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ABSTRACT. We show, for anyq > 3 and distinct reduced residuesa, b (mod q), the existence
of certain hypothetical sets of zeros of DirichletL-functions lying off the critical line implies that
π(x; q, a) < π(x; q, b) for a set of realx of asymptotic density 1.

1 Introduction
For(a, q) = 1, letπ(x; q, a) denote the number of primesp 6 x with p ≡ a (mod q). The study

of the relative magnitudes of the functionsπ(x; q, a) for a fixedq and varyinga is known colloqui-
ally as the “prime race problem” or “Shanks-Rényi prime race problem”. For a survey of problems
and results on prime races, the reader may consult the papers[4] and [5]. One basic problem is
the study ofPq;a1...,ar , the set of real numbersx > 2 such thatπ(x; q, a1) > · · · > π(x; q, ar).
It is generally believed that all setsPq;a1...,ar are unbounded. Assuming the Generalized Riemann
Hypothesis for DirichletL-functions moduloq (GRHq) and that the nonnegative imaginary parts
of zeros of theseL-functions are linearly independent over the rationals, Rubinstein and Sarnak
[12] have shown for anyr-tuple of reduced residue classesa1, . . . , ar moduloq, thatPq;a1,...,qr has
a positive logarithmic density (although it may be quite small in some cases). We recall that the
logarithmic density of a setE ⊂ (0, +∞) is defined as

δ(E) = lim
X→∞

1

log X

∫

[2,X]∩E

dt

t

provided that the limit exists.
In [2] and [3], Ford and Konyagin investigated how possible violations of the Generalized Rie-

mann Hypothesis (GRH) would affect prime number races. In [2], they proved that the existence
of certain sets of zeros off the critical line would imply that some of the setsPq;a1,a2,a3

are bounded,
giving a negative answer to the prime race problem withr = 3. Paper [3] was devoted to similar
questions forr-way prime races withr > 3. One result from [3] states that for anyq, r 6 φ(q)
and set{a1, . . . , ar} of reduced residues moduloq, the existence of certain hypothetical sets of
zeros of DirichletL-functions moduloq implies that at mostr(r − 1) of the setsPq;σ(a1),...,σ(ar) are
unbounded,σ running over all permutations of{a1, . . . , ar}.

In this paper, we investigate the effect of zeros ofL-functions lying off the critical line for
two way prime races. This case is harder, since it is unconditionally proved that for certain races
{q; a, b} the setPq;a,b is unbounded. For example, Littlewood [11] proved thatP4;3,1, P4;1,3, P3;1,2

andP3;2,1 are unbounded. Later Knapowski and Turàn ([9], [10]) proved for manyq, a, b that
π(x; q, b)−π(x; q, a) changes sign infinitely often and more recently Sneed [13] showed thatPq;a,b

is unbounded for everyq 6 100 and all possible pairs(a, b).
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Nevertheless, we prove that the existence of certain zeros off the critical line would imply that
the setPq;a,b has asymptotic density zero, in contrast with a conditionalresult of Kaczorowski [7]
on GRH, which asserts thatPq;1,b andPq;b,1 have positive lower densities for all(b, q) = 1.

Let q > 3 be a positive integer anda, b be distinct reduced residues moduloq. Moreover, for
any setS of real numbers we defineS(X) = S ∩ [2, X].

Theorem 1.1. Let q > 3 and suppose thata andb are distinct reduced residues moduloq. Letχ
be a nonprincipal Dirichlet character withχ(a) 6= χ(b), and putξ = arg(χ(a) − χ(b)) ∈ [0, 2π).
Suppose1

2
< σ < 1, 0 < δ < σ− 1

2
,A > 0, andB = B(ξ, σ, δ, A) is a multiset of complex numbers

satisfying the conditions listed in Section 2. IfL(ρ, χ) = 0 for all ρ ∈ B, L(s, χ) has no other
zeros in the region{s : Re(s) > σ − δ, Im(s) > 0}, and for all other nonprincipal charactersχ′

moduloq, L(s, χ′) 6= 0 in the region{s : Re(s) > σ − δ, Im(s) > 0}, then

lim
X→∞

meas(Pq;a,b(X))

X
= 0.

Remarks. A characterχ with χ(a) 6= χ(b) exists whenevera andb are distinct moduloq. The
setsB have the property that anyρ ∈ B has real part in[σ − δ, σ], imaginary part greater thanA,
and multiplicityO((log Im(ρ))3/4) (that is, the multiplicities are much smaller than known bounds
on the multiplicity of zeros of DirichletL-functions). The number of elements ofB (counted with
multiplicity) with imaginary part less thanT is O((log T )5/4), and thusB is quite a “thin” set.
Also, we note that ifL(β + iγ, χ) = 0 thenL(β − iγ, χ) = 0, which is a consequence of the
functional equation for DirichletL-functions (See e.g. Ch. 9 of [1]). The point of Theorem 1.1 is
that proving

lim sup
X→∞

meas(Pq;a,b(X))

X
> 0

requires showing that the multiset of zeros ofL(s, χ) cannot contain any of the multisetsB. This
is beyond what is possible with existing technology (see e.g. [6] for the best known estimates for
multiplicities of zeros). In other words, Theorem 1.1 claims that under certain suppositions the set
Pq;a,b(X) has the zero asymptotic density. This implies that its logarithmic density is also zero, in
contrast to conditional results from [12].

Our method works as well for the differenceπ(x) − li(x), the error term in the prime number
theorem. Littlewood [11] established that this quantity changes sign infinitely often. LetP1 be
the set of real numbersx > 2 such thatπ(x) > li(x). In [8] Kaczorowski proved, assuming the
Riemann Hypothesis, that bothP1 andP 1 have positive lower densities. Assuming the Riemann
Hypothesis and that the nonnegative imaginary parts of the zeros of the Riemann zeta function
ζ(s) are linearly independent over the rationals, Rubinstein andSarnak [12] have shown thatP1

has a positive logarithmic densityδ1 ≈ 0.00000026. In contrast with these results we prove that
the existence of certain zeros ofζ(s) off the critical line would imply that the setP1 has asymptotic
density zero (or asymptotic density 1).

Theorem 1.2. Suppose1
2

< σ < 1, 0 < δ < σ − 1
2

andA > 0. (i) If ξ = 0, B = B(ξ, σ, δ, A)
satisfies the conditions of Section 2,ζ(ρ) = 0 for all ρ ∈ B, andζ(s) has no other zeros in the
region{s : Re(s) > σ − δ, Im(s) > 0}, then

lim
X→∞

meas(P1(X))

X
= 0.
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(ii) If ξ = π, B satisfies the conditions of Section 2,ζ(ρ) = 0 for all ρ ∈ B, andζ(s) has no other
zeros in the region{s : Re(s) > σ − δ, Im(s) > 0}, then

lim
X→∞

meas(P1(X))

X
= 1.

We omit the proof of Theorem 1.2, as it is nearly identical to the proof of Theorem 1.1 in the
caseq = 4.

2 The construction of B
For j > 1, we fix any real numbersγj, δj andθj satisfying

(2.1)
exp

(

j8
)

6 γj 6 2 exp
(

j8
)

,

∣

∣

∣

∣

δj −
1

j8

∣

∣

∣

∣

6
1

j9
,

and

∣

∣

∣

∣

θj −
ξ − π/2

j16

∣

∣

∣

∣

6
1

j17
.

We choosej0 so large that for allj > j0, γj > A andσ − δ 6 σ − δj. Then we takeB to be the
union, overj > j0 and1 6 k 6 j3, of m(k, j) = k(j3 + 1 − k) copies ofρj,k, where

ρj,k = σ − δj + i(kγj + θj).

3 Preliminary Results
The following classical-type explicit formula was established in Lemma 1.1 of [2] whenx′ = x.

The slightly more general result below, which is more convenient for us, is proved in exactly the
same way.

Lemma 3.1. Letβ > 1/2 and for each non-principal characterχ mod q, letB(χ) be the sequence
of zeros (duplicates allowed) ofL(s, χ) with Re(s) > β and Im(s) > 0. Suppose further that all
L(s, χ) are zero-free on the real segmentβ < s < 1. If (a, q) = (b, q) = 1, x is sufficiently large
andx′ > x, then

φ(q)
(

π(x; q, a) − π(x; q, b)
)

= −2Re









∑

χ6=χ0

χ mod q

(χ(a) − χ(b))
∑

ρ∈B(χ)
|Im(ρ)|6x′

f(ρ)









+ O
(

xβ log2 x
)

,

where

f(ρ) :=
xρ

ρ log x
+

1

ρ

∫ x

2

tρ

t log2 t
dt =

xρ

ρ log x
+ O

(

xRe(ρ)

|ρ|2 log2 x

)

.

Remark. For Theorem 1.2, we use a similar explicit formula forπ(x) in terms of the zerosB(ζ)
of the Riemann zeta function which satisfyℜρ > β andℑρ > 0:

π(x) = li(x) − 2ℜ
∑

ρ∈B(ζ)
|ℑρ|6x′

f(ρ) + O(xβ log2 x).

Using properties of the Fejér kernel we prove the following key proposition.
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Proposition 3.2. Letγ > 1, L > 4 andX > 2. Define

Fγ,L(x) =
L−1
∑

k=1

(L − k) cos (kγ log x) .

Then

meas

{

x ∈ [1, X] : Fγ,L(x) > −L

4

}

≪ X√
L

.

Proof. The Fej́er kernel satisfies the following identity

1

L

(

sin
(

Lθ
2

)

sin
(

θ
2

)

)2

= 1 + 2
L−1
∑

k=1

(

1 − k

L

)

cos(kθ).

This yields

Fγ,L(x) =
sin2

(

Lγ log x
2

)

2 sin2
(

γ log x
2

) − L

2
.

Therefore, ifFγ,L(x) > −L/4 then

sin2

(

γ log x

2

)

6
2

L
sin2

(

Lγ log x

2

)

6
2

L
.

Hence,
∥

∥

∥

∥

γ log x

2π

∥

∥

∥

∥

6 ε :=
1√
2L

,

where‖t‖ denotes the distance to the nearest integer. We observe thatthe condition
∥

∥

γ log x
2π

∥

∥ 6 ε
means that for some integerk we have

k − ε 6
γ log x

2π
6 k + ε,

or equivalentlye2π(k−ε)/γ 6 x 6 e2π(k+ε)/γ. Thus,

meas

{

x ∈ [1, X] : Fγ,L(x) > −L

4

}

6 meas

{

x ∈ [1, X] :

∥

∥

∥

∥

γ log x

2π

∥

∥

∥

∥

6 ε

}

6
∑

06k6
γ log X

2π
+ε

e2π(k+ε)/γ − e2π(k−ε)/γ

≪ ε

γ

∑

06k6
γ log X

2π
+ε

e2π(k+ε)/γ ≪ εX. ¤

4 Proof of Theorem 1.1

SupposeX is large and
√

X 6 x 6 X. For brevity, let

∆ = φ(q)
(

π(x; q, a) − π(x; q, b)
)

.
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It follows from Lemma 3.1 withx′ = max(x, max{j3γj : γj 6 x}) that

(4.1)

∆ = − 2

log x
Re



(χ(a) − χ(b))
∑

γj6x

j3

∑

k=1

xσ−δj+i(kγj+θj)m(k, j)

σ − δj + i(kγj + θj)





+ O





xσ

log2 x

∑

γj6x

x−δj

γ2
j

j3

∑

k=1

m(k, j)

k2
+ xσ−δ log2 x





=
2xσ

log x
Re



i(χ(a) − χ(b))
∑

γj6x

x−δj

γj

j3

∑

k=1

xi(kγj+θj)(j3 + 1 − k)





+ O





xσ

log x

∑

γj6x

j4x−δj

γ2
j

+ xσ−δ log2 x



 .

Note that
x−δj

γj

= exp

(

− log x

j8

(

1 + O

(

1

j

))

− j8 + O(1)

)

.

The maximum of this function overj occurs aroundJ = J(x) :=
[

(log x)1/16
]

. In this case we
havelog x = J16(1 + O(1/J)) so that

(4.2)
x−δJ

γJ

= exp
(

−2J8 + O
(

J7
))

= exp
(

−2(log x)1/2 + O((log x)7/16)
)

.

We will prove that most of the contribution to the main term onthe right hand side of (4.1) comes
for thej’s in the rangeJ − J3/4 6 j 6 J + J3/4. First, if j > 3J/2 or j 6 J/2 then

x−δj

γj

≪ exp
(

−4J8
)

≪ exp
(

−(log x)1/2
) x−δJ

γJ

.

Now suppose thatJ/2 < j < J − J3/4 or J + J3/4 < j < 3J/2. Write j = J + r with
J3/4 < |r| < J/2. Forx > 0, x + 1/x = 2 + (x − 1)2/x, hence

(

1 +
r

J

)8

+
(

1 +
r

J

)−8

>

(

1 +
∣

∣

∣

r

J

∣

∣

∣

)8

+
(

1 +
∣

∣

∣

r

J

∣

∣

∣

)−8

> 2 +
(8r/J)2

1 + 8r/J
> 2 + 12(r/J)2.

We infer from (4.2) that

x−δj

γj

= exp

(

−J16

j8

(

1 + O

(

1

J

))

− j8

)

= exp

(

−J8

(

(

1 +
r

J

)8

+
(

1 +
r

J

)−8
)

+ O(J7)

)

6 exp

(

−2J8

(

1 +
6√
J

)

+ O(J7)

)

≪ exp
(

−2(log x)1/3
) x−δJ

γJ

.
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Sinceγj 6 x implies thatj ≪ (log x)1/8, the contribution of the terms1 6 j < J − J3/4 or
J + J3/4 < j to the main term of (4.1) is

(4.3) ≪ exp
(

−2(log x)1/3
) xσ−δJ

γJ

∑

j6(log x)1/4

j3

∑

k=1

(j3 + 1 − k) ≪ exp
(

−(log x)1/3
) xσ−δJ

γJ

.

Similarly, we have

x−δj

γ2
j

= exp

(

− log x

j8

(

1 + O

(

1

j

))

− 2j8 + O(1)

)

≪ exp
(

−2
√

2(log x)1/2(1 + o(1))
)

≪ exp
(

−2(log x)1/3
) x−δJ

γJ

,

which follows from (4.2) along with the fact that the maximumof f(t) = − log x/t8 − 2t8 occurs
at t = (log x/2)1/16. Hence, using (4.2), the contribution of the error term of (4.1) is

(4.4) ≪ exp
(

−2(log x)1/3
) xσ−δJ

γJ

∑

j6(log x)1/4

j4 + xσ−δ log2 x ≪ exp
(

−(log x)1/3
) xσ−δJ

γJ

.

Therefore, inserting the bounds (4.3) and (4.4) in (4.1) we deduce that

(4.5)

∆ =
2xσ

log x
Re



i(χ(a) − χ(b))
∑

|j−J |6J3/4

x−δj

γj

j3

∑

k=1

exp (i(kγj + θj) log x) (j3 + 1 − k)





+ O

(

exp
(

−(log x)1/3
) xσ−δJ

γJ

)

.

Let J − J3/4 6 j 6 J + J3/4. Thenj16 = J16
(

1 + O(J−1/4)
)

. Hence we get

θj log x =
(

arg(χ(a) − χ(b)) − π

2

) log x

j16
+ O

(

log x

j17

)

=
(

arg(χ(a) − χ(b)) − π

2

)

+ O

(

1

J1/4

)

.

This implies

i(χ(a) − χ(b)) exp (iθj log x) = |χ(a) − χ(b)|
(

1 + O

(

1

J1/4

))

,

sinceei arg z = z/|z|. Inserting this estimate in (4.5) we obtain

(4.6)

∆ =

(

1 + O

(

1

log1/64 x

))

2|χ(a) − χ(b)|
∑

|j−J |6J3/4

xσ−δj

γj log x
Fγj ,j3+1(x)

+ O

(

exp
(

−(log x)1/3
) xσ−δJ

γJ

)

.
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Forx ∈ [
√

X,X] we have1
4
(log X)1/16 6 J−J3/4 andJ+J3/4 6 4(log X)1/16 if X is sufficiently

large, sinceJ = (log x)1/16 + O(1). We define

Ω :=

{

x ∈ [
√

X,X] : Fγj ,j3(x) 6 −j3

4
for all

1

4
(log X)1/16

6 j 6 4(log X)1/16

}

.

Then it follows from Proposition 3.2 that

(4.7)
measΩ = X + O



X
∑

1
4
(log X)1/166j64(log X)1/16

1

j3/2
+
√

X





= X
(

1 + O
(

(log X)−1/32
))

.

Furthermore, ifx ∈ Ω then we infer from (4.6) that

∆ 6 −1

3
|χ(a) − χ(b)|

∑

|j−J |6J3/4

j3xσ−δj

γj log x
+ O

(

exp
(

−(log x)1/3
) xσ−δJ

γJ

)

.

6 −1

3
|χ(a) − χ(b)|J

3xσ−δJ

γJ log x
(1 + o(1)) 6 −xσ/ exp((2 + o(1))

√
x) < 0

asX → ∞, which completes the proof.
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