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ABSTRACT. Given an integen > 2, let’H,, be the set
H, ={(a,b) : ab=1 (modn), 1 <a,b<n—1}

and letM (n) be the maximal difference @&f— a for (a,b) € H,. We
prove that for almost ath, n — M(n) = O (n'/?t°()) . We also im-
prove some previously known upper and lower bounds on theéoeunf
vertices of the convex closure &f,,.

1. INTRODUCTION

This paper pursues two goals. We prove a weak version of actmg in
the paper [4] and improve some results in [9]. To put our tesnlcontext,
we begin by discussing the contents of [4] and [9].

For an integen > 2, we define the modular hyperbold,,, to be the set

H,={(a,b) : ab=1 (modn), 1<a,b<n—1}.

There are many interesting and productive questions ongposa about
this set. One is the study df/(n), the maximal difference between the
components of points of,,, that is,

M(n) =max{b—a : (a,b) € H,}.

This function has been studied in two papers [8, 4]. In [8,0Fbe 4] it is
proved via Kloosterman sums that— M(n) < n*/4+°() and in [4] it is
shown that for almost at

n — M(n) = n*?(logn)*?(loglogn)¥*f(n),

where
1+ loglog 2

0=1
log 2

— 0.08607. ..,
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and f(n) is an arbitrary function witHim,,_.., f(n) = 0. Furthermore,
in [4], the authors have conjectured thag i) — oo asn — oo, then

n — M(n) < n'/?*(logn)’’*(loglog n)**g(n)

for almost alln, and have given a heuristic for this statement. We prove a
weaker form of this conjecture.

Theorem 1. For everys > 0 and A > 0, we haver — M (n) = O(n'/?%¢)
for all integersn < x with at mostO(z/(log z)*) exceptions.

In particular, we see that — M (n) = n'/?*°() for almost alln. After
proving Theorem 1, we turn our attention to improving certasults that
have appeared in [9]. Following [9], €, denote the convex closure of
the setH,, and letv(n) denote the number of vertices ©f. The paper [9]
is an attempt to determine asymptotic boundsufor), and in this the au-
thors have only been partly successful. Let us describe sbdemeentary
properties ofH,, andC,,.

The first is that the lineg = = andy = n — = are lines of symmetry
of H,,. These symmetries reduce the amount of work needed to daterm
the vertices of’,,, as one can restrict the search to the verticas,dhat lie
in the triangleZ,, with vertices(0, 0), (0, ») and(n/2,n/2). Following [9],
let (CI,Q, bo) = (1, ].), (al, bl), RN (as, bs), with ag < a1 < ... < Qg, be the
vertices ofC,, in 7,,. ThenM (n) = bs — as, that is, the maximum difference
is achieved by the highest vertex@f in 7,,.

We illustrate this with the graph below &f,, with the lines of symmetry
y = x andy = 47 — x. We note thata;,b;) = (2,24) and (as, bs) =
(CLQ, bg) = (10, 33)
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Figure 1. The curveH,; with the lines of symmetry = z,y + x = 47
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One of the first results in [9] is that for all > 1,
v(n) 2 2(r(n—1) —1)

wherer (k) is the number of positive integer divisorsiofThe proof follows
from observing that the lattice points on the curves

z(n—y)=n—landn—z)y=n—1, withl <z,y <n-—1,

belong taC,, with the pointg(1, 1) and(n — 1, n — 1) being common to both
curves. We illustrate this in the graph below.
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Figure 2. The curvesc(47 — y) = 46, (47 — x)y = 46 enclosingH;
This estimate is tight as(n) = 2(7(n — 1) — 1) for infinitely many
integersn. Specifically in [9, Theorem 3.2] it is shown that

#n<x on)=2(r(n—-1)—-1)} > -

log x’

where, as usual, the notatiobs < V andV > U are equivalent to
U = O(V), (throughout the paper, the implied constants may depend on
the positive parametetsand B, and are absolute otherwise).

The authors [9, Theorem 3.4 (b)] then give a conditional pad@(n) >
2(7(n — 1) — 1) for almost alln under the hypothesis that for almostaJl
n — M(n) < n'/?°()_ The proof is by combining a result of [3] with the
inequalityn — M (n) < n'/?T°() to obtain that for almost al, the vertex
(as, bs) does not lie on the curve(n — y) = n — 1. Hence, by proving
Theorem 1 we obtain the following unconditional result.

Corollary 2. The set of integera for whichv(n) > 2(7(n — 1) — 1) has
asymptotic density 1.
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Another result of [9] is thav(n)/7(n — 1) # O(1). Specifically it is
shown in [9] that for infinitely many primes,

(1.1) u(p+1) > exp <<210g2 + 0(1)> logp ) .

11 loglog p

The basic idea of the proof is to find primessuch tha2p + 1 has “many”
factors. This is achieved by combining the prime numberr@owith the
Heath-Brown estimate [7] on the smallest prime in an aritier@ogres-
sion (see [9, Theorem 3.5]). In this paper we improve (1.1apglying a
result of Alford, Granville and Pomerance [1, Theorem 2ri}lee distribu-
tion of primes in almost all arithmetic progressions.

Theorem 3. There are infinitely many primeswith

5log 2 log p
1) > 1 .
ez e (B o) i )

The set of vertices af,, seems to be a “hybrid” set in the sense that Tao
usesitin [12, page 156]. The structured part of this setteerértices that
arise from the divisors of — 1. The remaining vertices seem to arise from
a combination of pseudorandomness and the structure sods/ofn; — 1
for some “small” values ofi > 2. A recurrent theme in our attempts to
handle the difficulties arising from the “pseudorandomhe$sy(n) is to
apply the properties of the special vertex, b,). So for example the bound
by — as = n — M(n) < n®¥*°() immediately gives us that

(1.2) v(n) < n¥/Atel),

Unfortunately this is a pretty crude bound, as the numenrd9Ji indicate
thatv(n) < n°®. (We should mention that in [9, Section 5.2] there are a
couple of “reasonable” numerical approximations to thédéncev(n) —

2(t(n — 1) — 1), but these are just guesses.) In this paper we make a small
improvement to (1.2) by using a result of Andrews [2] on thenber of
integral vertices of convex flat (that is, 2-dimensionallygons. We prove

the following result.

Theorem 4. We have
U(n) < n7/12+°(1).
2. PRELIMINARIES
We need the following special case of [5, Proposition 1].

Lemma2.l. Let L, N and( be arbitrary real numbers, which for a fixed
e > ( satisfy the inequalities

2< LS NLLY*™  and 2<Q< LY,
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and let (o )mejz,2r) b€ an arbitrary sequence of complex numbers with
lan| < 1. Then, for every fixed > 0 we have

> < > am—% > am> < LN(log L)™.

1<9<Q \  L<m<2L wla) 22,
N<n<2N N<n<2N
mn=1 (mod q) ged(mn,q)=1

Let o(z;n) = #{a : 1 < a < z, ged(a,n) = 1} be the standard
extension of the Euler function. Then, by the inclusiontesion principle,

we have
elain) = 3 [5] wl@),

dln

where 1(d) is the Mobius function. We need the following two conse-
guences of this identity.

Lemma2.2. Let/, L € Z*; letz > 0; and let7*(L) denote the number of
square-free divisors af. Then,

Z 1= Mu O(r*(L)).

: L
I<j<I+J
ged(j,L)=1
and
1 L
> o= @O(L Dog(1+ /1) + 0 (*(L)/T).

I<j<I+J
ged(j,L)=1

We remark that when we apply Lemma 2.2 we reptadd.) in the error
term with L°(M. Finally, we recall the following special case of a general
result of Andrews [2].

Lemma 2.3. A convex 2-dimensional polygon of ar8awith all vertices
on the latticeZ?, has at mosO(S'/?) vertices.

3. PROOF OFTHEOREM 1

Letm be a positive integer, and I€tand R be two positive real numbers.
We defineV(m; @, R) to be the set

Q mRi+1 <2mR+1

{(q,r)€Z2 : §<q<Q, <7’\T,gcd(qr,m):1}.

This set plays a central role in our proof and we require ttievang as-
ymptotic for#V(m; Q, R):
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Lemma 3.1. We have,

#V(m;Q, R) = S0(::)2]%log2 +0 (Qm"(l)) .

Proof.

#V(m;Q, R) = ) >, 1

Q/2<q<Q (mR+1)/q<r<(2mR+1)/q
ged(g,m)=1 ged(r,m)=1

= Z (M +0 (mo(l)))

Q/2<q<Q q

“Retm) Y 240 (mQ).

Q/2<q<Q
ged(g,m)=1

Applying Lemma 2.2 we conclude the proof. O

We are now ready to prove Theorem 1. bhebe a positive integer; l&
andR be two positive real numbers; and [{m; @, R) denote the number
of solutions to the congruence:

qgr =—1 (mod m), (q,7) € V(m; Q, R).

If this congruence has a solution, théf(m) > m —r — ¢, thatis,r +q >

m — M (m). So the plan to prove the result is to find appropriate bouods f

Q andR, and then apply Lemma 2.1 to obtain- ¢ < LY?T°W for L < m.
For L > @ > 2, with L < m < 2L, we consider the sum

1
W(L;Q,R) = N(m;Q,R) — ——#V(m;Q, R
Bem= 5 |NmQm - v )
1
_ a, N(m;Q,R)——#V(m;Q,R))
(3.1) Lg;u ( pm)
1
— am | Nim; Q,R) — —— 1
L<mZ<2L go(m) (q,r)e%;Qﬂ)

= Ul _U27
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whereq,,, = +1,

U, = Z Z Oy Z 1,

Q/2<g<Q L<m<L2L (mR+1)/q<r<(2mR+1)/q
ged(m,q)=1 rg=—1 (mod m)

U= D, D @O([Z) 2 .

Q/2<q<Q L<m<2L (mR+1)/q<r<(2mR+1)/q
ged(m,q)=1 ged(r,m)=1

We now replace the conditiony = —1 (mod m) with the equationq =
mn — 1, where for(r, q¢) € V(m; Q, R) we haveR < n < 2R.

Therefore,
U1 == Z Z A Z 1.

Q/2<q<Q L<m<2L R<n<2R
ged(m,q)=1 mn=1 (mod q)

We now fix some > 0 and take
(3.2) Q=LY** and R=1L°

Then Lemma 2.1 can be applied (witlvarying from@ /2 to @), followed
by an application of Lemma 2.2. We obtain

Ui= Y —— S an+0 (LR(log L) 4+e/2))

Q/2<q<Q wla) L<m<2L
R<n<2R
ged(mn,q)=1

=R > ! > m+ O (LR(log L)~ A¥/2)

Q/2<q<Q q L<m<2L

Again by Lemma 2.2, we have

e XX i (B eow)

Q/2<q<Q L<m<2L

(3.3) )
—R Z - Z am+O(L1+€/4).
Q/2<q<Q q L<m<2L
ged(m,q)=1
Inserting the bounds fdr; andU, into (3.1), we obtain
(3.4) W(L;Q, R) < LR(log L)~ A+</2),

Combining Lemma 3.1 with (3.4) we get

>

L<m<2L

N(m; Q7 R) - MRIOgQ < LR(]og L)_(A+€/2).
m
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Sincep(m) > m/ loglogm, this shows thatV(m; Q, R) > 1 for allm €
(L, 2L] with at most

Lloglog L L
¢ <<log L)Aﬂ/z) < (log L)
exceptions.

If N(m;Q,R) > 1then we have a lattice poirit;, ) € V(m;Q, R)
satisfying the congrueneg = —1 (mod m). We now get that

m — M(m) < 7’+q < L1/2+a < m1/2+a.

4. PROOF OFTHEOREM 3

Letp be a prime. A simple geometric calculation shows that evisigal
dof 2p+ 1, with3 < d < (2p + 1)/3, gives rise to a lattice point on the
curvez(n —y) = 2p + 1 thatis a vertex of,,,,. This immediately leads to
the inequality

(4.1) vip+1) =2(r(2p+1) — 3).

(See the beginning of the proof of [9, Theorem 3.5] for thaile) So the
main difficulty is to show the existence of primes such tHap+1) is large.
This we do by applying the result of Alford, Granville and Renance [1,
Theorem 2.1]. The next couple of paragraphs is devoted tmgetp the
hypotheses so that we can invoke this result.

We start by fixing an arbitraryl > 12/5 and a sufficiently smalf > 0.
We now consider the s@, , 5(x) as defined in [1, Theorem 2.1] (that is,
we apply it withe = 1/2, but we can choose anrysuch thal) < ¢ < 1).
Two parameters associated with,, 5 are the positive integdp, /, s and the
positive real number. ;. We assume that > ;5 is sufficiently large.
We now need to determine a moduluthat satisfies three conditions:

ey < xl/A—(S;
e ¢ has many prime factors;
e ¢ is relatively prime to every element M, /5 5().

Let
O(z) = Z log ¢

{<z,f prime
denote the Chebyshev function andiebe the largest integer that satisfies
the inequality
(L) —log2 < (1/A —0)logz.
By the prime number theorem

(4.2) L= (% -0+ 0(1)) log x.



GEOMETRIC PROPERTIES OF POINTS ON MODULAR HYPERBOLAS 9

Let
D)= J] d  Q=exp(6(L)—1log2).
deD, /5 5(x)

We now set; to be the integer
@

ged(Q, D(z))
Since# D1 o5(x) < D125, We have
(4.3) 7(q) > 27D =Dijzs — gr(L)+O(1) _ o(i+o(1)L/log L

q

and so we see thatindeed satisfies all three conditions that we listed.

On applying the bound of [1, Theorem 2.1] with= ¢ andy = x, we
see that for a sufficiently large (depending only oA andJ) there is a
primep < x in the arithmetic progressioZp = —1 (mod ¢). Combin-
ing (4.2), (4.3) and the inequality2p + 1) > 7(¢) we obtain that

1 1
T(2p+1) > exp (((Z — 5) log2 + 0(1)) logoizx> :

Using (4.1) and recalling that > 12/5 andd > 0 are arbitrary, we con-
clude the proof of Theorem 3.

5. PROOF OFTHEOREM 4

We remind the reader that,, by), (a1,01), ..., (as, bs) denote the ver-
tices ofC,, that lie in the triangle with vertice@, 0), (0,n) and(n/2,n/2).
Let C' be the convex closure of the pointsy, by), (a1, b1),. .., (as, bs).
Then clearlyC lies inside the rectangle with verticés, 1), (as, 1), (1, bs)
and(a,, b,), and consequently the area@fis at mosta, - b, < n"/4To0),
We now invoke Lemma 2.3 to conclude that n’/12+o(),

6. COMMENTS

We note that one can also combine the arguments of the prodiexd-
rems 1 and 4 and to show that for almostalve have

v(n) < n1/2+o(1).

Furthermore, it is easy to see that the proof of Theorem 4rgépes to the
number of verticesy, (n), of the convex closuré,, ,, of the hyperbola

Hppn={(a,b) : ab=h (modn), 1<z,y<n—1}

for an arbitrary integeh satisfyingged(h,n) = 1. In particular, we have
a full analogue of Theorem 4 faf,(n). Moreover, using [11, Theorem 1]
one can easily derive that

o (n) _ n1/2+0(1)
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for all buto(p(n)) integersh with 1 < h < n—1andged(h,n) = 1, where
(n) denotes the Euler function. Unfortunately, the result otlfaws [2]
does not help in this case.

One can also use [10, Theorems 8 and 9] in conjunction withlaim
arguments to obtain results for the number of vertices ottimwex closure
of a multidimensional hyperbola. We recall that the restildndrews [2]
generalises to multidimensional polygons. Interestinglyeorem 3 does
not immediately generalise tq(n) or the multidimensional case. Finally,
we remark that the result of Harman [6] may possibly lead targhér
improvement of Theorem 3.
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