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Abstract. Let 1 ≤ k ≤ d and consider a subset E ⊂ Rd. In this paper, we study the
problem of how large the Hausdorff dimension of E must be in order for the set of distinct
noncongruent k-simplices in E (that is, noncongruent point configurations of k + 1 points
from E) to have positive Lebesgue measure. This generalizes the k = 1 case, the well-
known Falconer distance problem and a major open problem in geometric measure theory.
Many results on Falconer type theorems have been established through incidence theorems,
which generally establish sufficient but not necessary conditions for the point configuration
theorems. We establish a dimensional lower threshold of d+1

2 on incidence theorems for
k-simplices where k ≤ d ≤ 2k + 1 by generalizing an example of Mattila. We also prove a
dimensional lower threshold of d+1

2 on incidence theorems for triangles in a convex setting in
every dimension greater than 3. This last result generalizes work by Iosevich and Senger on
distances that was built on a construction by Valtr. The final result utilizes number-theoretic
machinery to estimate the number of solutions to a Diophantine equation.

1. Introduction

The Falconer distance problem, introduced in [F85], can be stated as follows: How large
does the Hausdorff dimension of E ⊂ Rd need to be to ensure that the Euclidean distance
set ∆(E) = { |x − y| : x, y ∈ E} ⊂ R has positive one-dimensional Lebesgue measure?
This problem can be viewed as a continuous analogue of the famous Erdős distinct distance
problem [GIS, M95]. The current best partial results, due to Wolff [W99] in the plane
and Erdoğan [E05] in higher dimensions, say that the one-dimensional Lebesgue measure of
∆(E), denoted L1(∆(E)), is indeed positive if dimH(E) > d

2
+ 1

3
where dimH(E) denotes

the Hausdorff dimension of E. As distance is a configuration that only involves two points,
analogous questions can be posed for configurations that involve more points. For example,
we may consider the set of noncongruent triples of points in E, that is, points which form
noncongruent triangles. In the discrete setting such questions have been studied for decades
[PS], while recently there has been a flurry of activity in the continuous setting where angles
[IMP], simplices [EIH, GI, GILP15, GILP16], volumes [GIM], and a more general approach
to multi-point configurations [GGIP] have been examined.

In this paper the point configurations we focus on are simplices. For d ≥ 2 and 1 ≤ k ≤ d
we say, following [GILP15], that the set of distinct noncongruent k-simplices determined
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by E ⊆ Rd is Tk,d(E) := Ek+1/ ∼, where (x1, . . . ,xk+1) ∼ (y1, . . . ,yk+1) provided that
(x1, . . . ,xk+1), (y1, . . . ,yk+1) form non-degenerate k-simplices and |xi − xj| = |yi − yj| for

all 1 ≤ i < j ≤ k + 1. We can map Tk,d(E) ↪→ R(k+1
2 ) by mapping a k-simplex to the(

k+1
2

)
-tuple of its distances, thus it makes sense to take the

(
k+1
2

)
-dimensional Lebesgue

measure of Tk,d(E). Define αk,d to be the infimum of all α for which dimH(E) > α implies

L(k+1
2 )(Tk,d(E)) > 0. The first Falconer type theorem for simplices was established by Green-

leaf and Iosevich [GI], where, in the special case of triangles in the plane, they established the
upper bound α2,2 ≤ 7

4
. This result was extended by Grafakos, Greenleaf, Iosevich and the

sixth listed author [GGIP] to the following upper bound for all simplices in all dimensions:
αk,d ≤ d− d−1

2k
. These results were further improved by Greenleaf, Iosevich, Lu and the sixth

listed author [GILP15] to α2,2 ≤ 8
5

and in the general case αk,d ≤ dk+1
k+1

. Using a different

approach Erdoğan, Iosevich and Hart [EIH] obtained the upper bound αk,d ≤ d+k+1
2

, which
recently has been improved by Greenleaf, Iosevich, Lu and the sixth listed author [GILP16]
to αk,d ≤ d+k

2
. In certain situations these bounds beat the previous ones, but in some of the

most natural situations, such as when d = k, they only give trivial information.
All these positive results naturally lead to the question of whether they are sharp. Using

a set obtained by a suitable scaling of the thickened integer lattice, Falconer [F86] showed a
lower bound of d

2
for his distance problem, i.e., d

2
≤ α1,d. This led him to conjecture α1,d = d

2
,

which remains open. For higher order simplices the trivial observation that max
{
k − 1, d

2

}
≤

αk,d had been made. The first part of the lower bound says that there are not many k-
simplices in a k− 1-dimensional set, e.g. there are not many triangles on a line. The second
part of the lower bound says that if there are many different k-simplices then there are many
different distances, therefore Falconer’s lower bound for distances also applies for k-simplices.
The only non-trivial lower bound for higher order simplices is one for triangles in the plane,
obtained by Erdoğan and Iosevich, but first published in [GILP15], that says 3

2
≤ α2,2. This

was obtained by counting triangles in an integer lattice. In summary, not much is known
about sharpness of results but in this paper we address some questions about the sharpness
of the techniques used.

1.1. Lower bounds for Falconer type incidence theorems. In his original paper Fal-
coner obtained the threshold α1,d ≥ d

2
+ 1

2
by proving an incidence theorem. He showed that

if the Hausdorff dimension of E is above d
2

+ 1
2

then uniform estimates for t > 0 of the form

ν × ν{(x,y) : t− ε ≤ |x− y| ≤ t+ ε} �d,E ε (1.1)

hold for a Frostman measure ν supported on E. A Frostman measure is a probability
measure, so one can interpret the above inequality as the probability that |x− y| is near a
fixed distance t. In [GI] and [GGIP], a similar approach was taken and incidence theorems
of the type

ν × · · · × ν{(x1, . . . ,xk+1) : tij − ε ≤ |xi − xj| ≤ tij + ε (i 6= j)} �k,d,E ε(
k+1
2 ), (1.2)

where {tij}1≤i<j≤k+1 is a collection of positive real numbers, were proven.

In [M85], Mattila showed for d = 2 that Falconer’s incidence theorem (1.1) does not in
general hold if the Hausdorff dimension of E is strictly less than d

2
+ 1

2
= 3

2
. This means that

his original approach is sharp in terms of the technique used. Note that this does not imply
that his distance theorem is sharp, and as mentioned before, it has since been improved from
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d
2

+ 1
2

down to d
2

+ 1
3
. In [GI], Greenleaf and Iosevich extended Mattila’s example to triangles

in the plane (k = 2,d = 2) and showed that the incidence theorem they obtained does not in
general hold if the Hausdorff dimension of E is strictly less than 7

4
, which shows that their

incidence theorem is sharp. Again this does not imply that the point configuration problem
is sharp and indeed the dimensional threshold was improved to 8

5
in [GILP15]. This brings

us to the first result of the paper.

Proposition 1.1. For any k and d where k ≤ d ≤ 2k + 1, the incidence estimate for
k-simplices, i.e., the estimate given in (1.2), can fail for measures supported on sets with
Hausdorff dimension less than d+1

2
.

We prove this proposition in Section 2 by extending the constructions of Mattila and
Greenleaf and Iosevich. We remark that the dimensional threshold obtained in the incidence
theorems in [GGIP] is d − d−1

2k
, so for k > 1, unlike the previously mentioned results, there

is a gap between the threshold from the construction and the threshold from the incidence
theorems.

1.2. Lower bounds for Falconer type incidence theorems in convex domains. The
key ingredient in both Falconer’s incidence theorem and the incidence theorem from [GGIP]
is that if σ denotes the Lebesgue measure on the unit sphere, then

|σ̂(ξ)| � |ξ|−
d−1
2 .

This implies that both incidence theorems still hold if the Euclidean distance | · | is replaced
by ‖ · ‖B, where B is a symmetric convex body with a smooth boundary and everywhere
non-vanishing Gaussian curvature.

Mattila’s construction, which shows his incidence theorem does not in general hold if the
Hausdorff dimension of E is strictly less than d

2
+ 1

2
, was originally proven in the case d = 2

and extends to d = 3 but does not seem to extend to higher dimensions. Iosevich and Senger
[IS] showed, building on a construction by Valtr [V], that the more general incidence theorem
involving a norm derived from a symmetric convex body can fail if the Hausdorff dimension
of E is strictly less than d

2
+ 1

2
for all d ≥ 2. Our second and main result is the following

theorem that establishes an analogous result in the case of triangles (k = 2).

Theorem 1.2. For d > 3 there exists a symmetric convex body B with a smooth boundary
and non-vanishing Gaussian curvature such that for any s < (d+ 1)/2, there exists a Borel
measure µs such that Is(µs) = O(1) and

lim sup
ε→0

ε−3µs × µs × µs{(x1,x2,x3) : 1− ε ≤ ‖xi − xj‖B ≤ 1 + ε (i < j)} = ∞; (1.3)

i.e., the incidence theorem fails.

Here Is(µs) denotes the energy integral

Is(µs) =

∫ ∫
|x− y|−s dµs(x) dµs(y),

and the condition Is(µs) = O(1) simply means that the measure µs is supported on a set of
Hausdorff dimension at least s.

We prove this proposition in Section 3. The main ingredient in the proof is some interesting
number theory that arises when we count the number of equilateral triangles in this convex
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norm. We attempted to extend this result to tetrahedra but encounter a harder number
theory problem. In Section 4 we set up the problem and pose the number theory problem
that can resolve it.

1.3. Notation. Vector quantities will be denoted in boldface type, e.g. x or yj. The
notation f = O(g), f � g, g � f and g = Ω(f) have the usual meaning, that there is
a positive constant C so that |f | ≤ C|g| throughout the domain of f . If the constant C
depends on any parameter, then this is indicated by a subscript, e.g. f(x) = Oε(x

1+ε). The
notation f � g means that both f � g and g � f hold, that is, there are positive constants
c1, c2 such that c1g ≤ f ≤ c2g (we can say that f and g have the same order).

2. Proof of Proposition 1.1

We proceed by generalizing the example of Mattila presented in [IS], which was introduced
in [M85], and generalized to triangles in the plane in [GI]. For 0 ≤ α ≤ 1, let Cα denote the
standard α-dimensional Cantor set contained in the interval [0, 1]. Set Fαi = Cαi∪(Cαi − 1),
and let Ed = Fα1 × · · · × Fαd , where we give E the product measure arising from the the

α-dimensional Hausdorff measure, Hα, on Fα. Hence dimHEd =
∑d

i=1 αi [M95].
Now fix a point x in E, and pick out a k-simplex of E containing x so that each of the

edges from x of the simplex have length 1 and they are all orthogonal at x. Then we may
fatten each of the nodes of the simplex besides x to an ε×· · ·× ε×

√
ε×· · ·×

√
ε box, where

there are k sides of length ε and d − k sides of length
√
ε. Each of the points within these

boxes form a k + 1 simplex along with x. Further, each axis aligned box has measure

ε
∑k
i=1 αi+

∑d
i=k+1 αi/2.

Thus the combined measure of each of the k boxes we have selected is

εk(
∑k
i=1 αi+

∑d
i=k+1 αi/2). (2.1)

Integrating over all possible values of x, we see that (2.1) is a lower bound for the left hand

side of (1.2). In order for this bound to be a larger order of magnitude than ε(
k+1
2 ), we must

have

k∑
i=1

αi +
d∑

i=k+1

αi/2 ≤
k + 1

2
,

while simultaneously satisfying dimHE ≤ d+1
2

and 0 ≤ αi ≤ 1. Hence for 1 ≤ i ≤ k set αi
equal to (2k + 1− d)/2k and for k + 1 ≤ i ≤ d set αi equal to 1. Then

∑d
i=1 αi = d+1

2
while

the previous sum is equal to k+1
2

. Note that the choice of the first k values of αi gives us the
restriction that d ≤ 2k + 1.
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3. Counting Triangles in a Convex Norm

To begin, we define a convex body, B, which induces a norm on Rd. Let

BU =

{
(x1, x2, . . . , xd) ∈ Rd :

d−1∑
i=1

x2i ≤ 1 and xd = 1− (x21 + · · ·+ x2d−1)

}
(3.1)

BL =

{
(x1, x2, . . . , xd) ∈ Rd :

d−1∑
i=1

x2i ≤ 1 and xd = −1 + (x21 + · · ·+ x2d−1)

}
. (3.2)

Then BL = −BU , and define B = BU ∪ BL and the induced norm ‖·‖B with unit ball B.

In other words, the point (x1, ..., xd) in Rd is at unit distance from the origin if
∑d−1

i=1 x
2
i ≤ 1

and either xd = 1 −
∑d−1

i=1 x
2
i or xd = −1 +

∑d−1
i=1 x

2
i , depending on whether x lies on the

upper or lower hemisphere of the unit paraboloid, respectively. Hence the points x and y
are at unit distance if x− y lies on the unit paraboloid.

Now consider the lattice

Ln =

{(
i1
n
, · · · , id−1

n
,
id
n2

)
: (i1, . . . , id) ∈ Z

}
.

Lemma 3.1. The number of unit equilateral triangles (0,x,y) with x,y ∈ B∩Ln is Ω(n2d−4)
for d > 3.

Proof. It suffices to examine choices of points x on BL and y on BU . These points are of the
form

x =

(
x1
n
, . . . ,

xd−1
n

,−1 +
d−1∑
i=1

x2i
n2

)

y =

(
y1
n
, . . . ,

yd−1
n

, 1−
d−1∑
i=1

y2i
n2

)
and are depicted in Figure 1. Now we must ensure that x − y is also of unit length, hence
we must have that

d−1∑
i=1

(xi − yi)2 ≤ n2, (3.3)

and x− y lies on either BU or BL.

x− y =

(
x1 − y1
n

, . . . ,
xd−1 − yd−1

n
,−2 +

d−1∑
i=1

x2i + y2i
n2

)
,

and so for this vector to lie on BL, the final component of this vector must satisfy:

−2 +
d−1∑
i=1

x2i + y2i
n2

= −1 +
d−1∑
i=1

(xi − yi)2

n2
.

This yields a Diophantine equation whose number of solutions we will bound below:

d−1∑
i=1

xiyi =
n2

2
, (3.4)
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O
x

y

Figure 1. Illustration of the configuration of x and y in this convex norm.

where the xi, yi are integers satisfying
∑d−1

i=1 x
2
i ≤ n2,

∑d−1
i=1 y

2
i ≤ n2, and

∑d−1
i=1 (xi−yi)2 ≤ n2.

We now apply the following.

Lemma 3.2. Fix λ > 1. Let an be the number of solutions to

n = xi+ yj,

where each of i, j, x, y ∈ [−λ
√
n, λ
√
n] ∩ Z. Then an ≥ cλn+O (

√
n log n), where

cλ =
9λ2 − (6 + 2π)λ+ (2π − 3)

4π2
.

Proof. To prove this, we will use the following lemma, which is Theorem 330 from Hardy
and Wright, [HW].

Lemma 3.3. Let φ(m) denote the number of positive integers less than n that are coprime
to n. Then

Φ(m) =
m∑
j=1

φ(m) =
3m2

π2
+O(m logm).

Consider the set A = [
√
n, λ
√
n]. We want a lower bound on the number of pairs of positive

integers, i, j ∈ A, that are relatively prime. Set m1 =
⌈(

λ+1
2

)√
n
⌉

and m2 = bλ
√
nc. Given

an integer, m ∈ A, the we can estimate the number of integers in A that are relatively prime
to it from below by φ(m)−

√
n. Summing this over the 1

2
(λ− 1)

√
n terms in the upper half

of A gives us a lower bound on the number of coprime pairs of integers in A:

Φ(m2)− Φ(m1)−
(

1

2
(λ− 1)

√
n

)√
n.

We apply Lemma 3.3 twice to get that this is bounded below by

3
(
λ2 − λ2+2λ+1

4

)
n

π2
− (λ− 1)n

2
+O(

√
n log n).

Putting this together, we see that for sufficiently large n there will be at least(
9λ2 − (6 + 2π)λ+ (2π − 3)

4π2

)
n+O

(√
n log n

)
= cλn+O

(√
n log n

)
6



pairs of coprime numbers in A. We now show that each such pair gives rise to a solution.
Namely, there is a solution of ix+ jy = n with 0 < x ≤ j. We have y < n/j ≤

√
n and

y ≥ n− ij
j

=
n

j
− i ≥ −λ

√
n. �

We can now show that there are Ω(n2d−4) solutions to the system (3.4). We pick a range

[
√
an,
√
bn] for the xj and yj to vary in where 1 ≤ j ≤ d − 3, so that to each value they

assume we may apply the previous lemma and obtain on the order of n2 solutions in the
remaining variables xd−2, xd−1, yd−2, yd−1. We put a = 1

4(d−3) and b = 1
3(d−3) and find that

there are αn2d−6 choices of the xj and yj, with j = 1, . . . , d− 3, with

α =

(√
1

3(d− 3)
−

√
1

4(d− 3)

)2d−6

,

that satisfy

n2

6
≤ n2

2
−

d−3∑
i=1

xjyj ≤
n2

4
, (3.5)

and
d−3∑
j=1

x2j ≤
n2

3
,

d−3∑
j=1

y2j ≤
n2

3
,

d−3∑
j=1

(xj − yj)2 ≤
n2

6
. (3.6)

Hence for a given choice of xj, yj ∈ [
√
an,
√
bn], we are left solving an equation

m = xd−2yd−2 + xd−1yd−1,

where n2/6 ≤ m ≤ n2/4. Let λ = 1.05. By Lemma 3.2 for each m in this range there are at
least cλn

2 + O (n log n) (with cλ = c1.05 ≈ .308 . . . ) solutions xd−2, yd−2, xd−1, yd−1, with the
absolute value of each of these numbers being less than λn/2. For each such solution, we
have

d−1∑
j=1

x2j ≤ (1/3 + λ2/2)n2 ≤ n2,

and similarly for
∑d−1

j=1 y
2
j . Further, by using the lower bound on m to estimate the cross

term and the bounds on the absolute values of xd−2, yd−2, xd−1, and yd−1, we obtain that

d−1∑
j=1

(xj − yj)2 ≤

(
d−3∑
j=1

(xj − yj)2
)

+
(
x2d−2 − 2xd−2yd−2 + y2d−2

)
+
(
x2d−1 − 2xd−1yd−1 + y2d−1

)
≤ n2

6
+ x2d−2 + y2d−2 + x2d−1 + y2d−1 − 2m ≤

(
1

6
+ λ2 − 1

3

)
n2 ≤ .94n2 < n2,

as required by (3.3).
Hence there are at least cλn

2 + O (n log n) choices of xd−2, xd−1, yd−2, yd−1 that allow us
to solve the equation with the three additional constraints. Thus, as there are αn2d−6

choices of xj, yj ∈ [
√
an,
√
bn] for 1 ≤ j ≤ d − 3, satisfying (3.5) and (3.6), there are

cλαn
2d−4 +O (n log n) = Ω

(
n2d−4) solutions to the equation (3.4). �
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Proof of Theorem 1.2. We first count the total number of unit triangles in Ln that have a
point in [0, 1)d. For each one of the nd+1 points P in Ln∩ [0, 1)d, the translation of Ln by P
is just Ln itself, hence by Lemma 3.1 there are Ω(n2d−4) distinct unit triangles in Ln with
one point being P . So, we have Ω(n3d−3) total unit triangles in Ln which include a point in
[0, 1)d.

We now construct the measure µs—this construction is analogous to that in [IS], except
that we need to consider a larger configuration of points. To do this, partition space into
lattice cubes of side length εs = 1/nd+1 for some large integer n and d

2
≤ s ≤ d+1

2
as this

range is non-trivial. Now set µs to be the Lebesgue measure on those cubes containing a
point of Ln, our lattice, normalized by εs−d and furthermore restricted to lie in some large
box, i.e.,

dµs(x) = εs−d
∑

p∈Ln∩[−2,2]d
χRε(p)(x) dx,

where Rε(p) denotes the cube of side-length ε centered at p. It then follows by Lemma 2.1
in [IS] that

Is(µs) = O(1),

and moreover that by normalizing we can take
∫
dµs = 1 as well.

We now have that

µs × µs × µs{(x1,x2,x3) : 1 ≤ ‖xi − xj‖B ≤ 1 + ε (i < j)} � ε3sn3(d+1)−6 = εs
6
d+1 ,

as each triangle we counted in our point configuration contributes ε3s to the measure. There-
fore, the estimate (1.3) fails for all s < d+1

2
, for every d > 3. �

4. Counting Tetrahedra in a Convex Norm

In this section we give the natural generalization of the previous section’s argument to
counting tetrahedra in the Valtr construction. We present a system of equations which
governs the number of tetrahedra and present this number-theoretic problem as an open
question.

Define BU and BL as above in (3.1), (3.2). We now consider the unit ball centered about
the origin, and we choose points x and y on BU , and z on BL.

Recall that these points are of the form

x =

(
x1
n
, . . . ,

xd−1
n

, 1−
d−1∑
i=1

x2i
n2

)

y =

(
y1
n
, . . . ,

yd−1
n

, 1−
d−1∑
i=1

y2i
n2

)

z =

(
z1
n
, . . . ,

zd−1
n

,−1 +
d−1∑
i=1

z2i
n2

)
.

We must ensure that the relevant vectors (x − y), (z − x), and (z − y) are all of unit
length. For example, we may insist that

x− y =

(
x1 − y1
n

, . . . ,
xd−1 − yd−1

n
,

d−1∑
i=1

y2i − x2i
n2

)
,
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lie on BU , which implies that

d−1∑
i=1

y2i − x2i
n2

= 1−
d−1∑
i=1

(yi − xi)2

n2
.

Simplifying the above equation and performing similar computations for the other cases
(z−x) and (z−y) we obtain two additional equations, which are of a different form as x,y
and z lie on opposite hemispheres. This yields our concluding question.

Question 4.1. Let an be the number of solutions to the following system of equations

d−1∑
i=1

y2i =
n2

2
+

d−1∑
i=1

xiyi

d−1∑
i=1

xizi =
n2

2

d−1∑
i=1

yizi =
n2

2
,

where each xi, yi, zi ∈ [−n, n], and
∑d−1

i=1 x
2
i ≤ n2,

∑d−1
i=1 (xi − yi)2 ≤ n2, etc. Is an at least

Ω(n3d−6)?
Given this solution, the expression of interest is

ε4s ·N4− 9
d+1 � ε6.
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