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ON BOMBIERI’S ASYMPTOTIC SIEVE

KEVIN FORD

Abstract. If a sequence (an) of non-negative real numbers has “best pos-
sible” distribution in arithmetic progressions, Bombieri showed that one can
deduce an asymptotic formula for the sum

∑
n≤x anΛk(n) for k ≥ 2. By

constructing appropriate sequences, we show that any weakening of the well-
distribution property is not sufficient to deduce the same conclusion.

1. Introduction

Many of the most famous problems in number theory can be described in terms
of estimating the number of primes in an integer sequence. More generally, given a
sequence (an) of positive real numbers (e.g. the characteristic function of a set of
natural numbers), one can ask for bounds on the sum

S1(x) =
∑
n≤x

anΛ(n),

where Λ is the von Mangoldt function. Removing from the sequence those terms
with n divisible by a prime ≤ z leaves behind only terms with n composed of at most
� log x

log z � prime factors. If z >
√

x, then only terms with n prime are left. Motivated by
this simple fact, the modern sieve was created by V. Brun ([3], [4]) to attack such
problems, in particular, the Twin Prime Conjecture and Goldbach’s Conjecture.
Estimating the number of “unsifted” elements is usually accomplished by means
of a weighted form of inclusion-exclusion, its precision entirely determined by the
regularity of the sequence on the arithmetic progressions 0 mod d for squarefree d
(see the monographs [8] and [9] for more about sieve procedures). Writing

Ad(x) =
∑
n≤x
d|n

an,

one postulates the existence of a multiplicative function g so that

Ad(x) = g(d)A(x) + rd(x),

where A(x) is an approximation to A1(x) and the “remainders” rd(x) are small in
some average sense. A typical hypothesis is

R(ν) : ∀B > 0,
∑

d≤xν

|rd(x)| �ν,B
A(x)
logB x

.
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1664 KEVIN FORD

One also needs mild growth conditions on A(x) and regularity conditions on g.
There is some flexibility in choosing these conditions (see e.g. [2], [5], [6], [8], [9]),
and generally these are easy to verify in practice. We say that a sieve problem has
sifting density or dimension κ if g(p) is about κ/p on average over primes p. In the
important special case κ = 1, one expects for many problems that

(1.1) S1(x) ∼ HA(x), H =
∏
p

(1 − g(p))(1 − 1/p)−1.

For example, for the twin prime problem, we take an = Λ(n + 2), A(x) = x,
g(d) = 1

φ(d) for odd d and g(d) = 0 for even d. It is known that R(ν) holds for all
ν < 1/2 (the Bombieri-Vinogradov theorem), and it is conjectured that R(ν) holds
for all ν < 1.

That sieve methods cannot produce (1.1) was discovered by Selberg [10] in the
1940s. His example is an = 1 + λ(n), where λ(n) = (−1)k if n is the product of k
primes (not necessarily distinct). With A(x) = x and g(d) = 1/d, R(ν) holds for
all ν < 1, but an = 0 for prime n and

S1(x) = O(
√

x) = O(A(x)x−1/2).

In a sense, sieve procedures cannot distinguish between numbers with an even
number of prime factors and an odd number of prime factors, a property known as
the “parity problem”. Bombieri ([1], [2]) clarified things further, showing essentially
that knowledge of R(ν) for all ν < 1 (and no other information about the sequence)
implies an asymptotic formula for

∑
n≤x anf(n) if and only if f gives “equal weight”

to numbers with an even number of prime factors and an odd number of prime
factors. The generalized von Mangoldt functions

(1.2) Λk(n) =
∑
d|n

µ(d) logk(n/d)

have this property for k ≥ 2 (in fact, these functions together with convolutions of
the type Λi1 ∗ · · · ∗Λij (i1 + · · ·+ ij ≥ 2) form a kind of basis for all such f ; see [2]
for details). In particular, Bombieri proved that if R(ν) for all ν < 1, then

(1.3) Sk(x) :=
∑
n≤x

anΛk(n) ∼ kHA(x)(log x)k−1.

A different proof of (1.3) was given by Friedlander and Iwaniec [5]. The required
conditions on A(x) and g differ in [2] and [5], but they are all trivially satisfied if
A(x) = x and g(d) = 1/d (here H = 1).

The special case of (1.3) corresponding to k = 2 and an = 1 for all n was earlier
proved by Selberg, and it served as a foundation for the first “elementary” proofs
of the Prime Number Theorem.

It is natural to inquire what may be deduced from R(ν) for some fixed ν < 1.
For twin primes, Bombieri [1] deduced from R(ν) for ν < 1/2 that

1 − ck ≤ Sk(x)
kHA(x)(log x)k−1

≤ 1 + ck,

where c2, . . . are constants with ck → 0 as k → ∞. We show that knowing R(ν)
for any fixed ν < 1 is not sufficient to deduce (1.3) for any k.
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ON BOMBIERI’S ASYMPTOTIC SIEVE 1665

Theorem 1. Fix ν ∈ (0, 1). There is a sequence (an) which satisfies R(ν) with
A(x) = x and g(d) = 1/d, and for which (1.3) fails for every k ≥ 1. Furthermore,
we can specify the manner in which (1.3) fails, constructing (an) so that

Tk(x) :=
Sk(x)

kx(log x)k−1

satisfies either (i) Tk(x) ∼ ξk with ξk < 1 for every k; or (ii) Tk(x) ∼ ξk with
ξk > 1 for every k; or (iii) for every k, lim sup

x→∞
Tk(x) > 1 and lim inf

x→∞
Tk(x) < 1.

By slightly modifying the construction of the sequence (an), we can create se-
quences satisfying Theorem 1 for which an ∈ {0, 1, 2} for every n.

Recently there was a major breakthrough on the parity problem by Friedlander
and Iwaniec [6]. They proved S1(x) ∼ HA(x) under two major assumptions. First,
R(ν) holds for some ν > 2/3. Second, the bilinear sum condition∑

m

∣∣∣∣ ∑
N<n≤2N

mn≤x

γ(n, C)µ(mn)amn

∣∣∣∣ � A(x)(log x)−1996,

γ(n, C) =
∑

d|n,d≤C

µ(d),
(1.4)

holds uniformly for ∆−1xν/2 < N < δ−1
√

x, 1 ≤ C ≤ x1−ν , where δ, ∆ are
parameters depending on x in such a way that δ → ∞ and log δ

log ∆ → 0 as x → ∞. In
[7], they applied this successfully to give an asymptotic formula for the number of
primes of the form a2+b4 which are ≤ x. The condition (1.4) strongly eliminates the
possibility of the sequence having a “parity bias”, meaning a tendency for µ(n)an

to be of one sign.
The sequences used to prove Theorem 1 all exhibit a “global parity bias”, mean-

ing that

(1.5) P (x) =
∑
n≤x

anµ(n)

is large (or large infinitely often). In light of Selberg’s example and the theorem
of Friedlander and Iwaniec, it is natural to inquire whether or not, for each ν < 1,
there are sequences (an) satisfying R(ν) and also

(1.6) P (x) �B x(log x)−B (∀B > 0),

but failing (1.3). We cannot yet answer this question entirely, but for all ν < 1, we
can construct sequences satisfying R(ν) and (1.6), but failing (1.3) for all k ≥ 2.
These sequences do satisfy (1.3) for k = 1.

Theorem 2. Fix ν ∈ (0, 1). There is a sequence (an) which satisfies R(ν) with
A(x) = x and g(d) = 1/d, satisfies (1.6) and for which (1.3) fails for all k ≥ 2.

It is an interesting problem to examine the situation if (1.6) is replaced by
a stronger condition (but one weaker than (1.4)). One possibility, suggested by
C. Hooley, is to postulate that the parity bias in arithmetic progressions is small
on average, something like∑

d≤xα

∣∣∣∣∑
n≤x
d|n

µ(n)an

∣∣∣∣ �B x(log x)−B (∀B > 0).
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The sequences we construct for the proof of Theorem 1 do satisfy this condition
with arbitrary but fixed α < 1 − ν. The case α + ν > 1 remains open.

2. Overall plan

The only analytic tool we require is the Prime Number Theorem with the de la
Vallée Poussin error term. In fact, a much weaker error term would suffice.

Lemma 2.1. For some positive constant c0,∑
n≤x

Λ(n) = x + O
(
xe−c0

√
log x

)
.

Assume without loss of generality that ν > 1/2. Let M be an integer, and δ and
� real numbers satisfying

(2.1) 0 < δ ≤ 1
3M2

, Mδ +
1
M

< � < 1 − ν.

Take x0 sufficiently large and c1 ∈ (0, c0) (both depending on ν, M and δ). For
j ≥ 1 put

(2.2) xj+1 = xj

(
1 + e−c1

√
log xj

)
, Ij = Z ∩ (xj , xj+1], Kj = |Ij |.

In what follows, all constants implied by the O-symbol may depend on ν and M .
Dependence on other variables will be indicated by subscripts to the O-symbol.
The numbers an for n ∈ Ij will satisfy three basic properties. First,

(2.3) 0 ≤ an ≤ 2.

Second,

(2.4)
∑
n∈Ij

d|n

an =
Kj

d
+ O

(
Kj

d
e−c1

√
log xj

)
(1 ≤ d ≤ x1−�

j ).

Third, for some positive constants θk (k ≥ 1 for Theorem 1, k ≥ 2 for Theorem 2)
which depend on ν, M and δ, and some numbers σj ∈ {−1, 1} (which we are free
to choose), we have

(2.5)
∑
n∈Ij

anΛk(n) = (k + σjθk)Kj(log xj)k−1
(
1 + Ok

(
e−c1

√
log xj

))
.

For Theorem 2, we also require that

(2.6)
∑
n∈Ij

anµ(n) = O
(
Kje

−c1
√

log xj

)
.

Deducing Theorems 1 and 2 from (2.3)–(2.6) is straightforward. For d ≤ xν , (2.3)
implies

Ad(x) = O

(
xν+�

d

)
+

∑
xν+�≤xj≤x

∑
n∈Ij

d|n

an.
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By (2.1), if xj ≥ xν+�, then d < x(1−�)(ν+�) ≤ x1−�
j . Thus, by (2.4),

Ad(x) = O

(
xν+�

d

)
+

∑
j

Kj

d

(
1 + O

(
e−c1

√
(ν+�) log x

))

=
x

d
+ O

(x

d
e−

1
2 c1

√
log x

)
= g(d)A(x) + O

(
A(x)

d
e−

1
2 c1

√
log x

)
.

Summing on d gives R(ν). Similarly, (2.6) implies (1.6). From (1.2), we have
logk n = (1 ∗ Λk)(n) ≥ Λk(n). Thus, using (2.3) and (2.5), we obtain∑
n≤x

anΛk(n) = O(x(log x)k−2) +
∑

x
log2 x

≤xj≤x

∑
n∈Ij

anΛk(n)

= O(x(log x)k−2) + (log x)k−1

(
1 + O

(
log log x

log x

)) ∑
xj≤x

(k + σjθk)Kj

= (log x)k−1(xk + θk

∑
xj≤x

σjKj) + O(x(log x)k−3/2).

The three types of behavior for Tk(x) in Theorem 1 are obtained by taking (respec-
tively) (i) σj = −1 for all j; (ii) σj = 1 for all j; or (iii) σj = −1 if 22r

< xj ≤ 22r+1

for an even r and σj = 1 if 22r

< xj ≤ 22r+1
for an odd r.

It remains, therefore, to construct numbers an on each interval Ij satisfying
(2.3)–(2.6) as appropriate for Theorems 1 and 2. The basic idea is to start with
an = 1 for all n, then shift around some of the mass from the numbers an with n
composed of “large” prime factors. This must be done very delicately in order to
preserve (2.4), and this is the most complex part of the argument. We will work
with smooth functions defined on numbers with a given number of prime factors.
Let

Tr = {(u1, . . . , ur) : 0 ≤ u1 ≤ · · · ≤ ur, u1 + · · · + ur = 1},
Ur = {(u1, . . . , ur) : ui ≥ 0 (1 ≤ i ≤ r), u1 + · · · + ur = 1}.

For positive numbers ε, B, let Fr(ε, B) be the set of functions f(u1, . . . , ur) on
Ur that are (i) symmetric in all variables, (ii) zero whenever min ui ≤ ε, and (iii)
f and all first order partial derivatives are at most B in absolute value on Ur. If
n = p1 · · · pr, the numbers pi being primes with no assumptions on their relative
sizes, then

f

(
log p1

log n
, . . . ,

log pr

log n

)
is well defined. With these assumptions, we may estimate in a standard way sums
over f in terms of integrals.

Lemma 2.2. Let f ∈ Fr(ε, B), 0 ≤ y ≤ x and x large in terms of ε, r, B. Then∑
p1,...,pr

x≤n=p1···pr≤x+y

f

(
log p1

log n
, . . . ,

log pr

log n

)

=
y

log x

∫
Ur

f(u1, . . . , ur)
u1 · · ·ur

+ Oε,r,B

(
y2

x log x + xe−c0

√
εr−1 log x

)
.

When r = 1, the integral is f(1).
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Proof. Let F denote the sum in the lemma. In this proof, constants implied by the
O-symbol may depend on ε, r, B. When r = 1, by Lemma 2.1,

F = f(1)(π(x + y) − π(x)) =
y

log x
f(1) + O(xe−c0

√
log x).

We now proceed by induction on r. Suppose r ≥ 2 and fix p1 ∈ [xε, 2x1−ε]. Writing
n′ = p2 · · · pr and vj = log pj

log n′ for 2 ≤ j ≤ r, we have

f
(

log p1
log n , . . . , log pr

log n

)
=

(
1 + O

(
y

x log x

))
g(v2, . . . , vr),

where
g(v2, . . . , vr) = f

(
log p1
log x , log(x/p1)

log x v2, . . . ,
log(x/p1)

log x vr

)
.

We have g ∈ Fr−1(ε, B), so by the induction hypothesis,

F =
∑
p1

y

p1 log(x/p1)

∫
v∈Ur−1

g(v2, . . . , vr)
v2 · · · vr

+O

(
y2

p1x log x
+

x

p1
e−c0

√
εr−2 log(x/p1)

)
.

Since log(x/p1) ≥ ε logx − 1,
∑

p1
1/p1 � 1 and thus the error terms above total

O

(
y2

x log x
+ xe−c0

√
εr−1 log x

)
.

By Lemma 2.1 and partial summation, for a fixed v2, . . . , vr, we have

∑
p1

f( log p1
log x , log(x/p1)

log x v2, . . . ,
log(x/p1)

log x vr)

p1 log(x/p1)

=
∫ 2x1−ε

xε

f( log t
log x , log(x/t)

log x v2, . . . ,
log(x/t)

log x vr)

t log t log(x/t)
dt + O(e−c0

√
ε log x)

=
1

log x

∫ 1−ε/2

ε

f(u, (1 − u)v2, . . . , (1 − u)vr)
u(1 − u)

du + O(e−c0
√

ε log x).

Therefore,

F =
y

log x

∫
v2+···+vr=1

0<u<1

f(u, (1 − u)v2, . . . , (1 − u)vr)
u(1 − u)v2 · · · vr

+ O

(
y2

x log x
+ xe−c0

√
εr−1 log x

)
.

Making the change of variables u1 = u, uj = (1 − u)vj (2 ≤ j ≤ r) gives the
lemma. �

3. The construction on Ij

To facilitate working with sets of numbers with prime factors in specific ranges,
we adopt some special notation. A partition is a non-decreasing sequence of positive
integers α = (α1, . . . , αr) (also thought of as a “multi-set”). Let |α| = r and
Σ(α) = α1 + · · ·+αr. Let perm(α) be the number of permutations of the numbers
in α, e.g., perm(1, 1, 2, 3) = 12. Let

1n =

n︷ ︸︸ ︷
(1, . . . , 1)
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and let P (m) be the set of all partitions of m (all α with Σ(α) = m). Let E denote
the empty partition (|E| = 0 and Σ(E) = 0). The notation α ⊆ β means that
each number in β occurs at least as many times as the number occurs in α, and
α + β is the partition consisting of all the parts of α and of β, so in particular,
|α + β| = |α| + |β| and Σ(α + β) = Σ(α) + Σ(β). Also, if α ⊆ β, then β − α is
defined by α + (β − α) = β.

For brevity, write x = xj , K = Kj , I = Ij . For 1 ≤ i ≤ M , let Pi be the set of
primes in the interval [xi(1/M−δ) , xi(1/M+δ)]. For each partition α = (α1, . . . , αr),
let

Dα = {p1 · · · pr : pi ∈ Pαi (1 ≤ i ≤ r)}, Cα = Dα ∩ I.

In particular, DE = {1} and C(M) is the set of primes in I. Also, by (2.1), Cα is
empty unless α ∈ P (M).

Let c1 = c0(2M)−M . We put an = 1 + bn, where |bn| ≤ 1, and bn = 0 unless n
lies in some Cα with α ∈ P (M). Thus, if 1 < d ≤ x1−�, then∑

n∈I
d|n

an =
K

d
+ O(1)

unless d ∈ Dβ for some β = (β1, . . . , βs). In this case x(1/M−δ)(β1+···+βs) ≤ d ≤
x1−�, which by (2.1) implies β1+· · ·+βs ≤ M−2. Let Q = E∪P (1)∪· · ·∪P (M−2).
To obtain (2.4), it suffices to prove that for each β ∈ Q and each d ∈ Dβ ,

(3.1)
∑

α∈P (M)
β⊆α

∑
n∈Cα

d|n

bn = O

(
K

d
e−c1

√
log x

)
.

This system of inequalities has the trivial solution bn = 0 for all n, but we need a
solution with |bn| � 1 on average in order to obtain (2.5).

For 1 ≤ i ≤ M , let Ji = [i(1/M − δ), i(1/M + δ)]. For each α = (α1, . . . , αr) ∈
P (M), suppose fα ∈ Fr( 1

2M , B) is supported on Tr ∩ (Jα1 × · · · × Jαr ) and the
symmetric regions in Ur. For n ∈ Cα, n = p1 · · · pr, let

(3.2) bn = fα

(
log p1

log n
, . . . ,

log pr

log n

)
.

Suppose that β = (β1, . . . , βs) ∈ Q with β ⊆ α. Then r ≥ s+1. Let d = p1 · · · ps ∈
Dβ with pi ∈ Pβi (1 ≤ i ≤ s) and put vi = log pi

log x for 1 ≤ i ≤ s. We have

fα

(
log p1
log n , . . . , log pr

log n

)
= g

(
log ps+1
log(n/d) , . . . ,

log pr

log(n/d)

)
+ O(e−c1

√
log x),

where
g(w1, . . . , wr−s) = f(v1, . . . , vs,

log(x/d)
log x w1, . . . ,

log(x/d)
log x wr−s).

Since g ∈ Fr−s( 1
2M , B), Lemma 2.2 implies that∑

n∈Cα
d|n

bn =
K

(r − s)!d log(x/d)

∫
w∈Ur−s

g(w1, . . . , wr−s)
w1 · · ·wr−s

+ O
(x

d
e−2c1

√
log x

)

=
K

(r − s)!d log x

∫
u∈Vr−s(1−v1−···−vs)

fα(v1, . . . , vs, u1, . . . , ur−s)
u1 · · ·ur−s

+ O

(
K

d
e−c1

√
log x

)
,
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1670 KEVIN FORD

where Vt(A) = {(u1, . . . , ut) : ui ≥ 0∀i,
∑

ui = A}.
Therefore, to prove (3.1), it suffices to find functions fα so that for all β =

(β1, . . . , βs) ∈ Q and (v1, . . . , vs) ∈ Jβ1 × · · · × Jβs , we have

(3.3)
∑

µ∈P (M−Σ(β))

1
|µ|!

∫
u∈V|µ|(1−v1−···−vs)

fβ+µ(v1, . . . , vs, u1, . . . , ur−s)
u1 · · ·ur−s

= 0.

When M ≥ 6, |Q| > |P (M)| (i.e., there are more equations than functions), but
there is enough structure in the system (3.3) to find a nontrivial solution. In fact,
once f1M is chosen, the other functions fα are uniquely determined by (3.3), but we
do not need to prove this. Suppose α = (α1, . . . , αr) ∈ P (M), ρ is a permutation
of α and v ∈ Jρ1 × · · · × Jρr . For some constant eα, define

(3.4) fα(v) = eαv1 · · · vr

∫
(3.5)

f1M (w)∏
wij

,

where the integration is over the set of w = {wij : 1 ≤ j ≤ r, 1 ≤ i ≤ ρj} ∈ JM
1

with

(3.5)
ρj∑

i=1

wij = vj (1 ≤ j ≤ r).

For example, if α = (1, 1, 2, 3), v1 ∈ J1, v2 ∈ J2, v3 ∈ J3 and v4 ∈ J1, we have

fα(v) = eαv1v2v3v4

∫
w11=v1

w12+w22=v2
w13+w23+w33=v3

w14=v4

f17(w11, w12, w22, w13, w23, w33, w14)
w11w12w22w13w23w33w14

.

For consistency, set e1M = 1.
Next we show that substituting (3.4) into (3.3) reduces the problem to solving

a system of equations in the numbers eα. Fix β = (β1, . . . , βs) ∈ Q and µ =
(µ1, . . . , µr−s) ∈ P (M − Σ(β)). Suppose that vj ∈ Jβj (1 ≤ j ≤ s) and let ρ be a
permutation of µ. Take u so that

∑
vi +

∑
ui = 1 and ui ∈ Jρi (1 ≤ i ≤ r − s).

Because fβ+µ is symmetric in all variables, for each ρ the contribution to the
integral in (3.3) is identical. In other words, the integral in (3.3) equals perm(µ)
times the integral over those u ∈ Jµ1 × · · · × Jµr−s . For such u, (3.4) implies

fβ+µ(v,u) = eβ+µv1 · · · vsu1 · · ·ur−s

∫
(3.6)

f1M (w, z)∏
i,j wij

∏
i,j zij

,

where the integral is over the variables wij , zij ∈ J1 satisfying

(3.6)
βj∑
i=1

wij = vj (1 ≤ j ≤ s);
µj∑
i=1

zij = uj (1 ≤ j ≤ r − s).

Thus, with β and v fixed,∫
u∈V|µ|(1−v1−···−vs)

uj∈Jµj
(1≤j≤r−s)

fβ+µ(v,u)
u1 · · ·ur−s

= eβ+µv1 · · · vs

∫
u∈Vr−s(1−v1−···−vs)

(3.6)

f1M (w, z)∏
wij

∏
zij

.
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Since u1, . . . , ur−s are dependent variables in the integral on the right side, the left
side is actually independent of µ. Thus, with (3.4), (3.3) follows from the system

(3.7)
∑

µ∈P (M−Σ(β))

perm(µ)
|µ|! eβ+µ = 0 (β ∈ Q), e1M = 1.

As noted before, (3.7) has more equations than variables when M > 6, but there is a
simple solution (again we do not need to prove uniqueness, but it is straightforward),
namely

(3.8) eα =
(−1)Σ(α)+|α|

α1 · · ·αr
, α = (α1, . . . , αr).

With (3.8), eβ+µ = eβeµ for all β, µ, so (3.7) is equivalent to γm = 0 (2 ≤ m ≤ M),
where

γm :=
∑

µ∈P (m)
µ=(µ1,...,µr)

(−1)|µ|

|µ|!
perm(µ)
µ1 · · ·µr

=
m∑

r=1

(−1)r

r!

∑
d1+···+dr=m
di≥1(1≤i≤r)

1
d1 · · · dr

.

This follows by considering the generating function

G(z) =
∞∑

m=1

γmzm.

Since |γm| ≤
∑m

r=1

(
m−1
r−1

)
= 2m−1, G(z) has radius of convergence ≥ 1/2. Thus,

for |z| ≤ 1/3,

G(z) =
∞∑

r=1

(−1)r

r!

∑
d1,...,dr≥1

zd1+···+dr

d1 · · · dr

=
∞∑

r=1

(−1)r

r!

( ∞∑
d=1

zd

d

)r

=
∞∑

r=1

(−1)r

r!
(− log(1 − z))r = elog(1−z) − 1 = −z,

which proves (3.7). As noted earlier, (3.7) implies (3.3), which implies (3.1), which
implies (2.4).

Modulo the choice of function f1M , we have constructed our numbers bn. The
following theorem sums up the properties we are interested in.

Theorem 3. Fix M, �, δ so that (2.1) is satisfied and also δ ≤ (2M)−M . Let B be
large depending on M, δ. Let f1M ∈ FM ( 1

2M , B) with |f1M (u)| ≤ 1 for all u ∈ UM .
For every α ∈ P (M), define eα by (3.8), define fα by (3.4), bn by (3.2), and put
an = 1 + bn. Then, for each interval I = Ij , (2.3) and (2.4) are satisfied, plus we
have

(3.9)
∑
n∈I

anΛk(n) = K(logx)k−1
[
k + (−1)M+1Zk + O(e−c1

√
log x)

]
(k ≥ 1)

and

(3.10)
∑
n∈I

anµ(n) =
K

log x

[
(−1)MZ0 + O(e−c1

√
log x)

]
,
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where

Zk :=
∫
u∈UM

uk
1f1M (u)

u1 · · ·uM
=

1
M

∫
u∈UM

uk
1 + · · · + uk

M

u1 · · ·uM
f1M (u).

Formula (3.10) also holds with µ(n) replaced by λ(n).

Proof. We have already seen that (2.4) is satisfied. Let α ∈ P (M), α �= 1M . By
(3.8), |eα| ≤ 1, so by (3.4),

|fα| ≤ (1/M − δ)−MδM−|α| ≤ δ(2M)M ≤ 1.

Next, by (1.2) and Lemma 2.2, for each α = (α1, . . . , αr) ∈ P (M), we have∑
n∈Cα

bnΛk(n) =
1
r!

∑
p1,...,pr

n=p1···pr∈Cα

fα

(
log p1
log n , . . . , log pr

log n

)

×
∑

ε1,...,εr∈{0,1}
(−1)r−ε1−···−εr logk(pε1

1 · · · pεr
r )

=
(−1)r perm(α)

r!
K(logx)k−1

[
O(e−c1

√
log x)

+
∫

v∈Ur
vi∈Jαi

(1≤i≤r)

fα(v)
v1 · · · vr

∑
ε1,...,εr∈{0,1}

(−1)ε1+···+εr

( r∑
j=1

εjvj

)k]
.

By (3.4) and the fact that f1M is symmetric in all variables, we obtain∑
n∈Cα

bnΛk(n) =
perm(α)eα(−1)|α|

|α|! K(log x)k−1

[
O(e−c1

√
log x)

+
∫

w∈UM

f1M (w)∏
wi,j

∑
ε

(−1)ε1+···+εr

( |α|∑
j=1

εj(wj,1 + · · · + wj,αj )
)k]

=
perm(α)eα(−1)|α|

|α|! K(log x)k−1

[
O(e−c1

√
log x)

+
∫

u∈UM

f1M (u)
u1 · · ·uM

M∑
N=1

( ∑
ε1,...,εr∈{0,1}

ε1α1+···+εrαr=N

(−1)ε1+···+εr

)
(u1 + · · · + uN )k

]
.

Summing on α ∈ P (M) and using (3.8) gives

(3.11)
∑
n∈I

bnΛk(n) = K(log x)k−1

[
O(e−c1

√
log x)

+ (−1)M
M∑

N=1

W (M, N)
∫

u∈UM

f1M (u)
u1 · · ·uM

(u1 + · · · + uN)k

]
,

where

(3.12) W (M, N) =
M∑

r=1

1
r!

∑
d1+···+dr=M

di≥1 ∀i

1
d1 · · ·dr

∑
ε1,...,εr∈{0,1}

ε1d1+···+εrdr=N

(−1)ε1+···+εr .
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By examining the generating function, we next prove that

(3.13)
W (M, N) = 0 (2 ≤ N ≤ M),

W (M, 1) = −1, W (M, 0) = 1 (M ≥ 1).

For max(|x|, |y|) < 1/3, we have

∞∑
M=1

M∑
N=0

W (M, N)xMyN

=
∞∑

r=1

1
r!

∑
ε1,...,εr∈{0,1}

(−1)ε1+···+εr

∑
d1,...,dr≥1

(
xd1yε1d1

d1

)
· · ·

(
xdryεrdr

dr

)

=
∞∑

r=1

1
r!

∑
ε1,...,εr∈{0,1}

(−1)ε1+···+εr (− log(1 − xyε1)) · · · (− log(1 − xyεr ))

=
∞∑

r=1

1
r!

(log(1 − xy) − log(1 − x))r

= −1 +
1 − xy

1 − x
= (1 − y)(x + x2 + x3 + · · · ).

This proves (3.13), and, together with (3.11), completes the proof of (3.9). For the
sum of µ(n)bn, we obtain a similar expression corresponding to the “N = 0” term.
Thus ∑

n∈I

bnµ(n) =
(−1)MK

log x

(
W (M, 0)I0 + O(ec1

√
log x)

)
.

The asymptotic (3.10) now follows from (3.13). Finally, bn = 0 if n has a prime
factor < x1/M−δ. Hence, when bnµ(n) �= bnλ(n), n is divisible by the square of a
prime ≥ x1/M−δ . The number of such n ≤ x is � x1−1/M+δ and this proves the
final claim. �

Proof of Theorems 1, 2. Define

�(v1, . . . , vM ; ξ) = max(0, ξ−4(ξ2 − v2
1 − · · · − v2

M )2),

which is nonzero only when |vi| ≤ ξ for each i. To prove Theorem 1, take in
Theorem 3,

f1M (u) = (−1)M+1σj�(u1 − 1/M, . . . , uM − 1/M ; δ).

For u ∈ UM , u1 + · · · + uM = 1 and thus Z1 = Z0/M . To prove Theorem 2, we
must exhibit a function f1M so that Z0 = 0 and Zk �= 0 for k ≥ 2. Let M be even
and put w = ( 1

M , . . . , 1
M ). Let V be the set of vectors in R

M with exactly M/2
components equal to δ/2 and M/2 components equal to −δ/2. We will take

f1M (u) = u1 · · ·uM

[
�(u− w; δ3) −

(
M

M/2

)−1 ∑
v∈V

�(u − w − v; δ3)
]
.

Letting

J =
∫

v1+···+vM=0

�(v; δ3),
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it follows that

Zk ≤ M( 1
M + δ3)kJ −

[
M
2 ( 1

M − δ
2 − δ3)k + M

2 ( 1
M + δ

2 − δ3)k
]
J

=
J

2Mk−1

[
2(1 + λ)k − (1 − ε − λ)k − (1 + ε − λ)k

]
,

where ε = δ
2M and λ = δ3

M . Since xk has convex derivative for x > 0, we have

(1 + ε − λ)k − 2(1 + λ)k + (1 − ε − λ)k

≥ (ε − 2λ)k(1 + ε/2)k−1 − (ε + 2λ)k(1 + λ)k−1

≥ k(1 + λ)k−2[(ε − 2λ)(1 + ε/2) − (ε + 2λ)(1 + λ)]

= k(1 + λ)k−1

(
δ2

8M2
+ O

(
δ3

M

))
.

This proves Zk < 0 for k ≥ 2 if δ is small enough, and completes the proof. �
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Birkhäuser (Boston). MR97m:11117

[6] J. Friedlander and H. Iwaniec, Asymptotic sieve for primes, Annals of Math. (2) 148 (1998),
1041–1065. MR2000c:11150b

[7] J. Friedlander and H. Iwaniec, The polynomial X2 +Y 4 captures its primes, Annals of Math.
(2) 148 (1998), 945–1040. MR2000c:11150a

[8] G. Greaves, Sieves in Number Theory, Springer-Verlag, Ergebnisse der Mathematik und ihrer
Grenzgebiete vol. 43 (2001). MR2002i:11092

[9] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London (1974).
MR54:12689

[10] A. Selberg, The general sieve method and its place in prime-number theory, Proc. Internat.

Congress of Math., Cambridge, Mass. (1950), Amer. Math. Soc. (Providence, RI) (1952) 1,
286–292. MR13:438d

Department of Mathematics, 1409 West Green Sreet, University of Illinois at

Urbana-Champaign, Urbana, Illinois 61801

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=53:300
http://www.ams.org/mathscinet-getitem?mr=58:10799
http://www.ams.org/mathscinet-getitem?mr=97m:11117
http://www.ams.org/mathscinet-getitem?mr=2000c:11150b
http://www.ams.org/mathscinet-getitem?mr=2000c:11150a
http://www.ams.org/mathscinet-getitem?mr=2002i:11092
http://www.ams.org/mathscinet-getitem?mr=54:12689
http://www.ams.org/mathscinet-getitem?mr=13:438d

	1. Introduction
	2. Overall plan
	3. The construction on Ij
	Acknowledgement
	References

