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1 Introduction and statement of results

Consider a setQ of positive integers, together with an associated family of integers{aq}q∈Q such that the
arithmetic progressions(aq mod q) are pairwise disjoint. The purpose of this paper is to provide sharper
bounds for the asymptotic growth of

f(x) := sup
Q⊂N

∣

∣Q ∩ [1, x]
∣

∣.

Erdős and Stein first conjectured thatf(x) = o(x) (see [6]). This was proved by Erdős and Szemerédi
[6], who showed that, for a particular constantc and anyǫ > 0,

x

exp {(log x)1/2+ǫ} < f(x) <
x

(log x)c

for sufficiently largex. Erdős and Szemerédi credited Stein’s help in finding this lower bound.
Croot in [2] then showed that asx tends to infinity, we have the following bounds onf(x):

xL
(

−
√
2 + o(1), x

)

6 f(x) 6 xL
(

−1
6 + o(1), x

)

.

Here we use the notationL(α, x) := exp
{

α
√

log x log2 x
}

, log2 x := log log x ando(1) stands for a
function that approaches0 asx → ∞. Croot further showed that

∣

∣Q ∩ [1, x]
∣

∣ 6 xL
(

−1
2 + o(1), x

)

,

provided thatQ contains only square-free integers. The same estimate was later proved byChen in [1] for
arbitraryQ.

We improve these results as follows.

Theorem 1. Asx tends to infinity, we have

xL(−1 + o(1), x) 6 f(x) 6 xL(−1
2

√
3 + o(1), x).

We further conjecture thatf(x) = xL(−1 + o(1), x). Our proof of the theorem will depend on investi-
gations of the multiplicative structure of elements of setsQ ⊂ [1, x] such that|Q| = f(x).

2 Proof of the lower bound

To prove the lower bound we shall construct a specific setQ ⊂ [1, x] with cardinalityxL(−1 + o(1), x)
and then show the existence of a choice of residuesaq for thisQ that ensure all the arithmetic progressions
are disjoint.

To begin, let

r :=

⌊

2

√
log x

√

log2 x

(

1− 3
√

log2 x

)⌋

,

Date: October 2, 2012.
2000Mathematics Subject Classification.Primary 11B25; Secondary 05D05.

1
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with ⌊t⌋ denoting the integer part oft. Then definey0 as the solution to the following equation

log(2y0) =
log x

r + 1
− r

4
log

(

log x

4

)

.

This gives asymptotically

(2.1) log y0 ∼ 3
√

log x.

Now we fix a primep0 ∈ [y0, 2y0]. The prime factorp0 will divide all q ∈ Q, in contrast to the construction
of Erdős and Szemerédi, and similar to the construction of Croot.

Let yk := y0(
1
4 log x)

k/2 for k ∈ N, so that forx sufficiently large and allk > 1 we have

(2.2) π(2yk+1) 6 yk

√
log x

log yk
6 yk

√
log x

log y0
< yk.

Now we define our setQ by

Q := {p0p1 · · · pr : ∀k ∈ [1, r], pk ∈ (yk, 2yk]} .
We have

Q ⊂
[

r
∏

k=0

yk, 2
r+1

r
∏

k=0

yk

]

.

Moreover,Q ⊂ [1, x], since, by the definition ofy0 andyk, we have

2r+1
r
∏

k=0

yk = (2y0)
r+1

(

1

4
log x

)r(r+1)/4

= x.

It remains to estimate|Q|. By the previous line,y1 · · · yr = eO(r)x/y0, and, by (2.1),

2
√

log x 6 log(y0) 6 log(yk) 6 log(y0) +
r

2
log

(

log x

4

)

6 3
√

log x log2 x

for sufficiently largex and for0 6 k 6 r. So therefore

|Q| =
r
∏

k=1

(π(2yk)− π(yk)) = eO(r)
r
∏

k=1

yk
log yk

=
x

(log x)r(1+o(1))/2
= xL(−1 + o(1), x).

Now we construct theaq with aq ∈ [1, q]. Eachq ∈ Q can be written asq = p0p1 · · · pr with pk ∈
[yk, 2yk]. Using the Chinese Remainder Theorem, we may defineaq entirely by its residues modulopk. Let
rk := π(pk), and noterk+1 < pk by (2.2). Then defineaq by

aq ≡ rk+1 (mod pk) (0 6 k 6 r − 1), aq ≡ 0 (mod pr).

It only remains to show that the arithmetic progressions so formed are disjoint.Let n ∈ N and suppose
there existsq ∈ Q such thatn ≡ aq (modq). We will show thatq is unique. First, letm1 be the represen-
tative of the residue classn (modp0) in [1, p0]. If we let p(m) denote themth prime number, then we have
p1 = p(m1). Iterating this procedure, we obtainpk = p(mk) wheremk is the representative of the residue
classn (mod pk−1) in [1, pk−1], and

q = p0

r
∏

k=1

p(mk).

This completes the proof of the lower bound. �
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3 Preliminary lemmata for the upper bound

3.1 Some auxiliary upper bounds

We begin with three lemmas that show that moduliq with certain bad properties are so rare that they may
be excluded from consideration in the upper bound without effecting the main term. The first lemma will
imply that we only need to consider moduliq with a “small” number of prime factors.

Lemma 3.1. LetA > 0. Asx tends to infinity, we have, uniformly in2 6 y 6 x, α ∈ [0, A],
∣

∣{n 6 y : ω(n) > α
√

log x/ log2 x}
∣

∣ 6 yL
(

− 1
2α+ o(1), x

)

.

Here, we use the usual definitions of the distinct prime divisor counting function, ω(n), and the prime
divisor counting function,Ω(n), which are given by

ω(n) :=
∑

p|n
1 and Ω(n) :=

∑

pk|n, k>1

1.

Proof. The proof is a classic application of the method of parameters, also known asRankin’s method (see,
for example, section III.5 of [8]). Ifz > 1 then

∣

∣{n 6 y : ω(n) > α
√

log x/ log2 x}
∣

∣ 6 z−α
√

log x/ log2 x
∑

n6y

zω(n)

6 e y z−α
√

log x/ log2 x
∞
∑

n=1

zω(n)

n1+1/ log x

6 e y z−α
√

log x/ log2 xζ(1 + 1/ log x)z

6 e y z−α
√

log x/ log2 x(2 log x)z.

Choosingz =
√
log x/ log2 x, we obtain the desired upper bound. �

We now introduce a functionh defined by

h(q) :=
∏

pν‖q
ν.

The following lemma will imply that we only need to consider moduliq with h(q) 6 e
√
log x.

Lemma 3.2. For x sufficiently large, we have the following bound
∣

∣

∣

{

n 6 x : h(n) > e
√
log x

}∣

∣

∣
6 x e−

1

5

√
log x log2 x.

Proof. Let y := 1
5

√
log x. For any integern, writen = n1n2 where all prime factors ofn1 are6 y and all

prime factors ofn2 are> y. Forn = n1n2 6 x, we have

h(n1) 6

(

log x

log 2

)π(y)

6 e
1

2

√
log x

for x sufficiently large. Therefore, integersn 6 x with h(n) > e
√
log x satisfyh(n2) > e

1

2

√
log x. The

inequalityν 6 2ν−1 is valid for allν ∈ N and implies that

e
1

2

√
log x

6 h(n2) 6 2Ω(n2)−ω(n2).

Since forp > y,

∑

ν>2

√
2
(ν−1) log2 x

pν(1+1/ log x)
6

(log x)(log 2)/2

p2
1

1− (log x)(log 2)/2/p
≪ (log x)(log 2)/2

p2
,
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we have
∣

∣

∣

{

n 6 x : h(n) > e
√
log x

}∣

∣

∣ 6 ex e−
1

4

√
log x log2 x

∞
∑

n=1

√
2
(Ω(n2)−ω(n2)) log2 x

n1+1/ log x

≪ x(log x)(log 2)/2e−
1

4

√
log x log2 x,

with the last inequality obtained by writing the Dirichlet series in the form of an Euler product. �

Our final lemma of this subsection states that there cannot be too many elements of Q with a given
squarefree part. Here we define

ker(n) :=
∏

p|n
p

to be the “squarefree kernel” ofn.

Lemma 3.3. LetK,H ∈ N. For any squarefreeq, there are at mostH22ω(q) integersn with ker(n) = q
and withh(n) 6 H.

Proof. LetK = ω(q). The number of integers in question is at most

∑

a1,...,aK∈N

(

H

a1 · · · aK

)2

= H2(π2/6)K 6 H22K . �

3.2 Combinatorics of intersecting families

We call a family of nonempty setsA an intersecting family if|S ∩ T | > 1 for all S, T ∈ A. (We assume
that no set is repeated inA.) We call an intersecting family set-minimal if for anyS ∈ A and a proper subset
S′ ⊂ S, there existsT ∈ A such that|S′ ∩ T | = 0. In particular, if |A| = 1, then the setS ∈ A has 1
element. LetAr denote{S ∈ A : |S| 6 r}.

Lemma 3.4. If A is a set-minimal intersecting family of sets, each with at mostn elements, andr 6 n, then
|Ar| 6 rnr−1.

Proof. Suppose, to the contrary that|Ar| > rnr−1. Select a setS1 ∈ Ar. Then there must exist anx1 ∈ S1

such that the number of sets inAr that containx1 exceedsnr−1; otherwise,A could not be an intersecting
family. However, not all sets inA can containx1; otherwise,{x1} is a non-trivial subset of a set inAr that
intersects all sets inA, contradicting set-minimality. Thus there existsS2 ∈ A that does not containx1 and
anx2 ∈ S2 such that the number of sets inAr that containx1, x2 exceedsnr−2. If r > 3, then there must
be a setS3 which does not containx1 and doesn’t containx2, and for somex3 ∈ S3, the number of sets in
Ar that containx1, x2, x3 exceedsnr−3. We can continue in this way until we findx1, x2, . . . , xr such that
there is more than one set inAr that contains theser elements, which is impossible. �

Remark. The proof of Lemma 3.4 follows the general steps of a proof of Erdős and Lov́asz ([4], p. 621).

Consider some setQ ⊂ N of moduli with associated residues{aq : q ∈ Q} such that the arithmetic
progressions(aq mod q) are all disjoint. The non-intersection property is equivalent to the conditionthat
for any q1, q2 ∈ Q there exists a primep and an exponentν > 1 such thatpν | (q1, q2) andaq1 6≡ aq2
(mod pν).

Each pairq1, q2 in Q must share at least one prime in common, but not allq ∈ Q must share the same
prime: it could be that someq are divisible by 2 and 3, some divisible by 3 and 5 , and some by 2 and 5,
or something considerably more complicated. Regardless, if we consider thesubset of elements inQ that,
say, are both divisible by 2 and 3, then each pair of numbers in this subsetwith aq equivalent modulo 6 must
share some prime other than 2, 3.

We say a set{n1, n2, . . . , nk} of squarefree integers> 1 is intersecting (respectively, minimal) with
sizeℓ if the corresponding collection of setsA = {S1, S2, . . . , Sk} with Sj = {p : p|nj} is intersecting
(respectively, set-minimal) with sizeℓ.
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Lemma 3.5. For any finite, intersecting setB of squarefree integers> 1, there is a minimal, intersecting
setC of squarefree integers> 1 such that for allB ∈ B, there existsC ∈ C such thatC|B.

Proof. ConstructC iteratively. Start withC = B and repeat the following untilC is minimal:

• If there existsC ∈ C and a primep|C such that(Cp , C
′) > 1 for all C ′ ∈ C, then replaceC byC/p.

If C/p is duplicated inC, then remove the duplicate.

This process must terminate, sinceB is finite. �

4 Proof of the upper bound

4.1 ConstructingQ′

Consider a setQ ⊂ [1, x] of moduli and disjoint progressions{aq mod q : q ∈ Q} such that|Q| =
f(x) =: S and supposex is large. We first construct a subsetQ′ ⊂ Q with cardinalityS′ satisfying the
following conditions:

(1) S′ > S · L(o(1), x);
(2) Q′ ⊂ [xL(−2, x), x];
(3) for eachq ∈ Q′, h(q) 6 e

√
log x;

(4) there is an integerK ∈ [1, 3
√

log x/ log2 x] such that for eachq ∈ Q′, ω(q) = K; and
(5) the numbers ker(q) for q ∈ Q′ are distinct.

By Lemmas 3.1 and 3.2, together with the already proven lower bound onS, there exists a subset ofQ
with cardinality at leastS/2 that satisfies conditions (2) and (3) and for which every element has at most
3
√

log x/ log2 x prime factors. By the pigeonhole principle, we can find a further subset of cardinality at
leastS/(6

√

(log x)/ log2 x) and an integerK ∈ [1, 3
√

log x/ log2 x] such that each element has exactlyK
disctinct prime factors. Finally, using Lemma 3.3, there is a further subset (which we callQ′) of cardinality
at least

S

6
(

log x
log2 x

)1/2
2Ke2

√
log x

= S · L(o(1), x)

such that the numbers ker(q) for q ∈ Q′ are distinct.

4.2 The descending chain

Now, as Croot did originally, we construct a descending chain of subsets

Q′ ⊃ Q1 ⊃ Q′
1 ⊃ Q2 ⊃ Q′

2 ⊃ · · · ⊃ QR ⊃ Q′
R

with corresponding cardinalitiesS′ > S1 > S′
1 > S2 > · · · > SR > S′

R as well as a sequence of residue
classes{(mr mod Pr)}Rr=1 such that

(1) ω(P1 · · ·PR) = K and the numbersP1, . . . , PR are pairwise coprime;
(2) for eachq ∈ Qr, P1 · · ·Pr|q, gcd(Pr, q/Pr) = 1 andaq ≡ mj (mod Pj) for j < r;
(3) for eachq ∈ Q′

r, aq ≡ mr (mod Pr); and
(4) we have

(4.1) PrS
′
r > Sr >

S′
r−1

h(Pr)27wrKwr−1
, wr = ω(Pr).

Supposer > 1 andQ′
0 = Q′,Q1,Q′

1, . . . ,Qr−1,Q′
r−1 satisfy all the required conditions. LetBr =

{q/(P1 · · ·Pr−1) : q ∈ Q′
r−1}. By Lemma 3.5 (withB = {ker(b) : b ∈ Br}), there is a minimal,

intersecting setCr of squarefree integers so that for allB ∈ Br, there is aC ∈ Cr with C|B. For eachB, let
C(B) denote the leastC|B with C ∈ Cr. There must exist some choice ofwr > 1 such that

|{B ∈ Br : ω(C(B)) = wr}| >
S′
r−1

2wr
,
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since
∑

w>1 1/2
w = 1. By Lemma 3.4, the number of elementsC ∈ Cr with ω(C) = wr is at most

wrK
wr−1. Hence, there exists some suchC so that

|{B ∈ Br : C(B) = C}| > S′
r−1

2wrwrKwr−1
>

S′
r−1

4wrKwr−1
.

Since
∑∞

n=1 1/n
2 = π2/6, for some integerPr, composed of prime divisors ofC,

|{B ∈ Br : C(B) = C,Pr|B, gcd(C,B/Pr) = 1}| >
(

6

π2

)wr S′
r−1

4wrKwr−1h(Pr)2

>
S′
r−1

7wrKwr−1h(Pr)2
.

Then we define

Qr :=
{

P1 · · ·Pr−1B ∈ Q′
r−1 : C(B) = C, Pr|B, gcd(C,B/Pr) = 1

}

for this choice ofC andPr.
Now consider the subsets

Qr(a) := {q ∈ Qr : aq ≡ a (mod Pr)}.
The union ofQr(a) over alla from 1 to Pr isQr, so therefore there existsar such that

(4.2) |Qr(ar)| > Sr/Pr.

We then defineQ′
r := Qr(ar) for this choice ofar. The process terminates whenQ′

R consists of a single
elementP1 · · ·PR.

4.3 Completing the proof

By iterating (4.1) and lettingWr :=
∑r

k=1wr andVr := h(P1 · · ·Pr), we have

Sr >
S′

7WrV 2
r

∏r
j=1K

wj−1
∏r−1

j=1 Pj

.

Let c = R/
√

log x/ log2 x andd = K/
√

log x/ log2 x. By Lemma 3.1,

Sr 6

∣

∣

∣

∣

{

m 6
x

P1 · · ·Pr
: ω(m) = K −Wr

}∣

∣

∣

∣

6
x

P1 · · ·Pr
L
(

−1
2d+ o(1), x

)

(log x)Wr/2.

This estimate is uniform inWr.
By (3),Vr 6 e

√
log x. Comparing the upper and lower bounds forSr, we obtain

Pr 6
x

S′L
(

−1
2d+ o(1), x

)

(log x)Wr/2V 2
r





r
∏

j=1

Kwj−1



 7Wr

=
x

S′L
(

−1
2d+ o(1), x

)

(log x)Wr/2 exp







r
∑

j=1

(wj − 1) logK







.

By multiplying the upper bounds for eachPj together and using the lower bound (2), we have

xL(−2, x) 6

R
∏

r=1

Pr 6

( x

S′L
(

−1
2d+ o(1), x

)

)R

× exp

{

R
∑

r=1

(R− r + 1)
(

1
2wr log2 x+ (wr − 1) logK

)

}

.

We claim that the sum is maximized whenw1 = K − R + 1 andwr = 1 for r > 2. It suffices to show
that if wr > 1, r < R, then replacingwr with wr − 1 and replacingwr+1 with wr+1 + 1 always decreases
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the value of the sum. Note that under such an operation only therth and(r + 1)th terms change value, the
rth term changes by an amount

−(R− r + 1)
(

1
2 log2 x+ logK

)

,

while the(r + 1)th term changes by an amount

(R− r)
(

1
2 log2 x+ logK

)

.

Therefore, noting thatlogK < 1
2 log2 x for sufficiently largex, we have

xL(−2, x) 6
( x

S′L
(

−1
2d+ o(1), x

)

)R

× exp

{

1
2R(K −R+ 1) log2 x+R(K −R) logK + 1

2

R
∑

r=2

(R− r + 1) log2 x

}

6

( x

S′L
(

−1
2d+ o(1), x

)

exp
{

(K − 3
4R− 1

4) log2 x
}

)R
.

So takingRth roots and rearranging gives

S′
6 xL

(

−1

c
− 3c

4
+

d

2
+ o(1), x

)

.

However, by Lemma 3.1, we also have thatS′ 6 xL(−1
2d+ o(1), x). So,

S 6 S′ · L(o(1), x) 6 xL

(

−max
{1

c
+

3c

4
− d

2
,
d

2

}

+ o(1), x

)

6 xL

(

− min
06c6d63

max
{1

c
+

3c

4
− d

2
,
d

2

}

+ o(1), x

)

= xL
(

−1
2

√
3 + o(1), x

)

.

This proves the upper bound. �

5 Conditional bounds

5.1 More on intersecting families

As we remarked in the introduction, we believe that the lower bound given in Theorem 1 is closer to the
truth.

Conjecture 1. We havef(x) = xL(−1 + o(1), x).

We believe the weakness of our method lies in the use of Lemma 3.4. The bound given in Lemma 3.4
is, however, nearly sharp by Theorem 7 of [4] (there exist sets with|An| > n!). We can avoid the use of
Lemma 3.4 with the following.

Conjecture 2. There are constantst(1), t(2), . . . satisfyinglog t(j) = o(j log j) asj → ∞ and such that
for any finite intersecting familyA of finite sets, there is a nonempty setC so that

#{S ∈ A : C ⊆ S} >
|A|
t(|C|) .

Remark. We can show the conclusion of Conjecture 2 with a sequencet(1), . . . satisfyingt(j) ≪ jj+2.

Theorem 2. Conjecture 2 implies Conjecture 1.
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Proof. The proof is nearly identical to the proof of Theorem 1, with the following differences. In the
“descending chain” argument (Section 4.2), apply Conjecture 2 with

A =
{

{p : p|B} : B ∈ Br

}

.

We can then find a setC of wr primes with productC so that

#{B ∈ Br : C|B} >
S′
r−1

t(wr)
.

The remainder of the argument is as before, except that the factorwrK
wr−1 is replaced byt(wr) throughout.

In the final section 4.3, the sum of(wj − 1) logK is replaced by

R
∑

j=1

log t(wj) = o(logK)
R
∑

j=1

wj = o(K logK) = o(
√

log x log2 x).

This leads to the estimate

S′
6 max

06c63
xL

(

−1

c
− c

4
+ o(1), x

)

6 xL(−1 + o(1), x). �

5.2 Sunflowers

There is a close connection between our Conjecture 2 and the theory of so-called∆-sets (also known as
sunflowers). A∆−system of sizek (sunflower of sizek) is a collection ofk sets whose pairwise intersec-
tions are all identical (this common intersection may be the empty set). A famous problem of Erd̋os and
Rado [5] asks to boundφ(k, n), the maximum cardinality of a family ofn−element sets that contains no
∆−set of sizek. In [5], Erdős and Rado proved that

(k − 1)n 6 φ(k, n) < (k − 1)nn!

and conjectured that for eachk > 3 there is a constantCk so thatφ(k, n) 6 Cn
k . The conjecture remains

open for allk, the best bound known today being Kostochka’s estimate [7]

φ(k, n) ≪k n!

(

30k log3 n

log2 n

)n

.

Our conjecture 2 implies a much stronger bound.

Theorem 3. Assume Conjecture 2. Then uniformly fork > 3,

log φ(k, n) 6 n log(k − 1) + o(n logn) (n → ∞).

Proof. Let A be a family ofn-element sets of maximum cardinalityφ(k, n). In particular,A does not
containk mutually disjoint sets. Thus, there is an intersecting subfamilyA′ ⊆ A of size > 1

k−1φ(k, n). By
Conjecture 2, there is a setC so that

A1 = {S − C : C ⊆ S ∈ A}
has cardinality

|A1| >
|A′|
t(|C|) >

|A|
(k − 1)t(|C|) .

The setA1 contains no∆-system of sizek, since if{Si}ki=1 is such a∆-system, then{Si ∪ C}ki=1 would
be a∆-system of sizek for A, which we know does not exist. Therefore|A1| 6 φ(k, n− |C|). Combining
these two estimates gives

φ(k, n) 6 max
16j6n

(k − 1)t(j)φ(k, n− j).

Iterating this last inequality and usingφ(k, 0) = 1 yields

φ(k, n) 6 max
16i6n

(k − 1)i max
j1+···+ji=n

t(j1) · · · t(ji) 6 (k − 1)n exp{o(n logn)}. �
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