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ABSTRACT. We prove that if ¢(m) — 0 arbitrarily slowly, then for almost all m and any A —
Z, such that A — A does not contain non-zero quadratic residues we have |A| < m!'/2==(™),

1. INTRODUCTION

Let R,, = {a® : a € Z,,} be the set of quadratic residues modulo m. In this paper we find an
upper bound for the sets A ¢ Z,, with

(1.1) (A= A) A Ry, = {0},

where A — A = {a — b : a,b € A}, for a large set of m. This question originated from the
corresponding problem in Z: Ruzsa [R] constructed a set of integers B < [1, N| such that
B — B avoids squares with |B| » N7, where v = 1(1 + 1205675) = (.73..., and this construction
was based on a 7-element subset of Zgs obeying (1.1). As for upper bounds in this integer
setting, we just note that such a set B must obey | B| = o(/N) (see [Sa], [PSS], and also [BPPS]),
but no bounds with power saving are known.

Now we begin a discussion of (1.1). In the case of a prime m = 3 (mod 4), (=) = —1
and thus any set A — Z,, with (1.1) is a singleton or empty at all, and so the problem is trivial.
In contrast, in the case of a prime m = p = 1 (mod 4) it should be very hard to obtain good
bounds, since the problem is related to two other famous questions. The first one is the clique
number problem for the Paley graph. Recall that the Paley graph is the graph G, = (V, E)
with V' = Z, and {a,b} € E iff a — b is a quadratic residue modulo p, and a clique of an
undirected graph is a subset of its vertices such that every two distinct vertices in the clique are
adjacent (that is, its induced subgraph is complete). The clique number of a graph is the size of
its maximum clique. Fix any quadratic non-residue £ € Z,\R,; then C' < Z,, is a clique of G, if
and only if £C obeys (1.1), and so any bound for the clique number is a bound for our sets, and
vice versa. While it is not hard to show that any clique in this graph (and, hence, any set A < Z,
with (1.1)) has size at most p'/? (see Section 2 for a short proof), any improvement of it requires
non-trivial ideas; currently the best upper bound is 4/p/2 + 1 (see [HP]). The second problem
related to our sets is finding an upper bound for the least quadratic non-residue. If we denote
it by n(p), then the set & - {1,...,n(p)}, where £ € Z,\ R, is again any quadratic non-residue,
has size n(p) and obeys (1.1), and so any bound for sets with (1.1) is a bound for n(p), but the
best we know is n(p) « p/4ve+te() due to the work [Bu] (see also the classical papers [V] and
[Li]).

We turn to the case of composite m. Matolcsi and Ruzsa [MR] proved that |A| < m'/? for
all A < Z,, with (1.1) and square-free m which have prime divisors of the form 4k + 1 only,
and that |A| < mexp(—cy/logm) for all square-free m (throughout the paper we denote by ¢
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absolute positive constants which may vary from line to line). The second author [G] proved
that for any square-free m and such A we have

1
A < min { mY2(3w(m))* ™2, mexp [ — 8™ )L
log logm

where w(m) is the number of prime divisors of m. Since w(m) < 2loglogm for almost all m
(due to Hardy and Ramanujan [HR]) we deduce that |A| < m!/2*+°() for almost all m (that is,
for a set of density 1; here and in what follows we consider the lower asymptotic density of a

set M < N, which is defined as lim_, . w)

In this paper we overcome this square-root barrier for almost all moduli. For a positive integer
m, we denote by ws(m) the number of its prime divisors of the form 4k + 3. Our main results
are the following.

Theorem 1.1. Let m be square-free and let A < Z,, obey (1.1). Then
|A| < ml/Qq—1/2(1Ow(m))2w(m)’
where q denotes the least prime divisor of m of the form 4k + 3 if ws(m) is odd, and q = 1

otherwise.

It is an improvement (due to the factor g~ ?) of the mentioned result of [G] (note that we
obtain worse constants 10 and 2 instead of 3 and 3/2, but it is not so important). While it is
not useful directly for all moduli, it allows us (using some “truncate” trick) to obtain a bound
o(m!/2) for almost all m.

Theorem 1.2. Let ¢ € [(logx)~Y2 1] and c(e) = exp(—(loge™1)10). Then for all but
O(c(e)x) numbers m < x and any A < 7Z,, with (1.1) we have
‘A‘ < ml/2—£/5'
We immediately conclude the following.
Corollary 1.3. Let =(m) — 0 arbitrarily slowly. Then
|A| < m1/2—5(m)
for almost all m and A < Z,, with (1.1).

We now discuss possible improvements of this bound. For 7 € (0, 1), we set
M, = {meN: forany A c Z,, with (1.1) the bound |A| < m" holds }.

Using this notation, we can reformulate the mentioned corollary from [G] as follows: for any
e > 0 the set M5, has density 1. Theorem 1.2 can also be presented in terms of these sets
M,,: it means that the density of the set M;,_. tends to 1 as € — 0.

Note that in the case m = p?, where p is a prime, Z,: contains the set {0, p, 2p, ..., (p — 1)p}
which has size m!/? and obeys (1.1). Nevertheless, it is believed that for any square-free m and
A < Z,, with (1.1) the bound |A| «. m*® holds for any ¢ > 0, and, hence, that the set M, has
density 1. While this hypothesis seems to be far beyond the reach of currect methods, one can

prove the following weak form of it.

Theorem 1.4. For any € > ( the set M. has positive density.
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Finally, we mention a lower bound for almost all moduli.

Theorem 1.5. For almost all m there exists a set A  Z,, with
(A—A) n R, = {0} and

|A| = exp(0.375(log log m)?(1 + o(1))).

In Section 2 we prove Theorem 1.1; we closely follow the proof of the main result of [G] with
some modifications. In Section 3 we use Theorem 1.1 and some “truncate” argument to reduce
Theorem 1.2 to Lemma 3.2, which concernes with the properties of large prime divisors of the
form 4k + 3 of typical integers. In Section 4 we prove Lemma 3.2 and thus finish the proof of
Theorem 1.2. The proof of Lemma 3.2 relies on the fact that if 77, ..., ;. are disjoint subset of
primes in the interval [y, z] < [2, ], where y — oo and log 2/ log z — o0, then w(n, T}) behave
like independent Poisson random variables with parameters H(1;) = >, 7. p~ L. Section 5 is
devoted to Theorems 1.4 and 1.5. The proof of Theorem 1.4 relies on the observation that we
have the bound |A| < m® for any A < Z,, with (1.1) whenever m has a prime divisor ¢ = 3
(mod 4) such that ¢ = m'~¢. Finally, Theorem 1.5 is obtained by a “product” argument from
the corresponding lower bounds for the cases of a prime m = p = 1 (mod 4) and m = ¢, ¢,
where ¢; and ¢, are primes 3 (mod 4).

2. PROOF OF THEOREM 1.1

In what follows, we use the words “residue”and “non-residue” for “quadratic residue” and
“quadratic non-residue” respectively.

Firstly, we show that it is enough to prove the theorem for odd m. Suppose that m is even
and write m = 2my; then Z,,, = Zo @ Z,,,. Set

Ay = A (mod my) = {x € Z,, : there exists a € Zy with (a,z) € A}.

Note that for any = € Z,,, at most one of the elements (0, x) and (1, z) belongs to A; denote
this element, if it exists, by (a,, ). Hence, |A| = |A;|. Further, for any distinct =,y € A; the
difference = — y is a non-residue modulo m; (since otherwise the difference (a, — a,,z — y)
would be a non-zero residue modulo m), and so without loss of generality we may assume that
m is odd.

Now we prove the theorem for odd m. We induct on n = w(m). Letn = 1, thatis, m = pisa
prime. If p = 3 (mod 4), then |A| < 1, since —1 is a non-residue modulo p and, hence, for any
a # b one of the differences a — b or b — a is a residue modulo p. If p = 1 (mod 4), we have the
bound |A| < p'/2. We give an elegant and folklore proof for that. Let us assume that |A| > p'/2
and fix a non-residue ¢ € Z,,. Consider the map ¢: A* — Z, defined by ¢(a,b) = a+&b. By the
pigeonhole principle, there are two distinct pairs (a1, by ) and (az, be) with ¢(a1,b1) = v(ag, bs),
that is, £ = (a1 — as)(bs — by)~". It follows that one of the differences a; — ay and by — by is a
nonresidue modulo p, and we are done.

Now assume that n > 2 and the claim is true for all square-free m’ with w(m’) < n. Let
p1 < p2 < ... < p, be the prime divisors of m. Denote by x; the Legendre symbol modulo p;.
Since each difference a — b of distinct elements of A is a non-residue modulo p; for at least one
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pj, we have

e A= ST v =142+ S S xola—b).

a,beA j=1 D a,beA

where D runs over all non-empty subsets of [n] = {1,...,n} and xp(z) = [[,cp x;(x). Set
pp = [ [;cp pj- The key observation which makes possible our improvement of the main result
of [G] is that we may restrict the outer summation over those (non-empty) D for which ws(pp)
is even (since otherwise xp(—1) = —1 and xp(a —b) + xp(b —a) = O forany a,b € Z,,). In

what follows, we denote the summation over such D by Z/D
Denote ¢ = 1 — |A|~. Then we may rewrite (2.1) as follows:

APo = =YY xpla—0).

D abeA

Using Cauchy-Schwarz, we see that

APPo < Y |A2S,
D

where
2
Sp=>. 1> xpla—0)
acA [beA
Thus
(2.2) AP2e < NSy
D

Now we need to estimate the sums Sp. For D < [n] we set
Hp = max{|A|: Ac Lipy=1 A oObeys (1.1)}.
The following bound is crucial for the induction step.

Lemma 2.1. For any non-empty D < [n] we have

SD < |A|2HD + |A|HD Z HD’pD’

D'eD
(here and in what follows the summation is over non-empty D').
Proof. For each residue x modulo pp we set
A, ={ae A:a=2x (mod pp)}.

One can think of elements of A, modulo mpl’)l, and the difference of distinct elements of A,
is a non-residue modulo mpf)l. Then by the definition of Hp we have |A,| < Hp; further,
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obviously, A = | | A, and elements of A, give the same contribution to Sp. We thus see that
x€Lpp,

=3 Y

€Zpp, a€Ay

2

Yo -] = 3 Al xole - b)

beA T€Lp beA

<Hp Y, > |xle—b)x(e—b)

b1,baeA IEZPD jeD

=Hp Y [] X xilws —bxsla; —b).

by,b2€A jeD xj eij

Let us compute the inner sum. For the sake of brevity we introduce the following definition: a
pair (by, b) is said to be special modulo p if by = by (mod p). We have

D xi(@ = b)xj(x —by) = p; — 1

TE€Lp,
if (b1, b2) is special modulo p,, and

3 e - be =t = X (142500 ) = % wle) = -1

mEij T#bo zeij
r#1

otherwise.

Denote by Bpy the set of pairs (b1, by) € A? which are special modulo each prime p; with
j € D', and not special modulo every prime p; with j € D\D'. In particular, (by,bs) € Bpr
implies that b; = by (mod ppr) and thus |Bp/| < |A|Hp. We thus have

Sp < Hp ((—1)D|’B®\ + ), (_1)|D||Dl¢(pD')|BD'|>

D'cD
< Hp|AP + [A|Hp Y. ppHp, O
D'cD

where ¢ is Euler’s function.

This lemma implies
1/2 |A|H1/2—|— |A|1/2H1/2 Z H1/2 1/2.
D'cD

Substituting this estimate into (2.2), we obtain

(2.3) |Alo < |[A]Y*Ty + To,
where )
T, = Z H)?,

Z H1/2 Z H1/2 1/2.

D'cD
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Our further argument is roughly the following. By the induction hypothesis we have Hp «,,
(mpph)Y? (as is usual, the notation B «,, C' with positive B, C' means that B < f(n)C for an
appropriate function f); then

T, <, m1/42p51/4 « m”“Zl & mMt
D

and, similarly,

T, <, ml/QZ:p_l/4 2 Pt « ml/QZ Z 1 <, m'?

D'cD D D'cD
Hence, (2.3) gives us
|A] < |[A]Y2mY + m12,

and we get a contradiction if |A| », m'2 So we easily have a bound |A| «, m/? with

some explicit dependence of the constant on n, and this is enough to prove the theorem in the
case where ws3(m) is even. If wz(m) is odd, we have a better bound Hp «,, (mpp'q~!)Y? if
ws(pp) is even, and the similar argument gives T} «,, (mq~')"*; the only problem for getting
immediately the bound 7, «, (mg~')"? (which would imply the theorem in the same way
up to explicit dependence on n) is that we have only “trivial” bound Hp <, (mpp,)Y? if
ws(ppr) is odd. However, it turns out to be just a technical difficulty and we are still able to
proceed as above. Note that these crude bounds for 7} and 75 imply the theorem in the form
|A| < mY2q712f(n) with f(n) = exp(O(n?)), whereas we are aiming for a better dependence
on n.

We turn to the details. For D < [n], let gp be the least prime divisor of mpp," of the form
4k +3if wz(mpp') is odd, and gp = 1 otherwise. Since D is non-empty, we have w(mpy') < n
and we can apply the induction hypothesis, which gives us

2.4) Hp < (mpp')2qp" (100) 212D

Recall that the summation in the sums 7 and 75 is taken over D with even ws(pp) (let us call
these D proper). Set ¢ = qz; if ws(m) is even, then ¢p = ¢ = 1 for any proper D. If ws(m) is
odd, then qp > ¢ for any proper D. Hence, in both cases we have

(2.5) Hp < (mpph)Y2q~Y2(100)—1PD,

for any proper D.
Now we estimate the sums 77 and 75. We begin with a bound for 7;. Using (2.5) and
extending the summation to all D, we have

r_ i _
2.6) (mg )71 < D ppt10n) P < (100)m DT DT pptt100) ! <
D d=1|D|=d

(10n)" 3" (100)~ (Z) < (10n)" Z(lOn)_d% <

0 —

(10n)™ < 0.12(10n)".
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Finally, we estimate 75. We have

2.7 Ty =Ty + Ty,
where
Z H1/2 Z H1/2 1/2
D'cD

(the inner summation is over proper D), and
T” B Z H1/2 Z” H1/2 1/2

D'SD
(the inner summation is over non-proper D’). We first work with 77. Using the bound (2.5), we
find
Hppp < (mpp))" 2~ 2(100)*0 1PV ppy — m!Pp g/ (10p)2 1210

for D’ = D; is proper, and hence

(2.8) T2/ < (mq—l)l/Q Z/(lon)n—|D|p51/4 Z/ (1On)n—‘D1‘p1D/f

D DicD

Now we estimate 73'. Fix some proper D and non-proper D’ < D. Since ws(pp) is even and
ws(ppr) is odd, D’ can be represented in the form D’ = D;\{p,} with proper D; < D such that
w3(pp,) = 2 and some p; = 3 (mod 4); note that p; > ¢. Thus, using the bounds (2.4) and
qp' = 1, we have

2(n—|D1|+1) 1/2, 1/2 1/2(10n)2(n7\D1\+1).

poup; < m'Pppiq

Then we may rewrite the inner summation in 73 over non-proper D’ < D as the summation
over proper D; with w3(pp,) = 2; any bound of the above type occurs at most | D | times, and
hence by (2.5) we have

Hpppr < (mpB}pj)l/Z(lon)

2.9) Ty < (mg )2 Y (100)" Plp, S Dy (100)" 1PiIH )t
D DicD
w3(pp, ) =2

Combining (2.8) and (2.9) with (2.7), we obtain
(mq™")"V2(10n) 7T, <
/ /
> (10n)~PEN T (IDy | + 1) (100) 0P (pp, fpp) 1t <

D DD

D1A0n)7PE YT (1D + 1) < Z(mn)—\m(m\ +1)2IP <

D DD D
n o] 5d
d
Zd+1210n — Zd+1ﬁ<o.47.

In light of this and (2.6), we see from (2.3) that
L= |A"? (A" 20 — 0.12(mg™)*(10n)") < 0.47(mg™")V?(10n)*" =: R.

Assume that
|A| > (mg~")"?(10n)*"
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Butn > 2; hence, |A| > 100 and 0 = 1 — |A|~! > 0.99. Therefore
L > (0.99 — 0.12)(mg~H)"2(10n)*" > R,

a contradiction. This completes the proof.

3. PROOF OF THEOREM 1.2

We begin with the following simple lemma.

Lemma 3.1. Let m = mymsy, where (my, my) = 1, and assume that we have a bound |As| <
g(my) for all Ay < Zy,, with (1.1). Then for any A < Z,, with (1.1) we have

| Al < mig(mo).
Proof. For any a, € Z,,, set
Alay) ={ae A:a=a (mod m)}.

Then A(a;) (mod my) obeys (1.1) and, hence, we have |A(a;)| < g(msy). Summing over a,
completes the proof. 0

The idea of the proof of Theorem 1.2 is the following. First, we restrict our attention to those
vx < m < x for which
(i) its powerful' part P(m) = [ Lpe(m, az2 P is at most log x;
(ii) w(m) < 2loglog .
Almost all integers m satisfy (i) and (ii). Indeed, the number of powerful integers < y is
O(y/y) and hence the number of m < z failing (i) is at most

X T
Z E K T .
d>logx V108 T
d is powerful

log 4—1)

The number of m < z failing (ii) is O(z/(log x) by the Hardy-Ramanujan [HR] estimate

z  (loglogz + O(1))k!
<T: =k : ,
Hm <@z wim) b log x (k—1)!
after summing over k£ > 2log log x (the first summand dominates) and using Stirling’s formula.
Thus,

3.1) #{m < z : m fails (i) or fails (i)} « (ngW'

For m obeying (i) and (ii), let ¢; > ¢» > ... be prime divisors of m/P(m) of the form 4k + 3.
Take some ¢9;_1 (j = 1) and set dy;_1 = Hi>2j—1Qi' Denote m; = P(m)dy;j_; and my =
m/myq; then my is square-free, w3(my) is odd, and the least prime divisor of my of the form

'A number n is powerful if every prime in its prime factorization occurs with exponent at least 2.
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4k + 3 is ga;—1. Now suppose that A < Z,, obeys (1.1). Applying Lemma 3.1 and Theorem
1.1, we get by (i) and (ii)

Al < P(m)dzj—l(m2q2_j1,1)1/2(1Ow(m2))2w(m2)

—_ . 1/2 d2j—1 2 1/2 2w(ma)
(3.2) m P(m)"*(10w(ms))

o 1/2
= (45)  exp(Olto, g ).

where we use iterated logarithm notation log, z = loglog z, logs x = log log log x, etc. We see
that our bound is good if ¢y;_; is significantly larger than dy;_;. If we can find a prime g1
such that

(iii) there exists goj_; > ° such that go;_1 > d3;_;,

then we have from (3.2)

’A’ < m1/2—s/4 exp(O(logQ $10g3 JJ)) < m1/2fs/5

for large enough z, since m > /x and ¢ > (logz)~"/2. Thus to prove Theorem 1.2 it suffices

to prove that (iii) holds for all but O(c(¢)z) numbers m < x. Note that if ¢ > 0 is fixed then
(1i1) fails for a positive proportion of all m, e.g. those which are m*®-smooth.
For a positive integer m and y > 0, we set

Dimy)= [] o
q<y, q%|lm
q=3 (mod 4)
Theorem 1.2 will evidently follow from the next lemma.

Lemma 3.2 (the condition (iii)). Let ¢ € [(logz)™'/2,1] and c(¢) = exp(—(loge™)/1%). Then
all but O(c(e)x) integers m < x have a prime divisor qa;—1 > x° with qaj_1 > D(m, gaj_1)*.

The same proof gives a similar statement with the exponent 2 replaced by any fixed constant,
but we do not need this here.

We note that in the work [Bo] (see also [HT], Chapter 1, and the work [E]) the following
question (very close to (iii)) was studied. For m < x and y > 0 define

d(m,y) := max{d|m : P*(d) < y},
where P (d) is the largest prime divisor of d. It was shown in [Bo] that for any u > 0, almost all
m have about 5(u) log log m prime divisors p|m with p* > d(m, p), where 5: [0, +00) — [0, 1]

is a continious increasing function with 5(0) = 0 and lim,,,,, 3(u) = 1. Nevertheless, we have
several extra requirements in (iii) and thus we cannot use this result directly.

4. PROOF OF LEMMA 3.2

For an integer m and set 7" of primes, let w(m,T") be the number of distinct primes from 7'
which divide m. The proof relies on the fact that if 77, ..., T;. are disjoint subset of primes below
y = 2° as & — oo, then w(m, T};) behave like independent Poisson random variables with
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parameters H;(T;) = ZpeT Define the Total Variation Distance dry (X, Y') between two
random variables X and Y takmg values in a discrete space Q) by

dry(X,Y) := max |[P(X € A) —P(Y e A) %'P P(Y =w))|.

We cite [F, Theorem 1]. Here

Z_

peTp
Lemma 4.1 (Ford [F]). Let 2 < y < x and suppose that Ty, . .., T, are disjoint nonempty sets
of primes in |2, y]. Then
5 Ho(Ty) ~ log =
d ( T, wn, T (Z(TY, ... Z(T. ) V) e = 28T
v | (w(n, T1) w(n, T:)), (Z(Th) (T3)) <<;1+H1(Tj)+u log y

where, for any set T of primes, Z(T) is a Poisson random variable with parameter H,(T'), and
Z(T),...,Z(T,) are independent.

Now we are ready to prove Lemma 3.2. We may suppose that ¢ is small enough since other-
wise the claim follows by taking the implied constant large enough. Set

0 = C(loge )10,
where C' is a fixed, large constant. We consider the primes of the form 4% + 3 in the interval
(z°,2V%]. Set yo = xV% and y; = yé/w forj =1,...,J, where

loge™" | log(e™")
2logf |~ loglog(e~1)

4.1) J=max{j: 077 =} = {

Further, define
T; = {g=3 (mod 4) prime : g€ (y;,y;.1]}  (1<j<J).

Then T, ..., Ty, are disjoint subsets of primes in (z°,zV*] and by the Mertens theorem for
arithmetic progressions,

o 1 log ;-1 1 1
4.2)  N=H(T)) = 5 log oy, +0(1) = 5 logh + O(1) € (3 log 0, 1og 0),

since ¢ is small enough. For a randomly chosen m € [1, x|, let w; = w(m,T;) and Z; = Z(T;)
foreach j,and w = (wy,...,wy)and Z = (Z1, ..., Z;). Applying Lemma 4.1, we obtain

dry(w,Z) < exp(—e™Y?) + (log6)~ Z ¢ « exp(—eV?).

q>x€

Here we used that ¢ > (log z)~'/2

. In particular, for any event £ = N; we have
(4.3) IP(we E)—P(Z e E)| « exp(—eV/?).
Our main idea is to show that the event
E={(er,...,e;)eNj :3j<J—3witheji3=0,¢e,0=1,e;,1 =0ande; = 1}

is very likely. This corresponds to wji3 = 0, wji2 = 1, wj;1 = 0 and w; = 1 for some
j. For such m, it is then very likely that ¢/, the unique prime divisor of m in 7}, satisfies
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¢ > D(m,q)* = D(m,y;43)* and that ¢”, the unique prime divisor of m in T}, satisfies
q" > D(m,q")* = D(m,y,+1)*. Furthermore, one of the primes ¢/, ¢” has an odd index, that is,
equals g1 for some h.

For any k < (J — 3)/4, we have by (4.2)

P(Z4k+3 =0,Zup42=1,Z4p41 =0, Zyp = 1) = Agppodgpe MrrsT M2 Ak = Ak > g
The 4-tuples (Zuk+3, Zak+2, Zak+1, Zax) are independent for different k. Therefore,
P(Z¢ E) < (1— 9—4)(J/4)—2 < e 071(J/4=2)
By (4.3), it follows that

(4.4) Pw ¢ E) « e /A2 g7 o loae™) ()
using (4.1).
We do not want m to have a big smooth part. Consider the condition

(iv) For every 0 < j < J, D(m,y;) < yf./?,

Using Theorem 07 of [HT], it follows for some absolute constant ¢, > 0 that the number of
m < x failing (iv) is at most
J
« Y e « zc(e)
=0
if C' is taken large enough in the definition of §. Therefore, by (4.4), the number of integers
m < x which fail (iv) or have w ¢ E is O(c(e)x). By (3.1), the number of m < x failing (i) or
failing (ii) is likewise O(c(e)z).

Consider now an integer m < x satisfying (i), (ii), (iv) and w € FE. In particular, by (i) the
primes g|m with ¢ > z¢ divide m to the first power only. By w € E, there is at least one
j < J — 3 such that

Wjys = O,Ldj+2 = 1,wj+1 = 0,0J]' = 1.

Let ¢’ be the unique prime divisor of m in T} and ¢” be the unique prime divisor of m in T}.
By (iv),

D(m.q') = D(m.y;1a) < 4l = yjty < (4)"*
and likewise

D(m,q") = D(m,y;41) < yffl = Z/]l-/2 < (q//)1/2_
Furthermore, one of the primes ¢’, ¢” has an odd index, that is, equals ¢o5,_1 for some h. This
completes the proof of Lemma 3.2.

5. PROOFS OF THEOREMS 1.4 AND 1.5

Proof of Theorem 1.4. We may assume that € € (0,1/2). We claim that M. contains every
number m that has a prime factor ¢ = m!~ with ¢ = 3 (mod 4). To see this, suppose that
A < Z,, obeys (A — A) n R,, = {0}. Then by Lemma 3.1 (with m; = mq~!, my = ¢ and
g(ma) = 1) we see that |A] < mg~" < mf. As each number m has at most one such prime
factor ¢, the number of such m < x is at least

> e (L] gfm) = 2 log (1%) e (1g) ,

x1*5$q<:p
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by the Mertens theorem for arithmetic progressions. U
To prove Theorem 1.5, we first need the following two results.

Lemma 5.1 (Cohen [C]). For any prime p = 1 (mod 4) there exists A < Z, obeying (1.1) with
|A| = _21;g2 log p.

For sake of completeness, we provide a proof here. We follow the short argument from [G].

Proof. Consider the complete graph G = (V, E') with V' = Z,, and the partition E = E; | | Es,
where E; = {(x,y) : * — y isaresidue} and F, = E\FE;. Then, by Ramsey’s theorem for
two colours (see, for instance, [TV], Theorem 6.9), one can find a complete monochromatic
subgraph G = (V’, E') of our graph G with |V’| = n whenever [V| = p > (**-7). We thus
can find such a subgraph of size n = logp/log4. If E < Es, then the set V"’ of its vertices gives
an example we need; if £ < E, then for any non-residue { € Z, we get such an example in the

form £V, The claim follows. O

Lemma 5.2. Let ¢; > ¢y be primes 3 (mod 4). Then there exists A C Zg,,, obeying (1.1) with
|A] > @ log go.

Proof. For j = 1,2,1etV; = (Z,,, E,,) be the tournament of quadratic residues modulo g;, that
is, the directed graph with the set of vertices Z,, and {a,b} € E,, iff a — b € R, \{0}. Itis
well-known ([St]; see also [EM]) that any tournament on n vertices contains a transitive sub-
tournament of size [logn/log 2| + 1 (it follows from the fact that any tournament on 2" vertices
contains a transitive subtournament of size n + 1, which can be proved by an easy induction).
Applying this to V;, we find two sets 4; = {agl), - a,(:)} C Zg, and Ay = {a?), - a,(f)} C Ly,
of size k > log ¢2/log 2 such that ol — agj) € Ry, forl < s <t<kandj=1,2. Then the

set A = {(agl)7 a’(izlis) *_1 € Zyq is what we need, since (;—1> =—1forj=1,2. U

s=1 j

Note that Graham and Ringrose [GR] showed that the least quadratic non-residue n(p) satis-
fies n(p) » log plog log log p infinitely often, and one can expect that the same bound holds in-
finitely often for primes p = 1 (mod 4) and ¢ = 3 (mod 4) separately. Then, as was mentioned
in the introduction, we can use the sets ¢ - {1,...,n(p)}, where { € Z,\ R, is any non-residue,
instead of those we constructed in the proof of Lemma 5.1, and the sets {(s,n + 1 — s)}"_,,
where n = min{n(q;), n(g2)} instead of those from Lemma 5.2. As this bound on n(p) applies
only to a very sparse set of primes p, using it would not affect our lower bound in Theorem 1.5.

Proof of Theorem 1.5. Let w;(m,t) = #{p <t : plm,p = j (mod 4)}, j € {1,3}. Consider
the set of m < x such that

(a) p*|m implies that p > log ;

(b) |w;(m,t) —0.5loglogt| < (loglogz)?? (3 <t<m,je{l,3}).
The number of m failing (a) is O(z/logx). Almost all integers satisfy (b), and this may be
derived from Theorem 7.2 in Kubilius [K], upon taking f to be the strongly additive function
with f(p) = 1if p=j (mod 4) and f(p) = 0 otherwise. Now suppose that m € (/z, x| obeys
(a) and (b). For p|m and p > logx, p divides m to the first power. By Lemma 5.1, for such
p =1 (mod 4) there is a set A, = Z, with (1.1) of size » log p. Let ¢; > g2 > ... be the primes
3 (mod 4) dividing m, greater than log x; each of them also divides m to the first power. By
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Lemma 5.2, there is a set Ag,, 4., © Zyg,; ,q,; With (1.1) of size » log go;. Further, it is easy to

see that the set
A= H AP X 1_[ quj—ﬂlzj - HZP < Zm
plm

qz2j|m plm
p=1 (mod 4) q2;>logx
p>logx

obeys (1.1). It remains to estimate |A|. By (b) with t = m, we get
log|A| > > (loglogp—0O(1))+ > (logloggy; — O(1))

p|m,p>logx q25|m,
p=1 (mod 4) g2;>logx
5.1 = Z loglogp + 0.5 Z loglog g — O(loglog ).
p|m,p>logx glm,g>logx
p=1 (mod 4) ¢=3 (mod 4)

Using Abel’s summation technique, we find by (b) that

Ve d
Z loglog p = wy(m, v/z)loglog v/z — w;(m, log ) log log log x — J wi(m, u)du

logz U log u
p|m,log x<p<+/T

p=1 (mod 4)
= 0.25(loglog x)* + O((log log x)"/?).
Analogously,
2 loglog ¢ = 0.25(loglog x)? + O((loglog z)/?).
s o
The claim follows from (5.1). ]
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