n, if a® 1 = 1
(mod n) for every positive integer a < (log p)*93/%2+¢ then n is squarefree.

The proof of Theorem 1 is based on the original idea of H. W. Lenstra [15],
which relates ¢, to the distribution of smooth numbers, which we also supple-
ment by some recent results on the distribution of elements of multiplicative
subgroups of residue rings of J. Bourgain, S. V. Konyagin and I. E. Shparlin-
ski [3] combined with a bound of D. R. Heath-Brown and S. V. Konyagin [9]
for Heilbronn exponential sums. Also, using these results we can prove the
following.

Theorem 3. For every € > 0, there is 6 > 0 such that for all but one prime
Q' < p < Q, we have £, < (log p)»/35+.
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The proof of the next result is based on a large sieve inequality with
square moduli which is due to S. Baier and L. Zhao [1].

Theorem 4. For every ¢ > 0, there is § > 0 such that for all but O(Q'~?)
primes p < Q, we have £, < (log p)>/3+=.

We note that

463 29 5
550 8373 35 6857 3 6666

Throughout the paper, the implied constants in the symbols ‘O’, and
‘<’ may occasionally depend on the positive parameters ¢ and d, and are
absolute otherwise. We recall that the notations U = O(V) and V <« U are
both equivalent to the assertion that the inequality |U| < ¢V holds for some
constant ¢ > 0.

2 Smooth Numbers

For any integer n we write P(n) for the largest prime factor of an integer n
with the convention that P(0) = P(£1) = 1.
For x > y > 2 we define §(z,y) as the set y-smooth numbers up to z,
that is
S(z,y)={n<z : P(n) <y}

and put
U(z,y) = #S(z,y).

We make use of the following explicit estimate, which is due to S. Konya-
gin and C. Pomerance [14, Theorem 2.1], (see also [10] for a variety of other
results).

Lemma 5. If x > 4 and x > y > 2, then

\I](SL’ y) > xlfloglogx/logy
, .

3 Heilbronn Sums
For an integer m > 1 and a complex z, we put

en(z) = exp(2miz/m).

4



Let Z,, be the ring of integers modulo an n > 1 and let Z be the multiplica-
tive subgroup of Z,.
Now, for a prime p and an integer A\, we define the Heilbronn sum
p
Hy(A) =) e (A7),
b=1
For x € Z, denote
]32 p—1
f(x):x+§—i—...—|—

€ Zyp. (5)
Also, define for v € Z,
Flu)={z €, : f(z)=u} (6)

We now recall the following two results due to D. R. Heath-Brown and
S. V. Konyagin which are [9, Theorem 2] and [9, Lemma 7], respectively.

Lemma 6. Uniformly over all s 0 mod p, we have

p
S Hy(s + o) < ™.

r=1

Lemma 7. Let U be a subset of Z,, and T' = #U. Then
Y #F(u) < (7).

ueU
Since H,(rp) = 0if r # 0 mod p and H,(rp) = p if r = 0 mod p, we
immediately derive from Lemma 6 that

P2
> W) < p (7)
u=1

4 Distribution of Elements of Multiplicative
Subgroups in Residue Rings

Given a multiplicative subgroup G of Z}, we consider its coset in Z} (or,
multiplicative translate) A = A\G, where A\ € Z;. For an integer K and a
positive integer k, we denote

Jn, Ak K)=#({K+1,...,K+k}nA).

We need the following estimate from [3].
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Lemma 8. Let A be a coset of a multiplicative subgroup G of Z, of order t.
Then, for any fized € > 0, we have

J(n, Ak, K) <—+—ZM (w; Z,G)

’LUEZn

E e, (uw)

ueA

where
Z =min {n'*k~" n/2}

and M, (w; Z,G) is the number of solutions to the congruence
w=zu (mod n), 1<z <Z, ued.
Let N(n,G, Z) be the number of solutions of the congruence
ur =y (mod n), where0 < |z|,|ly| < Z andu e g.

We use Lemma 8 in a combination with yet another result from [3], which
gives an upper bound on N(n,G, 7).

Lemma 9. Let v > 1 be a fixed integer and let n — oco. Assume #G =t >
Vn. Then for any positive number Z we have

N(n,g,Z) < Zt(2v+1)/2u(l/+1)n—1/2(y+1)+o(1) + Z2t1/yn—1/y+o(1)'

5 Large Sieve for Square Moduli
We make use of the following result of S. Baier and L. Zhao [1, Theorem 1].

Lemma 10. Let aq,...,ay be an arbitrary sequence of complexr numbers
and let

N N
Y = Z v |? and  S(u) = Z oy, exp(2miun).
n=1

n=1

Then, for any fired € > 0 and arbitrary Q@ > 1, we have

§ j § j S(a/q)| < (QN)7 (Q* + N + min{NQ'?, N'?Q*}) Y.
1<¢<@Q
gcd(aq) 1



6 Proof of Theorem 1

For a positive integer k& < p?, let N,(k) denote the number of elements
v € [1, k] of the subgroup G C Ly, of order p — 1, consisting of nonzero pth
powers in Z,2. We fix some ¢ > 0.

To get an upper bound on N,(z) we use Lemma 8, which we apply with
n=p>, A=G,t=p—1and K = 0. For every integer a with a?~! = 1
(mod p?) there is a unique integer b with 1 < b < p — 1 such that a = O?
(mod p?). Thus the corresponding exponential sums of G are Heilbronn sums,
defined in Section 3. We derive

AM@ZﬂﬁQhK%<§W%E:MMMZQU%WM+U~(&

wGZp2

By the Holder inequality, we obtain

4

S" My (w; Z,G) | Hy(w)]

— Z MpQ(w;Z,g)l/Q (Mp2(w;z’ 9)2)1/4 (|Hp(w)|4)1/4 (9)
<| X MpiZ.G) | 3 Mp(wiZ.6 3 Hyw)l'

wGZpg wEZpg wGZp2

Trivially, we have

> Mp(w; Z,G) =2[Z)(p— 1) < p* k" (10)

’wEZpg
We also see that

> Mp(w; 2,6)* = (p— )N, G, 2).

'LUGZPQ

We now choose
L — Lp463/252+35 J _



Lemma 9 applies with v = 6 and leads to the estimate

Zp13/84(p2)—1/14+o(1) +22p1/6(p2)—1/6+o(1)

N(®*G,7Z) <
< Zp13/84(p2)—1/14+o(1)

(since for Z < p*'/%2 the first term dominates). Hence,
N(p2 g Z) <p2+1/84+3€k—1'

Therefore
Z Mp2(w; Z, g)2 < p3+1/84+36k—1' (11)

’LUEZPQ

Substituting (7), (10) and (11) in (9) and then using (8), we deduce that

k k’ P e —1\1/2 B 3eq 1/4 .
N,(k) < 2;4_5 (p3+2 k 1) / (p5+1/84+5 k 1) (p9/2)1/4+p2

k
< 1_9+k1/4p127/336+26’

provided p is large enough.
Recalling our choice of k, we see that

N, (k) < k (12)
p
for the above choice of k and sufficiently large p.

Since a?~! = 1 (mod p?) for all positive integers a < £, this also holds
for any a which is composed of primes ¢ < ¢,. In particular it holds for any
a € S(k,l,). Thus

Wk, 6,) < Ny (k). (13)

Now, using Lemma 5 and the bound (12), we derive from (13) that

k_lfloglogk/logfp < E

p
which implies that
log p 463 -1
loglog k/log £, > log k +O0(1/logk) = (2—52 + 35) + O(1/logp).



Therefore

IN

4 log 1
log ¢, (ﬁ + 36) loglog k + O (M)

252 logp

463 463

= — log1 1) < | — +4¢ ) logl
(252—1—35) oglogp+ O(1) < (252—|— 8) oglogp,

provided that p is large enough. Taking into account that ¢ is arbitrary, we
conclude the proof.

7 Proof of Theorem 3

7.1 Preliminaries

We need several statements about the groups of pth powers modulo p?, which
may be of independent interest.

Fix a prime p. Let again G be the group of order p — 1, consisting of
nonzero pth powers modulo p?.

Lemma 11. Ifny,ny € G are such that n; = ny (mod p) then we also have
ny =ny (mod p?).
Proof. Since ny,ny € G we can write
ny =m} (mod p?) and  ny=m5 (mod p?) (14)
for some integers m; and msy. Therefore
my—me=mi —mb=n; —ny =0 (mod p).

Then m; = my + pk for some integer k, which, after substitution in (14),
yields the desired congruence. ad

For v € Z,2, let
D,(v) = {(m1,mz) : 0<my,me <p—1,m) —mb=v (modp?)}. (15)

We can rewrite Lemma 7 in the following form.



Lemma 12. Let V be a subset of Z,, T = #V and v1 /vy € G for any distinct
v1,v9 € V. Then

> #D,(v) < (pT)*/?,

veY

Proof. We follow the arguments of the proof of Lemma 2 from [9]. Forv € Ly
denote
Av) =0v'"P e Zs,.

Since the cardinality #D,(v) is invariant under multiplication by elements of
the group G we have #D,(A\(v)) = #D,(v). Next, we always have A(v) =1
(mod p). Therefore, the congruence

Av) =m} —mb  (mod p?)
implies m; — my = A(v) =1 (mod p). Hence
Av) =m} — (my — 1)P  (mod p?).

But
mi —(my — 1P =1 —pf(m) (mod p°)
where the function f(z) is defined by (5). Hence,

#Dyp(v) = #F(U(v)) (16)

where
Uv) = (1 =Aw)/p €2y
and the set F(u) is defined by (6).

The assumption that v;/vy € G for any distinct vy,v, € V implies
A(v1)/N(ve) € G and U(vy) # U(vy). Applying Lemma 7 to the set

U={U(v) : veV}

and using (16) we get

> #Dy(v) =D #F(u) < (pT)*?

veV uelU

as required. O
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Now we consider two primes p; # ps and the corresponding subgroups
g, C Z;,% consisting of nonzero p,-th powers modulo p?, v = 1, 2.

Also, we denote by G, the subsets of Z formed by the integers belonging
to G, modulo p?. That is, while G, is represented by some elements from the
set {1,...,p% — 1}, the set G, is infinite, v = 1, 2.

Lemma 13. Let x, K and L be positive integers with x < p?p3. Suppose
that a set A C [1,z] NGy N Gy satisfies the following conditions:

(i) there are at least L pairs (ni,ny) € A% with ny > ny and such that
ny = ne (mod py);

(ii) there are at most K elements of A in any residue class modulo p;.

Then

L
7 <HPZENEL G, 2)

where Z = |x/p3].
Proof. Denote
M;=#{ne€ A : n—ip; € A}, i=1,...,Z.

By Lemma 11 and the condition (i) we have

z
> M > L.
i=1
Next, let
m;=#{ne€G : n—ip;€G}, i=1,...,Z.
Then by the condition (ii) we have
z 1 Z
;mlz K;MZ > L/K. (17)
We observe also that fori =1,...,7
m; < #Dy, (ip3). (18)

11



Moreover, we have Z < p?. In particular, due to Lemma 11 if a positive
integer ¢« < Z is divisible by p; then

m; = #Dm (Zp%) =0.

Assume that the residues of ip3 modulo p?, i = 1,...,Z, are contained in
J distinct cosets C',...,Cy of the group G;. For j =1,...,J, we denote

sj=#{i : 1<i<Z, ip5 €}
and also
tj = #Dm (U>
for some element v € C; (clearly, this quantity depends only on the coset C;

and does not depend on the choice of v ).
Therefore, using (18) we can rewrite (17) as

J
> sit; > LK. (19)
j=1
To estimate the left-hand side of (19) from above we consider that the cosets
C4,...,C; are ordered so that the sequence {¢y,...,t;} is nonincreasing. By
Lemma 12 we have for j =1,...,J

td .t < ()Y

Hence,
t; < i1, (20)
Clearly,
J
Y si=2 (21)
j=1

By the definition of N(p? G, Z), we have

Zs < N(p%, Gy, 2). (22)

7j=1

We notice that Z > 1; otherwise there are no (ny,ny) € A* with ny > ny
and such that n; = ny (mod py). Define

Jo=|Z°/Nw;,G1.Z)| and  J; = min{Jy, J}.

12



It is easy to see that Jy > 1. Therefore, J; > 1.

To estimate the left-hand side of (19) we consider separately the cases
Jj < Jyand j > J; (the second case can occur only if Jy = J;). By (20), (22),
and the Cauchy-Schwarz inequality, we have

Jr 2 Jr J J Jo
(Z Sjtj) <SS G S < NG Dp
j=1 j=1  j=1 j=1  j=1

Therefore,
J1

Y sty < p 2N Gy, 2)1. (23)
j=1
If Jo = J; then we also have to estimate the sum over j > Jy. To do so
we use (20) and (21):

J
S sty <tnZ < PN G, 2) . (24)
Jj=Jo+1

Combining (19), (23) and (24), we complete the proof. O

Now we prove a combinatorial statement demonstrating that if a set
[1,2]NG1 NG, is large then we can choose a set A C [1,2] NG NG, satisfying
the conditions of Lemma 13 with satisfying L/K > ps.

Let Z; and Z, be nonempty finite sets. For a set A C Z; x Z, we denote
the following horizontal and vertical “lines”

Alz,-)={y el : (r,y) e A}, Aly)={rch : (v,y) € A}

Lemma 14. For any set A C Iy X I, there exists a subset B C A and positive
integers k1 and ko such that:

(i) #B > J#A;
(ii) #B(z,-) < ky for any x € Iy;

(iti) #B(-,y) < ks for any y € Ty;

. 1 .
(Z’U) IGZII #B($, ) > 10g<#1-1 + #1-2) #A7

#B(I,')>k1/2

13



1
log(#Z1, + #1,)

(v) Z #B(-,y) > #A.

#B( )>k2/2
Proof. The case A = () is trivial, so we now consider that #A4 > 0. Let U be
the smallest integer such that 2V > #7, + #7,, so 1 < U < log(#Z, + #1,).
We construct the following sequence of sets {A,}, v = 0,1,.... Set
Ay = A. Assume that A, has been constructed. We now define u, as the
smallest integer u such that

1
IEZII #A,(x,-) < @#A. (25)
H#A, (z,)>2%

Similarly, let v, be the smallest integer v such that

. <
S #AY) S HA (26)
yElo
#.Ay(,y)>2U
Define
Aqul :AI/\ U {(xay) : yGAV(x7')}
€I
#A, (2, )>2%v (27>
VU @y ire Ayt
y€Iy
#AL(-y)>2v
Clearly, for any v = 0,1,... we have
Ay+1 g Aua 0 S Upy+1 S U, < U, 0 S Vy+1 S vy, < U.
There exists a number N < 2U such that
UN+1 = UN and UN41 = UN.
Set
B - .ANJrl, kl == 2uN, kz - 2vN.
Now, from (25), (26) and (27), we derive
N
#ANB) < > > #A®E +Z > #ACY)
v=0 €I yels
#A, (z,)>2ur #A( y)>2vv
2(N
< %#A < #A

14



So, the condition (i) is satisfied.

By the definition of B, ki, and ks we see that the conditions (ii) and (iii)
are satisfied too.

Next, if k1 = 1 then

Y. #B(x,) = #B.
€I
#B(x,)>k1/2
If &y > 1 then we deduce from the equality uy,; = uy that
1
> #B(y) > #A
8U
rell

#B(vy)>k1/2

In either case the the condition (iv) holds. Analogously, we also have the
condition (v) satisfied. O

7.2 Conclusion of the proof

We suppose that @) is large enough while € and § are small enough and define
T = Q59/24—35 and y = ((1 . 5) IOg Q)59/35+6'

Assume, that there are two primes p; # py with Q'% < py,p. < Q and
such that
a”'=1 (mod p?), a”?" ' =1 (mod p3)
for all positive integers a < y.
As before, for v = 1,2, we use G, to denote the subgroup of Ly, consisting

of nonzero p,-th powers modulo p? and use G, for the subset of Z formed by
the integers belonging to G, modulo P2

Then S(z,y) € G1 NG, (here we take into account that y < min{py, p2}).
Since

(59/24 — 35) (1 - m) >146

provided ¢ is small enough compared to e, we derive from Lemma 5 that
U(r,y) > Q' (28)

(provided € and § are small enough).
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We now associate with any integer n € S(x,y) the pair of residues
(n (mod p1),n (mod p2)) € Zy, X Zyp,.
Using Lemma 14 we conclude the existence of a set
ACS(z,y) C1,2]NGING,

and positive integers ki, ko and an absolute constant ¢y satisfying the follow-

ing conditions:

(a) #A > V(z,y)/2;

(b) there are at most k; elements of A in any residue class modulo py;

(c) there are at most ko elements of A in any residue class modulo ps;

(d) there are at least cqW(x,y)/(k1log Q) residue classes modulo p; con-
taining at least k;/2 elements from A;

(e) there are at least co¥(x,y)/(kalog @) residue classes modulo ps con-
taining at least ky/2 elements from A.

Without loss of generality we can assume that that ko > k.
In particular, we see from the above property (a) and (28) that

#A> Q.
Therefore, by the above properties (a) and (e) that

\\j 146
V) Q7
kolog@Q = kolog @

Q>ps>c

Hence,

Qé
k v
2 > 10gQ7

provided that () is large enough. If a residue class modulo ps contains at least
ko/2 elements from A, then there are at least k3/10 pairs (ny,ny) € A? such

that ny; > ny and ny = ny (mod py). Therefore, the conditions of Lemma 13
are fulfilled with K = k; and

Co‘I’@a y) > \I/(I, y)kQ > Q1+6k52
ks log Q log Q logQ

16
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Considering again that @) is large enough we obtain that

% > kaQ/k1 > Q.

Applying Lemma 13, we obtain
PP 2N (P, 61, 2)' > Q (29)

where
7 — Lx/pij < Q11/2475 < p11/24*5/2.

On the other hand, Lemma 9 applies with v = 2 and yields
N(pf,gl,Z) < Zp?/l?(p%)—l/G—f—o(l) + 22p1/2(p%)—1/2+0(1) < p13/24—5/2+0(1)'
Consequently,
P ZN (5,61, 21 < g0 < @it

which disagrees with (29) for @ large enough. This contradiction completes
the proof.

8 Proof of Theorem 4

Let P, be the set of all primes p for which
a?'=1 (mod p? (30)

for all primes a < y.
We need the following estimate, from which Theorem 4 follows quickly.

Lemma 15. Suppose Q > 2y > 2. Then for all 6 > 0 and any x > 2, we
have

(JJQ)5 (Q2 + Z‘Q_l + min (Z‘Q_l/Q, xl/QQ))
V(z,y)

#peP, : Q2<p<@}

Proof. For real u, let

T(u) = Z exp(2miun)

neS(z,y)

17



and put Y =7T(0) = ¥(z,y).
Let p € P,. By the Parseval identity, we have for each prime p

£ G -EFGN-EFC)

a-p)=1 (31)
p? p
=p*Y N@*a)—p)  N(pb)
a=1 b=1

where N (g, a) is the number of elements of n € S(x,y) in the progression
n = a (mod q). For p € P, we see that n?~* = 1 (mod p?) for every n €
S(x,y). By Lemma 11, for each b € {1,...,p — 1} there is a unique residue
ap modulo p? with @, = b (mod p) and OL’b’_1 = 1 (mod p). Consequently,

N(p* ay) = N(p,b). Therefore

2 p? 2 p 2

p

Y ON@*a) =) N@* )’ =) Npb)?

b=1
which, after substitution in (31), implies that

2 p

=plp—1)>_ N(p,b).

b=1

Since
P
> N(p,b) =
b=1

and clearly N(p,0) =0 for p > /2 > y, by the Cauchy-Schwarz inequality,
we obtain

2 p—1
a
3 T(p—) o= 1) S N(p b > v,
1<a<p? b=1
(;p);pl

Therefore

PSS

PEPy  1<a<p?
Q/2<p<Q (a,p)=1

2

> QVi#{peP, : Q/2<p<Q}, (32)

()
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>3 [r(4)]

9<Q 1<a<q?
Comparing (32) and (33), we obtain the desired estimate. O

< (2Q)° (Q* + v + min{2Q"2,2'2Q*}) Y. (33)

(a,9)= 1

To finish the proof of Theorem 4, we take x = Q°? and y = (log Q)*/3*¢
in Lemma 15. Inserting the bound from Lemma 5, we have

\I'(a:,y) > J;lfl/(5/3+e) > Q1+56
for a suitable § > 0. Therefore, for the above choice of y we obtain

#peP, : Q2<p< Q< Q'

which implies the desired estimate.

9 Comments

Lemmas 6, 8 and 9 can easily be obtained in fully explicit forms with con-
crete constants. Thus, the bound of Theorem 1 can also be obtained in a
fully explicit form, which can be important for algorithmic applications. For
example, it would be interesting to get an explicit formula for ng(e) such that
for n > ng the conclusion of Corollary 2 holds.
It is interesting to establish the limits of our approach. For example, the
bound
Np(k’) < kpflJro(l)

for values of k = p'*te() (or larger), which is the best possible result about
N,(k), leads only to the estimate

¢, < (log p)*o®

which is still much higher than the expected size of ¢,. Furthermore, if
instead of Lemma 10 we have the best possible bound

> Z S(a/d)|" <« @ (@*+N)Y,
1<q<Q
gcd(aq) 1
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the exponent 5/3 of Theorem 4 can be replaced with 3/2.

Certainly improving and obtaining unconditional variants of the esti-
mate (3) and, more generally, investigating other properties of set W(p),
is of great interest due to important applications outlined in [11]. It is quite
possible that Lemma 6 can be used for this purpose as well.

Congruences with Fermat quotients g,(a) modulo higher powers of p have
also been considered in the literature, see [5, 12]. Using our approach with
bounds of generalized Heilbronn sums

p
Hypm(A) = Zepm (A"
b=1

due to J. Bourgain and M.-C. Chang [2] or Y. V. Malykhin [16] (which is
fully explicit), one can estimate the smallest a with

gp(a) #1 (mod p™)

for fixed m > 2.
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