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ABSTRACT. We show, for any; > 3 and distinct reduced residuesb (mod q), the existence
of certain hypothetical sets of zeros of Dirichleffunctions lying off the critical line implies that
m(x;q,a) < 7(x;q,b) for a set of realr of asymptotic density 1.

1 Introduction

For(a,q) = 1, letn(z; ¢, a) denote the number of primgs< x with p = a (mod ¢). The study
of the relative magnitudes of the functiongr; ¢, a) for a fixedq and varying: is known colloqui-
ally as the “prime race problem” or “Shank®®yi prime race problem”. For a survey of problems
and results on prime races, the reader may consult the pgjexsd [5]. One basic problem is
the study ofP,,, . .., the set of real numbers > 2 such thatr(z;q,a;) > --- > 7(z;q¢,a,).

ceey

ceey

Hypothesis for DirichletZ-functions modula; (GRH,) and that the nonnegative imaginary parts
of zeros of thesd.-functions are linearly independent over the rationals,iftbin and Sarnak
[12] have shown for any-tuple of reduced residue classsgs. . ., a, modulog, thatP,.,, . has

a positive logarithmic density (although it may be quite Bamasome cases). We recall that the
logarithmic density of a seéf’ C (0, +o0) is defined as

1
d(F) = lim dt
X—oolog X Jpo xjnp t

provided that the limit exists.

In [2] and [3], Ford and Konyagin investigated how possilidations of the Generalized Rie-
mann Hypothesis (GRH) would affect prime number races. Intf8y proved that the existence
of certain sets of zeros off the critical line would imply tisame of the set&,.,, ., ., are bounded,
giving a negative answer to the prime race problem with 3. Paper [3] was devoted to similar
questions for-way prime races withr > 3. One result from [3] states that for agyr < ¢(q)

and set{a,,...,a,} of reduced residues modulp the existence of certain hypothetical sets of
zeros of DirichletL-functions modulg; implies that at most(r — 1) of the setsP,.,(,,),....o(a,) @re
unboundedy running over all permutations dfi,, . .., a, }.

In this paper, we investigate the effect of zeroslefunctions lying off the critical line for
two way prime races. This case is harder, since it is unciomgilly proved that for certain races
{¢; a,b} the setP,., , is unbounded. For example, Littlewood [11] proved tRa§ 1, Ps.13, P12
and P;.,; are unbounded. Later Knapowski and dar([9], [10]) proved for manyy, a, b that
m(x;q,b) —m(z; ¢, a) changes sign infinitely often and more recently Sneed [18lvsld that?,.,, ,
is unbounded for every < 100 and all possible pair&z, b).
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Nevertheless, we prove that the existence of certain zdfadlseocritical line would imply that
the setP,., , has asymptotic density zero, in contrast with a conditioesiilt of Kaczorowski [7]
on GRH, which asserts th#t,; , and P, ; have positive lower densities for &ll, ¢) = 1.

Let ¢ > 3 be a positive integer and b be distinct reduced residues modyloMoreover, for
any setS of real numbers we defing(X) = SN [2, X].

Theorem 1.1. Letq > 3 and suppose that andb are distinct reduced residues moduloLet y
be a nonprincipal Dirichlet character witly(a) # x(b), and put{ = arg(x(a) — x(b)) € [0, 27).
Supposg <o <1,0<d <o—1,A>0,andB = B(, 0,4, A) is a multiset of complex numbers
satisfying the conditions listed in Section 2.Lifp, ) = 0 for all p € B, L(s, x) has no other
zeros in the regioq s : Re(s) > o — §,Im(s) > 0}, and for all other nonprincipal characterg’
modulog, L(s, x’) # 0 in the region{s : Re(s) > o — §,Im(s) > 0}, then

lim mea$Pq;a,b(X))

oy X =0.

Remarks. A charactery with y(a) # x(b) exists wheneveds andb are distinct modulg. The
setsB have the property that any< 5 has real part ino — ¢, |, imaginary part greater tha,
and multiplicity O((log Im(p))*/4) (that is, the multiplicities are much smaller than known !
on the multiplicity of zeros of DirichleL-functions). The number of elementsBf(counted with
multiplicity) with imaginary part less thafi’ is O((log 7')*/*), and thusB is quite a “thin” set.
Also, we note that if.(3 + iy, x) = 0 thenL(5 — i,%) = 0, which is a consequence of the
functional equation for Dirichlef-functions (See e.g. Ch. 9 of [1]). The point of Theorem 1.1 is
that proving

>0

lim sup mea$Pq;a,b(X))
X—o0 X

requires showing that the multiset of zerosi/@k, y) cannot contain any of the multisefs This

is beyond what is possible with existing technology (see @ffor the best known estimates for
multiplicities of zeros). In other words, Theorem 1.1 claithat under certain suppositions the set
P,..»(X) has the zero asymptotic density. This implies that its liganic density is also zero, in
contrast to conditional results from [12].

Our method works as well for the differene¢z) — li(z), the error term in the prime number
theorem. Littlewood [11] established that this quantitymes sign infinitely often. LeP; be
the set of real numbers > 2 such thatr(x) > li(z). In [8] Kaczorowski proved, assuming the
Riemann Hypothesis, that boff and P, have positive lower densities. Assuming the Riemann
Hypothesis and that the nonnegative imaginary parts of ¢éheszof the Riemann zeta function
((s) are linearly independent over the rationals, RubinsteinS$amhak [12] have shown th#}
has a positive logarithmic density ~ 0.00000026. In contrast with these results we prove that
the existence of certain zeros@f) off the critical line would imply that the s&t has asymptotic
density zero (or asymptotic density 1).

Theorem 1.2. Suppose <0 < 1,0<d <o —sandA > 0. () If £ =0, B = B(, 0,6, A)
satisfies the conditions of Section@p) = 0 for all p € B, and((s) has no other zeros in the
region{s : Re(s) > o — 4,Im(s) > 0}, then

lim measP; (X))
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(i) If £ = m, B satisfies the conditions of Section(2p) = 0 for all p € B, and((s) has no other
zeros in the regioR s : Re(s) > o — d,Im(s) > 0}, then

. MEBSA(X)

Hm X = 1.

We omit the proof of Theorem 1.2, as it is nearly identicallte proof of Theorem 1.1 in the
caseg = 4.

2 Theconstruction of B

Forj > 1, we fix any real numbers;, §, andf; satisfying

. ‘ 1 1
exXp (]8) < < 2exp (]8) RS ﬁ < j—9>
(2.1) £ 1/2
and \0; — —; ‘ < -
J J
We choosegj, so large that for aljz Jo,v; > Aando — 0 < o — §;. Then we takeB to be the

union, overj > jo andl < k < 53, of m(k,j) = k(52 + 1 — )coples ofp; 1, where

pj,k =0 — (5]' + Z(k")/J —+ QJ)

3 Preliminary Results

The following classical-type explicit formula was estahkd in Lemma 1.1 of [2] wherl = .
The slightly more general result below, which is more comenfor us, is proved in exactly the
same way.

Lemma3.1. Lets > 1/2 and for each non-principal character mod ¢, let B(x) be the sequence
of zeros (duplicates allowed) @f(s, x) with Re(s) > 5 andIm(s) > 0. Suppose further that all
L(s, x) are zero-free on the real segmeht s < 1. If (a,q) = (b, q) = 1, x is sufficiently large

andz’ > z, then

() (n(x;9,a) = m(:q,0) = —2Re [ Y (x( ) D o) | +0 (2P log? ),
XF#X0 PEB(X)
x mod ¢ [Im(p)| <z’
where

P 1 T tp 4 Re(p)
f(p) == - +_/ 5o dl = - + O - D) )
plogz ~ p )y tlog*t plogx |p|?log”
Remark. For Theorem 1.2, we use a similar explicit formulafdr:) in terms of the zero®({)
of the Riemann zeta function which satisty > g andSp > 0:

r(x) =li(z) — 2R > f(p) + O’ log’ x).

pEB(C)
[Sp| <’

Using properties of the Fej kernel we prove the following key proposition.
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Proposition 3.2. Lety > 1, L > 4 and X > 2. Define

~

—1
F, (x) =) (L—k)cos(kylogz).
1

B
Il

Then
L
meas{x €[LX]:F (z) > _Z} < —.
Proof. The Fegr kernel satisfies the following identity

1 Sln(Lze) B L1 _E cos
(sm(g)> _1+2;(1 L) (k6).

L

This yields

2 L’ylogm
Fio(z) = oo ( ) -

2 sin? (’Yk;gw)

N[

Therefore, ifF, ; (x) > —L/4 then
.o (7logx 2 5 (Lylogx 2
< = < —.
sm( 5 )\Lsm< 5 ST

1

V2L’

where||t|| denotes the distance to the nearest integer. We observiaghedndition|| 2282|| < &
means that for some integemwe have

Hence,

Hyloga:

1
k—e< YOBT k+e,
2
or equivalentlye?™*=2)/7 L ¢ < e27(k+2)/7, Thus,
L vlogx
mea xe[l,X]:F%L(a:)>—Z <meas z € [1,X]: 5 <e
m

< Z 627r(k+6)/'y . e27r(k—e)/'y

0k X e

<< Z ekt X [

e

4 Proof of Theorem 1.1
SupposeX is large and/X < z < X. For brevity, let
A = ¢(q)(m(z;q,a) — 7(2;4,0)).
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It follows from Lemma 3.1 witht’ = max(z, max{jy; : 7; < «}) that

3
2 J xo’—éj-i-i(k"/j-i-ej)m(k j)
A=-— Re | (X(a) —X(b)) : ’
log x ( %; o —06; +i(kvy; +0))
7 ah & m(k 5 12
+0 5 Z 7 " log”
log :c%@ oo
(4.1) p
2z° %
_lx Re x % ajzk'yﬁ—e ]—{-1—/{?)
08T 'y]<x i k=1
o 4 . —0;
+0 1:6 Z J :C2 +2° % log? x
ogw bt V;
Note that

0 1 1
e (5 (140 (1)) o).

Vi J J
The maximum of this function ovei occurs around’ = J(z) := [(logz)'/!®] . In this case we

havelog x = J'(1 + O(1/J)) so that

-8y

4.2) =exp (—2J°+ O (J7)) = exp (—2(logx)"/? + O((log z)™/*7)) .
We will prove that most of the contribution to the main termtba right hand side of (4.1) comes
for thej's in the range/ — J3/* < j < J + J** First,if j > 3J/2 or j < J/2 then

—j =07
< exp (—4J%) < exp (—(log x)l/Q) —
Vi Vg

Now suppose that/2 < j < J — J¥*or J+ J* < j < 3J/2. Write j = J + r with
J3* <r| < J/2. Forz > 0,2+ 1/x =2+ (x — 1)?/x, hence

(03 + (00305 o3+ 0ol 520 005 5 2

We infer from (4.2) that
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Sincey; < z implies thatj < (logx)'/8, the contribution of the terms < j < J — J** or
J + J3/* < j to the main term of (4.1) is

o—0y

3

; j
(4.3) < exp(—2(log x)l/g) r Z Z(j3 +1—k) < exp (—(log x)l/g) r -
T i< llogayt/ k=1 v

=9 1 1
(5 (0 () o)
;i J J

< exp (—2\/§(log 2)V2(1 + 0(1)))

x%
< exp (—2(log :c)l/?’) 7
J

Similarly, we have

which follows from (4.2) along with the fact that the maximafnf (¢) = —log z/t® — 2t® occurs
att = (log z/2)"/'5. Hence, using (4.2), the contribution of the error term of)4s

o—07

4.4) < exp(—2(logz)"?) i
Vg

o—07
x
E 74+ 20 log? © < exp (—(log [E)l/3) —_
j<(log z)1/4 i

Therefore, inserting the bounds (4.3) and (4.4) in (4.1) edude that

Re (i(Y(a) -x0) > z0 > exp (i(ky; +0;) log ) (° + 1 — k))

odi<sr k=

. xU_6J
+ 0 (exp (—(log :L‘)l/d) —) )
Y

LetJ — J3* < j < J + J¥* Thenj'® = J' (1 + O(J~"/*)) . Hence we get
m\ logx log
0105 = (arsn(o) — ) - ) 52+ 0 (1)

= (wstxt) —x®) - 3) +0 (517 )

This implies

ix(a) = X0 exp i o) = (@) ~x(0)] (1+0 537 ) ).

sincec'®#* = z/|z|. Inserting this estimate in (4.5) we obtain

0'—5j

A=(1+0(——) )o@ - xS L )
( <1og/ x))

(4.6) sz 11108

O'—(sJ
+0 (exp (—(log x)1/3) x_) :
VI
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Forz € [VX, X]we havel (log X)/16 < J—J%* and.J+J%/* < 4(log X))/ if X is sufficiently
large, since/ = (log x)'/16 + O(1). We define

4 .
Q= {x € VX, X]: F, js(z) < _jZ for all £ (log X)'/' < j < 4(1ogX)1/16} .

Then it follows from Proposition 3.2 that

1
— + VX

meas) = X +0 | X Z s

1(1log X)1/16<j<4(log X)1/16
= X (1+0 ((log X)~1/32)).
Furthermore, ifc € ) then we infer from (4.6) that

3,05 Y
A<—gh@ x5 TS0 (e (<o) )

Tl 7v;log x YJ

1 J3xo=0s
<—z — x(b)|——
3|X(a) X( )|%10gx

asX — oo, which completes the proof.

(4.7)

(1+0(1)) < —27/exp((2+ o(1))Vz) <0
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