ON NON-INTERSECTING ARITHMETIC PROGRESSIONS

REGIS DE LA BRETECHE, KEVIN FORD, AND JOSEPH VANDEHEY

1 Introduction and statement of results

Consider a se@ of positive integers, together with an associated family of intefef$,c o such that the
arithmetic progression@&:, mod ¢) are pairwise disjoint. The purpose of this paper is to provide sharper
bounds for the asymptotic growth of

f(z) = sup [@N[1,4]].
QCN
Erdds and Stein first conjectured thatr) = o(z) (see [6]). This was proved by Eid and Szemeédi
[6], who showed that, for a particular constargnd anye > 0,
X X
< <
exp {(log x)1/2+5} f(x) (log x)c
for sufficiently largez. Erddés and Szemeédi credited Stein’s help in finding this lower bound.
Croot in [2] then showed that astends to infinity, we have the following bounds éfz):

zL(—V2+o0(1),2) < f(z) <aL (-5 +o(1),z).

Here we use the notatioh(a, z) := exp {ay/logzlog, x}, logy z := loglogz ando(1) stands for a
function that approachdsasz — oc. Croot further showed that
N[l 2]] <zL (-4 +o0(1),2),

provided thatQ contains only square-free integers. The same estimate was later pro@ukbyn [1] for
arbitrary Q.
We improve these results as follows.

Theorem 1. Asx tends to infinity, we have
2L(—1+0(1),z) < f(z) < L(—=3V3 + o(1),2).

We further conjecture thaft(x) = zL(—1 + o(1), x). Our proof of the theorem will depend on investi-
gations of the multiplicative structure of elements of $8ts [1, z] such thatQ| = f(x).

2 Proof of the lower bound

To prove the lower bound we shall construct a specifiadet [1, ] with cardinalityzL(—1 4 o(1), z)
and then show the existence of a choice of residyéder this Q that ensure all the arithmetic progressions
are disjoint.

To begin, let
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with |¢| denoting the integer part of Then defingyy as the solution to the following equation

logx r log x
log(2yo) = T —4log< 1 )

This gives asymptotically
(2.1) log yg ~ 3+/log x.

Now we fix a primepg € [yo, 2y0]. The prime factop, will divide all ¢ € Q, in contrast to the construction
of Erdds and Szemedi, and similar to the construction of Croot.
Lety, := yO(i log )*/2 for k € N, so that forz sufficiently large and alt > 1 we have

Vl1og x < Vlogx

2.2 2 <
(2.2) T(2yk+1) < Yk log 41

Now we define our se® by

= {pop1---pr: Yk € [L,7], pr € (Yr, 2ur]} -
We have

T T
QcC [H e, 27 ] T yk] :
k=0 k=0
Moreover,Q C [1, z], since, by the definition af, andyy, we have
1 r(r+1)/4
o+l H ur = (2y0)" ! (4 log m) =z.

It remains to estimatg|. By the previous liney; - - -y, = e“"z/yo, and, by (2.1),

1
2¢/log x < log(yo) < log(yr) < log(yo) + %log < Oi:E) < 3y/log z logy

for sufficiently larger and for0 < k& < r. So therefore

19l = [T (= (2ux) — 7(wr)) H

k=1

logyk
x
=azL(—-1+o(1),x).

- (log 2)(1+o(D)/2

Now we construct the,, with a, € [1,¢]. Eachg € Q can be written ag = pop; - - - p, With p;, €
[y, 2yx). Using the Chinese Remainder Theorem, we may defjrentirely by its residues module,. Let
r = m(pg), and noter, 1 < py by (2.2). Then define, by

aq = 141 (mod py) 0<k<r—1), aqg =0 (mod p,).

It only remains to show that the arithmetic progressions so formed are didj@int. € N and suppose
there existg € Q such that: = a, (modg). We will show thatg is unique. First, letn; be the represen-
tative of the residue class(modpy) in [1, po]. If we letp(m) denote thenth prime number, then we have
p1 = p(my). lterating this procedure, we obtgin = p(my) wheremy, is the representative of the residue
classn (mod pg_1)in[1,pr_1], and

q=po [ [ pms).
k=1
This completes the proof of the lower bound. O
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3 Preliminary lemmata for the upper bound

3.1 Some auxiliary upper bounds

We begin with three lemmas that show that moguiith certain bad properties are so rare that they may
be excluded from consideration in the upper bound without effecting thie team. The first lemma will
imply that we only need to consider modylvith a “small” number of prime factors.

Lemma 3.1. Let A > 0. Asz tends to infinity, we have, uniformly h< y < z, a € [0, A,

{n <y : > ay/logz/logy z}| < yL(— ta+o0(1),2).

Here, we use the usual deflnltlons of the distinct prime divisor countingtifum w(n), and the prime
divisor counting function§2(n), which are given by

=> 1 and Qn):= ) 1L

pln pkln, k=1

Proof. The proofis a classic application of the method of parameters, also knoRargksn’s method (see,
for example, section 111.5 of [8]). IE > 1 then

’{n <y: wn) = ay/logz/logy xH < zmVlogz/logy @ Zzw(")

n<y

<eyz a\/logaz/longZ ()

nlJrl/logz
< eyzfa\/logx/logQ x<(1 + 1/10g Q?)Z
< eyzfa\/log:p/logg :E(Q log QZ)Z.

Choosingz = /log z/ log, =, we obtain the desired upper bound. O
We now introduce a functioh defined by
=[]~
r”llq
The following lemma will imply that we only need to consider modgiith h(q) < eVioge,
Lemma 3.2. For z sufficiently large, we have the following bound
Hn <z : hn) > e‘/@} <z e~5Viogwlogy @

Proof. Lety := % log . For any integen, write n = nins where all prime factors of, are< y and all
prime factors of, are> y. Forn = nins < z, we have

logx m(y) 1
< < viogr
h(nl) NS (10g2> L e2

for = sufficiently large. Therefore, integers < z with h(n) > eViogz satisfy h(ng) > e3VIeT  The
inequalityr < 2¥~! is valid for all» € N and implies that

02VI8T < p(ny) < 200n2)w(n2),
Since forp > y,
Z \/i(l’*l) logy = (log x)(logQ)/Q 1 (log ;L-)(IOBI 2)/2

= pv(1+1/logx) = p? 1 — (log x)(logQ)/Q/p < p? ’
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we have
. B S 00 \@(Q(M)—W(nz))logzw
R [T D e
< x(log x)(log 2)/267%\/10g:1:log2 m’
with the last inequality obtained by writing the Dirichlet series in the form of aleiBaroduct. O

Our final lemma of this subsection states that there cannot be too many elerhéhtwith a given
squarefree part. Here we define
ker(n) := Hp
pln

to be the “squarefree kernel” af

Lemma 3.3. Let K, H e N. For any squarefreg, there are at mosH?22«() integersn with kerin) = ¢
and withh(n) < H.

Proof. Let K = w(q). The number of integers in question is at most

H 2

> <> = H2(n2/6)K < H22K. 0
a/l DY G/K

at,...,ag €N

3.2 Combinatorics of intersecting families

We call a family of nonempty setd an intersecting family ifS N 7| > 1 forall S,T € A. (We assume
that no set is repeated i.) We call an intersecting family set-minimal if for asy<c A and a proper subset
S" c S, there existd” € A such thatS’ N T'| = 0. In particular, if|.4] = 1, then the sef € A has 1
element. Letd” denote{S € A : |S| < r}.

Lemma 3.4. If A is a set-minimal intersecting family of sets, each with at madements, and < n, then
|A"| < "L

Proof. Suppose, to the contrary that”| > rn"~!. Select a se§; € A". Then there must existan € S;
such that the number of sets 4 that containz; exceeds:”~!; otherwise,A could not be an intersecting
family. However, not all sets ipl can containe, ; otherwise {z;} is a non-trivial subset of a set A" that
intersects all sets ipl, contradicting set-minimality. Thus there exists € A that does not contain; and
anxz, € S, such that the number of sets 41" that containz;, z2 exceeds:” 2. If » > 3, then there must
be a setS3 which does not contaim; and doesn’t contaim,, and for somers € S3, the number of sets in
A" that containzy, 2o, z3 exceeds:” —2. We can continue in this way until we fingl, 2o, . . . , z, such that
there is more than one set” that contains theseelements, which is impossible. O

Remark. The proof of Lemma 3.4 follows the general steps of a proof obEm=hd Loasz ([4], p. 621).

Consider some s&@ C N of moduli with associated residu¢s, : ¢ € Q} such that the arithmetic
progressionga, mod ¢) are all disjoint. The non-intersection property is equivalent to the conditiain
for any ¢qi,¢q2 € Q there exists a primg and an exponent > 1 such thatp” | (¢1,¢2) anday, # ag,
(mod p”).

Each pairg;, g2 in @ must share at least one prime in common, but noy &l Q@ must share the same
prime: it could be that some are divisible by 2 and 3, some divisible by 3 and 5, and some by 2 and 5,
or something considerably more complicated. Regardless, if we consideulibet of elements i@ that,
say, are both divisible by 2 and 3, then each pair of numbers in this suliset, equivalent modulo 6 must
share some prime other than 2, 3.

We say a sef{ni,ns,...,n;} of squarefree integers 1 is intersecting (respectively, minimal) with
size/ if the corresponding collection of se#$ = {51, S2,...,S;} with S; = {p : p|n;} is intersecting
(respectively, set-minimal) with size
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Lemma 3.5. For any finite, intersecting sét of squarefree integers 1, there is a minimal, intersecting
setC of squarefree integers 1 such that for allB € B, there exist€' € C such thatC'| B.

Proof. Construct iteratively. Start withC = 8 and repeat the following until is minimal:
e If there existsC € C and a primep|C such thai(%, C") > 1forall C’" € C, then replac& by C'/p.
If C'/pis duplicated irC, then remove the duplicate.
This process must terminate, singes finite. g

4 Proof of the upper bound
4.1 Constructing @’

Consider a se@ C [1,z] of moduli and disjoint progressions,, mod ¢ : ¢ € Q} such thaiQ| =
f(z) =: S and suppose is large. We first construct a subset ¢ Q with cardinality S’ satisfying the
following conditions:

(1) "= 8- L(o(1), z);

(2) Ql C [:EL(—Q,JJ),{E];

(3) foreachy € @', h(q) < eVIe?;

(4) thereis an integek € [1,3,/log z/ log, x] such that for each € @', w(q) = K; and
(5) the numbers kéq) for ¢ € Q' are distinct.

By Lemmas 3.1 and 3.2, together with the already proven lower bourk] trere exists a subset ¢f
with cardinality at leasS/2 that satisfies conditions (2) and (3) and for which every element has stt mo
3+/log =/ log, = prime factors. By the pigeonhole principle, we can find a further suliserdinality at
leastS/(6+/(log z)/log, x) and an integeK € [1,34/log x/log, x] such that each element has exadtly
disctinct prime factors. Finally, using Lemma 3.3, there is a further subsgtifwve callQ’) of cardinality

at least
S

6 ( log )1/2 2K g2vlogx B

logy @

S L(o(1),x)

such that the numbers Key) for ¢ € Q' are distinct.

4.2 The descending chain
Now, as Croot did originally, we construct a descending chain of $sibse
QDQDQ DD D --DQrDQx

with corresponding cardinalitie$’ > S; > S > So > --- > Sg > S}, as well as a sequence of residue
classeq (m, mod P,)}%; such that
(1) w(P; - -+ Pr) = K and the number®, ..., Pr are pairwise coprime;
(2) foreachy € Q,, P, --- P.|q, gcd(P,, q/P,) = 1 anday, = m; (mod P;) for j < r;
(3) foreachy € 9., a, = m, (mod P,); and
(4) we have
/

) /- > r 2 r—1 r = r).
4.1 P.S. > S B (P K1 w, = w(P,)

Supposer > 1 andQ) = Q',0Q;,9),...,9,_1,Q,_, satisfy all the required conditions. L&, =
{¢/(Py---P,_1) : ¢ € Q. _,}. By Lemma 3.5 (withB = {ker(b) : b € B,}), there is a minimal,
intersecting sef, of squarefree integers so that for 8l< B,, there is & € C, with C|B. For eachB, let
C(B) denote the least|B with C' € C,.. There must exist some choicew®f > 1 such that

!/

(BB, w(C(B) =w}| > oL,
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since)_ -, 1/2% = 1. By Lemma 3.4, the number of elemerds € C, with w(C) = w, is at most
w, K" ~1. Hence, there exists some suctso that

r—1
2wrerwrfl 7 qwr wr—1"

Sinced_>° , 1/n? = 72/6, for some integeP,, composed of prime divisors &f,

Sl !
{BeB.:C(B)=C}>—"1 >

6\ 1
: == T 9 9 r) = 2 Y
{BeB,: C(B)=C,P,|B,gd(C,B/P,) =1} <W2> TR B

L S
= rer Kwr—lp(P)2°

Then we define
Q'r’ = {Pl -~-P7«_1B & Q;"—l : C(B) = C, Pr’Bngd(CvB/PT) = 1}

for this choice ofC and P,.
Now consider the subsets

Q,(a):={q€ Q,: ag=a (mod P,)}.
The union ofQ,.(a) over alla from 1 to P, is Q,, so therefore there exists such that
(4.2) |Qr(ar)| = S,/ Py

We then defin@’. := Q,(a,) for this choice ofa,.. The process terminates wh@’h consists of a single
elementpP; - - - Pp.

4.3 Completing the proof
By iterating (4.1) and lettingV, := >, _, w, andV;. := h(P; - -- P,), we have
!
ST > W12 TT" & 1 r—1 :
(% Hj:l K Hj:lpj

Letc = R/\/logx/logy x andd = K/y/log z/log, x. By Lemma 3.1,

S&Hnm w(m)zK—Wr}

<7
PP

‘/1: .
PP
This estimate is uniform ifV,..

By (3), V. < eV!°e® Comparing the upper and lower bounds $r we obtain

T . Wi —
P < §L(—%d+0(l),x) (log z)"Vr/2v2 (HK j 1) 7V
j=1

= %L (—5d+o(1),z) (logx)""/? exp {Z(wj 1) logK} .

j=1
By multiplying the upper bounds for ead?) together and using the lower bound (2), we have

R
zL(-2,2) <[] P < (%L (—%d—l—o(l),x))R
r=1

R
X exp {Z(R —r+1) (3w logy z + (w, — 1)logK)} .
r=1
We claim that the sum is maximized when = K — R + 1 andw, = 1 for r > 2. It suffices to show
that if w, > 1, r < R, then replacingv, with w,. — 1 and replacingv,.; 1 with w,y1 + 1 always decreases
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the value of the sum. Note that under such an operation onlytthend(r + 1)th terms change value, the
rth term changes by an amount

—(R—r+1)(3logyz +1logK),
while the(r 4+ 1)th term changes by an amount
(R—r) (3logyz +1ogK).

Therefore, noting thabg K < %logz x for sufficiently largez, we have

xL(-2,z) < (:c

ZL(-yd+o(1),2)"

R

X exp {éR(K —R+1)loggyz+ R(K — R)log K + %Z(R —r+ l)loggsc}
r=2

x R

< <§L (—%d + o(1), m) exp {(K - %R - %) log, :c}) .

So takingR*" roots and rearranging gives

1 3¢ d
I < - 90C “w )
S \xL< -~ 13 —i—o(l),x)
However, by Lemma 3.1, we also have tBat< zL(—3d + o(1), z). So,

1 3¢ dd
< 9. < — — - = — =
S<S - Lo(l),x) < xL< max{c + 1% 2} —|—0(1),x>

1 3 d d
<zL(— min max{f—i— C—f,f}—i—o(l),x
0<e<d<3 c 2°2
=zl (—%\/g—i— 0(1),30) .

This proves the upper bound. O

5 Conditional bounds

5.1 More on intersecting families

As we remarked in the introduction, we believe that the lower bound giveh@&oem 1 is closer to the
truth.

Conjecture 1. We havef(z) = zL(—1+ o(1), x).

We believe the weakness of our method lies in the use of Lemma 3.4. The biwendrgLemma 3.4
is, however, nearly sharp by Theorem 7 of [4] (there exist sets whth > n!). We can avoid the use of
Lemma 3.4 with the following.

Conjecture 2. There are constantg1),¢(2), ... satisfyinglogt(j) = o(jlogj) asj — oo and such that
for any finite intersecting familyl of finite sets, there is a nonempty €eto that

4]
SeA:CCS}> .
S EACE 5= ep

Remark. We can show the conclusion of Conjecture 2 with a sequéige. . . satisfyingt(j) < 77+2.

Theorem 2. Conjecture 2 implies Conjecture 1.
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Proof. The proof is nearly identical to the proof of Theorem 1, with the followindedénces. In the
“descending chain” argument (Section 4.2), apply Conjecture 2 with

A={{p:p|B}: B€B}.
We can then find a sétof w, primes with product so that
S
t(wy)

The remainder of the argument is as before, except that the facto¥ ! is replaced by (w,) throughout.
In the final section 4.3, the sum @i; — 1) log K is replaced by

R R
Zlogt(wj) = o(log K) ij = o(Klog K) = o(y/log x logs ).

j=1 j=1
This leads to the estimate

#{B B, :C|B} >

S" < max zL (—1 — Z + 0(1),3:) < azL(—=1+0(1),x). O

0<e<3 C

5.2 Sunflowers

There is a close connection between our Conjecture 2 and the theoncafiedA-sets (also known as
sunflowers). AA—system of siz& (sunflower of siz&) is a collection ofk sets whose pairwise intersec-
tions are all identical (this common intersection may be the empty set). A famohkepref Erds and
Rado [5] asks to bound(k,n), the maximum cardinality of a family af—element sets that contains no
A—set of sizek. In [5], Erdds and Rado proved that

(k —1)" < ¢(k,n) < (k — 1)"n!

and conjectured that for eaéh> 3 there is a constartt, so thatp(k,n) < C}'. The conjecture remains
open for allk, the best bound known today being Kostochka’s estimate [7]

d(k,n) < n! <3Okk’gw> .

logy n
Our conjecture 2 implies a much stronger bound.
Theorem 3. Assume Conjecture 2. Then uniformly foe 3,
log ¢(k,n) < nlog(k — 1) + o(nlogn) (n — 00).

Proof. Let A be a family ofn-element sets of maximum cardinalityk, ). In particular,. A does not
containk mutually disjoint sets. Thus, there is an intersecting subfamily. A of size > ﬁq&(k:, n). By
Conjecture 2, there is a sétso that

A ={S-C:CCSeA}
has cardinality

A 1A

(ch = (k= 1ye(iel)’

The setA; contains naA-system of sizek, since if{S;}¥_, is such aA-system, theS; U C}¥_, would
be aA-system of sizé: for A, which we know does not exist. Therefdré;| < ¢(k,n — |C|). Combining
these two estimates gives

|A1\>t

¢(k,n) < max (k—1)t(j)p(k,n - j).

1<j<n

Iterating this last inequality and usirgk, 0) = 1 yields
¢(k,n) < max (k—1)°  max_ #(j1)---1(j;) < (k —1)" exp{o(nlogn)}. 0
1<i<n Ji+-+ji=n
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