
GEOMETRIC PROPERTIES OF POINTS ON MODULAR
HYPERBOLAS

KEVIN FORD, MIZAN R. KHAN, AND IGOR E. SHPARLINSKI

ABSTRACT. Given an integern > 2, letHn be the set

Hn = {(a, b) : ab ≡ 1 (mod n), 1 6 a, b 6 n − 1}

and letM(n) be the maximal difference ofb − a for (a, b) ∈ Hn. We
prove that for almost alln, n − M(n) = O

(

n1/2+o(1)
)

. We also im-
prove some previously known upper and lower bounds on the number of
vertices of the convex closure ofHn.

1. INTRODUCTION

This paper pursues two goals. We prove a weak version of a conjecture in
the paper [4] and improve some results in [9]. To put our results in context,
we begin by discussing the contents of [4] and [9].

For an integern > 2, we define the modular hyperbola,Hn, to be the set

Hn = {(a, b) : ab ≡ 1 (mod n), 1 6 a, b 6 n − 1}.

There are many interesting and productive questions one canpose about
this set. One is the study ofM(n), the maximal difference between the
components of points ofHn, that is,

M(n) = max{b − a : (a, b) ∈ Hn}.

This function has been studied in two papers [8, 4]. In [8, Theorem 4] it is
proved via Kloosterman sums thatn − M(n) 6 n3/4+o(1), and in [4] it is
shown that for almost alln

n − M(n) > n1/2(log n)δ/2(log log n)3/4f(n),

where

δ = 1 −
1 + log log 2

log 2
= 0.08607 . . . ,
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and f(n) is an arbitrary function withlimn→∞ f(n) = 0. Furthermore,
in [4], the authors have conjectured that ifg(n) → ∞ asn → ∞, then

n − M(n) 6 n1/2(log n)δ/2(log log n)3/4g(n)

for almost alln, and have given a heuristic for this statement. We prove a
weaker form of this conjecture.

Theorem 1. For everyε > 0 andA > 0, we haven − M(n) = O(n1/2+ε)
for all integersn 6 x with at mostO(x/(log x)A) exceptions.

In particular, we see thatn − M(n) = n1/2+o(1) for almost alln. After
proving Theorem 1, we turn our attention to improving certain results that
have appeared in [9]. Following [9], letCn denote the convex closure of
the setHn and letv(n) denote the number of vertices ofCn. The paper [9]
is an attempt to determine asymptotic bounds forv(n), and in this the au-
thors have only been partly successful. Let us describe someelementary
properties ofHn andCn.

The first is that the linesy = x andy = n − x are lines of symmetry
of Hn. These symmetries reduce the amount of work needed to determine
the vertices ofCn, as one can restrict the search to the vertices ofCn that lie
in the triangleTn with vertices(0, 0), (0, n) and(n/2, n/2). Following [9],
let (a0, b0) = (1, 1), (a1, b1), . . . , (as, bs), with a0 < a1 < . . . < as, be the
vertices ofCn in Tn. ThenM(n) = bs−as, that is, the maximum difference
is achieved by the highest vertex ofCn in Tn.

We illustrate this with the graph below ofH47 with the lines of symmetry
y = x andy = 47 − x. We note that(a1, b1) = (2, 24) and (as, bs) =
(a2, b2) = (10, 33).

Figure 1. The curveH47 with the lines of symmetryy = x, y + x = 47
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One of the first results in [9] is that for alln > 1,

v(n) > 2(τ(n − 1) − 1)

whereτ(k) is the number of positive integer divisors ofk. The proof follows
from observing that the lattice points on the curves

x(n − y) = n − 1 and(n − x)y = n − 1, with 1 6 x, y 6 n − 1,

belong toCn with the points(1, 1) and(n−1, n−1) being common to both
curves. We illustrate this in the graph below.

Figure 2. The curvesx(47 − y) = 46, (47 − x)y = 46 enclosingH47

This estimate is tight asv(n) = 2(τ(n − 1) − 1) for infinitely many
integersn. Specifically in [9, Theorem 3.2] it is shown that

#{n 6 x : v(n) = 2(τ(n − 1) − 1)} ≫
x

log x
,

where, as usual, the notationsU ≪ V and V ≫ U are equivalent to
U = O(V ), (throughout the paper, the implied constants may depend on
the positive parametersε andB, and are absolute otherwise).

The authors [9, Theorem 3.4 (b)] then give a conditional proof of v(n) >
2(τ(n − 1) − 1) for almost alln under the hypothesis that for almost alln,
n − M(n) 6 n1/2+o(1). The proof is by combining a result of [3] with the
inequalityn − M(n) 6 n1/2+o(1) to obtain that for almost alln, the vertex
(as, bs) does not lie on the curvex(n − y) = n − 1. Hence, by proving
Theorem 1 we obtain the following unconditional result.

Corollary 2. The set of integersn for whichv(n) > 2(τ(n − 1) − 1) has
asymptotic density 1.
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Another result of [9] is thatv(n)/τ(n − 1) 6= O(1). Specifically it is
shown in [9] that for infinitely many primesp,

(1.1) v(p + 1) > exp

((

2 log 2

11
+ o(1)

)

log p

log log p

)

.

The basic idea of the proof is to find primes,p, such that2p+1 has “many”
factors. This is achieved by combining the prime number theorem with the
Heath-Brown estimate [7] on the smallest prime in an arithmetic progres-
sion (see [9, Theorem 3.5]). In this paper we improve (1.1) byapplying a
result of Alford, Granville and Pomerance [1, Theorem 2.1] on the distribu-
tion of primes in almost all arithmetic progressions.

Theorem 3. There are infinitely many primesp with

v(p + 1) > exp

((

5 log 2

12
+ o(1)

)

log p

log log p

)

.

The set of vertices ofCn seems to be a “hybrid” set in the sense that Tao
uses it in [12, page 156]. The structured part of this set are the vertices that
arise from the divisors ofn − 1. The remaining vertices seem to arise from
a combination of pseudorandomness and the structure of divisors ofnj − 1
for some “small” values ofj > 2. A recurrent theme in our attempts to
handle the difficulties arising from the “pseudorandomness” of v(n) is to
apply the properties of the special vertex(as, bs). So for example the bound
bs − as = n − M(n) 6 n3/4+o(1) immediately gives us that

(1.2) v(n) 6 n3/4+o(1).

Unfortunately this is a pretty crude bound, as the numerics in [9] indicate
thatv(n) 6 no(1). (We should mention that in [9, Section 5.2] there are a
couple of “reasonable” numerical approximations to the differencev(n) −
2(τ(n − 1) − 1), but these are just guesses.) In this paper we make a small
improvement to (1.2) by using a result of Andrews [2] on the number of
integral vertices of convex flat (that is, 2-dimensional) polygons. We prove
the following result.

Theorem 4. We have
v(n) 6 n7/12+o(1).

2. PRELIMINARIES

We need the following special case of [5, Proposition 1].

Lemma 2.1. Let L, N andQ be arbitrary real numbers, which for a fixed
ε > 0 satisfy the inequalities

2 6 Lε
6 N 6 L1/2−ε and 2 6 Q 6 L3/4−ε,
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and let (αm)m∈[L,2L] be an arbitrary sequence of complex numbers with
|αm| 6 1. Then, for every fixedA > 0 we have

∑

16q6Q

(

∑

L<m62L
N<n62N

mn≡1 (mod q)

αm −
1

ϕ(q)

∑

L<m62L
N<n62N

gcd(mn,q)=1

αm

)

≪ LN(log L)−A.

Let ϕ(x; n) = #{a : 1 6 a 6 x, gcd(a, n) = 1} be the standard
extension of the Euler function. Then, by the inclusion-exclusion principle,
we have

ϕ(x; n) =
∑

d|n

[x

d

]

µ(d),

whereµ(d) is the Möbius function. We need the following two conse-
quences of this identity.

Lemma 2.2. Let I, L ∈ Z
+; let x > 0; and letτ ∗(L) denote the number of

square-free divisors ofL. Then,

∑

I<j6I+J
gcd(j,L)=1

1 =
ϕ(L)

L
J + O(τ ∗(L)).

and
∑

I<j6I+J
gcd(j,L)=1

1

j
=

ϕ(L)

L
log(1 + J/I) + O (τ ∗(L)/I) .

We remark that when we apply Lemma 2.2 we replaceτ ∗(L) in the error
term withLo(1). Finally, we recall the following special case of a general
result of Andrews [2].

Lemma 2.3. A convex 2-dimensional polygon of areaS, with all vertices
on the latticeZ2, has at mostO(S1/3) vertices.

3. PROOF OFTHEOREM 1

Let m be a positive integer, and letQ andR be two positive real numbers.
We defineV(m; Q, R) to be the set
{

(q, r) ∈ Z
2 :

Q

2
< q 6 Q,

mR + 1

q
< r 6

2mR + 1

q
, gcd(qr, m) = 1

}

.

This set plays a central role in our proof and we require the following as-
ymptotic for#V(m; Q, R):
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Lemma 3.1. We have,

#V(m; Q, R) =
ϕ(m)2

m
R log 2 + O

(

Qmo(1)
)

.

Proof.

#V(m; Q, R) =
∑

Q/2<q6Q
gcd(q,m)=1

∑

(mR+1)/q<r6(2mR+1)/q
gcd(r,m)=1

1

=
∑

Q/2<q6Q
gcd(q,m)=1

(

ϕ(m)R

q
+ O

(

mo(1)
)

)

= Rϕ(m)
∑

Q/2<q6Q
gcd(q,m)=1

1

q
+ O

(

mo(1)Q
)

.

Applying Lemma 2.2 we conclude the proof. ⊓⊔

We are now ready to prove Theorem 1. Letm be a positive integer; letQ
andR be two positive real numbers; and letN(m; Q, R) denote the number
of solutions to the congruence:

qr ≡ −1 (mod m), (q, r) ∈ V(m; Q, R).

If this congruence has a solution, thenM(m) > m− r − q, that is,r + q >

m−M(m). So the plan to prove the result is to find appropriate bounds for
Q andR, and then apply Lemma 2.1 to obtainr+q 6 L1/2+o(1) for L 6 m.

ForL > Q > 2, with L < m 6 2L, we consider the sum

W (L; Q, R) =
∑

L<m62L

∣

∣

∣

∣

N(m; Q, R) −
1

ϕ(m)
#V(m; Q, R)

∣

∣

∣

∣

=
∑

L<m62L

αm

(

N(m; Q, R) −
1

ϕ(m)
#V(m; Q, R)

)

=
∑

L<m62L

αm



N(m; Q, R) −
1

ϕ(m)

∑

(q,r)∈V(m;Q,R)

1





= U1 − U2,

(3.1)
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whereαm = ±1,

U1 =
∑

Q/2<q6Q

∑

L<m62L
gcd(m,q)=1

αm

∑

(mR+1)/q<r6(2mR+1)/q
rq≡−1 (mod m)

1,

U2 =
∑

Q/2<q6Q

∑

L<m62L
gcd(m,q)=1

αm

ϕ(m)

∑

(mR+1)/q<r6(2mR+1)/q
gcd(r,m)=1

1.

We now replace the conditionrq ≡ −1 (mod m) with the equationrq =
mn − 1, where for(r, q) ∈ V(m; Q, R) we haveR < n 6 2R.

Therefore,

U1 =
∑

Q/2<q6Q

∑

L<m62L
gcd(m,q)=1

αm

∑

R<n62R
mn≡1 (mod q)

1.

We now fix someε > 0 and take

(3.2) Q = L1/2+ε and R = Lε.

Then Lemma 2.1 can be applied (withq varying fromQ/2 to Q), followed
by an application of Lemma 2.2. We obtain

U1 =
∑

Q/2<q6Q

1

ϕ(q)

∑

L<m62L
R<n62R

gcd(mn,q)=1

αm + O
(

LR(log L)−(A+ǫ/2))
)

= R
∑

Q/2<q6Q

1

q

∑

L<m62L
gcd(m,q)=1

αm + O
(

LR(log L)−(A+ǫ/2)
)

.

Again by Lemma 2.2, we have

U2 =
∑

Q/2<q6Q

∑

L<m62L
gcd(m,q)=1

αm

ϕ(m)

(

ϕ(m)R

q
+ O

(

Lǫ/4
)

)

= R
∑

Q/2<q6Q

1

q

∑

L<m62L
gcd(m,q)=1

αm + O
(

L1+ǫ/4
)

.

(3.3)

Inserting the bounds forU1 andU2 into (3.1), we obtain

(3.4) W (L; Q, R) ≪ LR(log L)−(A+ǫ/2).

Combining Lemma 3.1 with (3.4) we get
∑

L<m62L

∣

∣

∣

∣

N(m; Q, R) −
ϕ(m)

m
R log 2

∣

∣

∣

∣

≪ LR(log L)−(A+ǫ/2).
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Sinceϕ(m) ≫ m/ log log m, this shows thatN(m; Q, R) > 1 for all m ∈
(L, 2L] with at most

O

(

L log log L

(log L)A+ǫ/2

)

≪
L

(log L)A

exceptions.
If N(m; Q, R) > 1 then we have a lattice point(q, r) ∈ V(m; Q, R)

satisfying the congruenceqr ≡ −1 (mod m). We now get that

m − M(m) 6 r + q ≪ L1/2+ε ≪ m1/2+ε.

4. PROOF OFTHEOREM 3

Letp be a prime. A simple geometric calculation shows that every divisor
d of 2p + 1, with 3 < d < (2p + 1)/3, gives rise to a lattice point on the
curvex(n− y) = 2p + 1 that is a vertex ofCp+1. This immediately leads to
the inequality

(4.1) v(p + 1) > 2(τ(2p + 1) − 3).

(See the beginning of the proof of [9, Theorem 3.5] for the details.) So the
main difficulty is to show the existence of primes such thatτ(2p+1) is large.
This we do by applying the result of Alford, Granville and Pomerance [1,
Theorem 2.1]. The next couple of paragraphs is devoted to setting up the
hypotheses so that we can invoke this result.

We start by fixing an arbitraryA > 12/5 and a sufficiently smallδ > 0.
We now consider the setD1/2,δ(x) as defined in [1, Theorem 2.1] (that is,
we apply it withε = 1/2, but we can choose anyε such that0 < ε < 1).
Two parameters associated withD1/2,δ are the positive integerD1/2,δ and the
positive real numberxε,δ. We assume thatx > x1/2,δ is sufficiently large.
We now need to determine a modulusq that satisfies three conditions:

• q 6 x1/A−δ;
• q has many prime factors;
• q is relatively prime to every element inD1/2,δ(x).

Let
θ(x) =

∑

ℓ6x,ℓprime

log ℓ

denote the Chebyshev function and letL be the largest integer that satisfies
the inequality

θ(L) − log 2 6 (1/A − δ) log x.

By the prime number theorem

(4.2) L =

(

1

A
− δ + o(1)

)

log x.
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Let
D(x) =

∏

d∈D1/2,δ(x)

d, Q = exp(θ(L) − log 2).

We now setq to be the integer

q =
Q

gcd(Q, D(x))
.

Since#D1/2,δ(x) 6 D1/2,δ, we have

(4.3) τ(q) > 2π(L)−D1/2,δ = 2π(L)+O(1) = 2(1+o(1))L/ log L,

and so we see thatq indeed satisfies all three conditions that we listed.
On applying the bound of [1, Theorem 2.1] withd = q andy = x, we

see that for a sufficiently largex (depending only onA andδ) there is a
prime p 6 x in the arithmetic progression2p ≡ −1 (mod q). Combin-
ing (4.2), (4.3) and the inequalityτ(2p + 1) > τ(q) we obtain that

τ(2p + 1) > exp

(((

1

A
− δ

)

log 2 + o(1)

)

log x

log log x

)

.

Using (4.1) and recalling thatA > 12/5 andδ > 0 are arbitrary, we con-
clude the proof of Theorem 3.

5. PROOF OFTHEOREM 4

We remind the reader that(a0, b0), (a1, b1), . . . , (as, bs) denote the ver-
tices ofCn that lie in the triangle with vertices(0, 0), (0, n) and(n/2, n/2).
Let C be the convex closure of the points(a0, b0), (a1, b1), . . . , (as, bs).
Then clearlyC lies inside the rectangle with vertices(1, 1), (as, 1), (1, bs)
and(as, bs), and consequently the area ofC is at mostas · bs 6 n7/4+o(1).
We now invoke Lemma 2.3 to conclude thats 6 n7/12+o(1).

6. COMMENTS

We note that one can also combine the arguments of the proof ofTheo-
rems 1 and 4 and to show that for almost alln we have

v(n) 6 n1/2+o(1).

Furthermore, it is easy to see that the proof of Theorem 4 generalizes to the
number of vertices,vh(n), of the convex closureCh,n of the hyperbola

Hh,n = {(a, b) : ab ≡ h (mod n), 1 6 x, y 6 n − 1}

for an arbitrary integerh satisfyinggcd(h, n) = 1. In particular, we have
a full analogue of Theorem 4 forvh(n). Moreover, using [11, Theorem 1]
one can easily derive that

vh(n) = n1/2+o(1)
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for all buto(ϕ(n)) integersh with 1 6 h 6 n−1 andgcd(h, n) = 1, where
ϕ(n) denotes the Euler function. Unfortunately, the result of Andrews [2]
does not help in this case.

One can also use [10, Theorems 8 and 9] in conjunction with similar
arguments to obtain results for the number of vertices of theconvex closure
of a multidimensional hyperbola. We recall that the result of Andrews [2]
generalises to multidimensional polygons. Interestingly, Theorem 3 does
not immediately generalise tova(n) or the multidimensional case. Finally,
we remark that the result of Harman [6] may possibly lead to a further
improvement of Theorem 3.
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