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ABsTRACT. We examine the effects of certain hypothetical configurations of zeros
of Dirichlet L-functions lying off the critical line on the distribution of primes in
arithmetic progressions.

1. INTRODUCTION

Let 74 o () denote the number of primes p < = with p = a (mod ¢). The study of
the relative magnitudes of the functions 7, ,(z) for a fixed ¢ and varying a is known
colloquially as the “prime race problem” or “Shanks-Rényi prime race problem”.
Fix ¢ and distinct residues as,...,a, with (a;,q) = 1 for each i. As colorfully
described in the first paper of [KT1], consider a game with r players called “1”
through “r”, and at time ¢, each player “j” has a score of m,,,(t) (i.e. player
“j7 scores 1 point whenever ¢ reaches a prime = a; (mod ¢)). As t — oo, will
each player take the lead infinitely often? More generally, will all r! orderings of
the players occur for infinitely many integers ¢? It is generally believed that the
answers to both questions is yes, for all ¢, a1,... ,a,.

As first noted by Chebyshev [Ch] in 1853, some orderings may occur far less
frequently than others (e.g. if ¢ = 3, a1 =1, ay = 2, then player “1” takes the lead
for the first time when ¢ = 608,981,813,029 [BH]). More generally, when r = 2,
ay is a quadratic residue modulo ¢, and as is a quadratic non-residue modulo
¢, Tqa,(Z) — Mg q,(z) tends to be positive more often than it is negative (this
phenomenon is now called “Chebyshev’s bias”). In 1914, Littlewood [L] proved
that both functions m4 3(z) — m4,1(z) and mg2(x) — m3,1(x) change sign infinitely
often. Later Knapowski and Turan ([KT1], [KT2]) proved for many g¢,a,b that
Tgb(Z) — mq () changes sign infinitely often. The distribution of the functions
7q,a(2) is closely linked with the distribution of the zeros in the critical strip 0 <
Rs < 1 of the Dirichlet L-functions L(s,x) for the characters x modulo q. Some
of the results of Knapowski and Turan are proved under the assumption that the
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functions L(s, x) have no real zeros in (0, 1), or that for some number K, the zeros
of the functions L(s,x) with |¥s| < K, all have real part equal to 1.

Theoretical results for » > 2 are more scant, all depending on the unproven
Extended Riemann Hypothesis for ¢ (abbreviated ERH,), which states that all
these zeros lie on the critical line Rs = ;. Kaczorowski ([K1], [K2], [K3]) has shown
that the truth of ERH, implies that for many r-tuples (g, a1, - ,a,), Tgq, () >
-+« > Tgq,(x) for arbitrarily large z. If, in addition to ERHy, one assumes that
the collection of non-trivial zeros of the L-functions for characters modulo g are
linearly independent over the rationals (GSH,, the grand simplicity hypothesis) ,
Rubinstein and Sarnak [RS] have shown that for any r-tuple of coprime residue
classes a1, ... ,a, modulo g, that all 7! orderings of the functions 7, ,,(x) occur for
infinitely many integers x. In fact they prove more, that the logarithmic density of
the set of real x for which any such inequality occurs exists and is positive.

In light of the results of Littlewood and of Knapowski and Turan, one may ask
if such results for » > 2 may be proved without the assumption of ERH,. In
particular, can it be shown, for some quadruples (g, a1, as, as), that the 6 orderings
of the functions 7, 4, (x) occur for infinitely many integers x, without the assumption
of ERH,, (while still allowing the assumption that zeros with imaginary part < K|,
lie on the critical line for some constant K)? In this paper we answer this question
in the negative (in a sense) for all quadruples (g, a1, as,a3). Thus, in a sense the
hypothesis ERH,, is a necessary condition for proving any such results when r > 2.

Let C; be the set of non-principal characters modulo ¢q. Let D = (¢, a1, as, as),
where a1, as,a3 are distinct residues modulo ¢ which are coprime to ¢. Suppose
for each x € Cy4, B(x) is a sequence of complex numbers with positive imaginary
part (possibly empty, duplicates allowed), and denote by B the system of B(x) for
X € C4. Let n(p, x) be the number of occurrences of the number p in B(x). The
system B is called a barrier for D if the following hold:

(i) all numbers in each B(x) have real part in [8s, f3], where % < P2 < Ps<L
(ii) for some fB; satisfying % < pi < Bo, if we assume that for each x € C, and

p € B(x), L(s,x) has a zero of multiplicity n(p,x) at s = p, and all other

zeros of L(s,x) in the upper half plane have real part < 31, then one of the six

orderings of the three functions m, ,,(z) does not occur for large z.

If each sequence B(Yx) is finite, we call B a finite barrier for D and denote by
|B| the sum of the number of elements of each sequence B(x), counted according
to multiplicity.

Theorem 1. For every real numbers T > 0 and o > % and every D = (q, a1, az,a3),
there is a finite barrier for D, where each sequence B(x) consists of numbers with
real part < o and imaginary part > 7. In fact, for most D, there is a barrier with
1B < 3.

We do not claim that the falsity of ERH, implies that one of the six orderings
does not occur for large . For example, take o > %, and suppose each non-principal
character modulo ¢ has a unique zero with positive imaginary part to the right of
the critical line, at o + i7,. If the numbers v, are linearly independent over the
rationals, it follows easily from Lemma 1.1 below and the Kronecker-Weyl Theorem
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that in fact all ¢(g)! orderings of the functions {my () : (a,q) = 1} occur for an
unbounded set of x.

We now present a general formula for 7, ,(z) in terms of the zeros of the func-
tions L(s,x). Throughout this paper, constants implied by the Landau O— and
Vinogradov < — symbols may depend on ¢, but not on any other variable.

Lemma 1.1. Let 8 > %, x > 10 and for each x € Cy, let B(x) be the sequence of
zeros (duplicates allowed) of L(s,x) with Rs > 8 and Is > 0. Suppose further that
all L(s,x) are zero-free on the real segment 0 < s < 1. If (a,q) = (b,q) =1 and z
18 sufficiently large, then

$(q) (mga(x) — mgp(x)) = =20 | > (%(a) —x(1) Y_ f(p)| +O(z"log?z),

x€Cq pEB(x)
[Spl<z

where

zP 1 [ tr zP e
= +- | ——dt= +0(——p).
Fp) plogzx ,0/2 tlog2t plogz <\P\210g2$)
Proof. Let A(n) be the von Mangolt function, and define

Vgalz) = Z A(n), U (x;x) = Z A(n)x(n)

n<e n<e
n=a (mod q)

Let D, be the set of all Dirichlet characters x modulo gq. Then

A(n
M@= Y 40
n<T
n=a (mod q)

:/:1: d‘yq,a(t) +O($1/2)

logt
_ \Illq,;(l‘) +/w ;I’I ()dt+0( 1/2)
ogxr 2 Og

_ L Y(a qj(an) ‘ ‘Il(tS X) 172

~ ¢(q) ngX( ) ( log z +/2 tlog® t dt) +O@).
Then
(1.1)
60) ) = moae)) = Y (o) = x(0) (o) + 7 T ) + 0 (a1,

Xecq
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By well-know explicit formulas (Ch. 19, (7)—(8) in [D]), when x € Cy,

(1.2) U(zsx)=— ) 210 (1ogx).

[Spl<z

where the sum is over zeros p of L(s,x) with 0 < £p < 1. Since the number of
zeros with 0 < Sp < T is O(T'logT) ([D], Ch. 16, (1)), by partial summation we

have
‘mp
0<Sp<a 0<SpLz

Rp<LB

1
< 2P Z — < 2P log? z.

4

The implied constant depends on the character, and hence only on ¢. By (1.2),

p
(1.3) U(mx)=— % +0 (2P log’z)
[Spl<z

Rp>p

The first part of the lemma follows by inserting (1.3) into (1.1) and combining zeros
p of L(s,x) and p of L(s,x). Lastly, if % < o = Rp, integration by parts gives

/w A x+2/$tf’—1 "
o tlog?t B ,010g2t2 pJs logit

o 1| 1 (v 8 [
<= —3/ o dt+ — / o1 dt
Ipllog”z ~ |p| |log®2 /o log”z Jyz

o

X
K —
|p|log” z

This completes the proof of the lemma. [

In the next three sections, we show several methods for constructing barriers,
which, by Lemma 1.1, boils down to analyzing the two functions

RS (lay) ~xGas) 3 L (G=1,2)

Xx€C, peB(x) ¥

In section 2 we construct a barrier using two simple zeros (one of which may be a
zero for several characters). Section 3 details a method using a zero for L(s, x) and
a zero for L(s,x?) (for most D these are simple or double zeros). Lastly, section
4 presents a more general method with two numbers, which are zeros for each
character of certain high multiplicities. Together, the three constructions provide
barriers for all quadruples (g, a1, as, as).

All of the constructions in sections 2-4 involve two zeros, one with imaginary
part ¢ and the other with imaginary part 2¢. Thus, we assume that both ERH,
and GSH, are false. Answering a question posed by Peter Sarnak, in section 5 we
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construct a barrier (with an infinite set B(x)) where the imaginary parts of the
numbers in the sets B(x) are linearly independent; in particular, we assume all
zeros of each L(s, x) are simple, and L(s,x1) = 0 = L(s, x2) does not occur for
X1 7# X2 and Rs > .

We adopt the notations e(z) = 2™, |z| is the greatest integer < z, [x] is the
least integer > z, {x} = & — |z] is the fractional part of z, and ||z|| is the distance
from z to the nearest integer. Also, arg z is the argument of the nonzero complex
number z lying in [—7, 7). Throughout, ¢ = 5 or ¢ > 7, and (a1,q) = (a2,q9) =
(0’37 q) =L

2. FIRST CONSTRUCTION

Lemma 2.1. If, for some relabelling of the numbers a;, there is a set S of non-
principal Dirichlet characters modulo q such that

D x(a) =) x(az) # ) x(as),

XES XES XES

then there is a barrier B for D = (q, a1, a2, a3) with |B| < |S|+ 1.

Remark. The hypotheses of Lemma 2.1 are satisfied when, for example, ¢ has a
primitive root g, and ag/as is not in the subgroup of (Z/qZ)* generated by as/a;.
Writing as/a; = g/, we take the character with x(g) = e(1/(f, #(¢))) and S = {x}.

Proof. Suppose 1/2 < 8 < 09 < 01 < min(e,0.501), and let x2 be a character with
x2(a1) # xz2(az) (x2 may or may not be in S). Let T, be a large number, depending
only on ¢q. Let p; = o1 +it, p2 = 03 + 2it where t > T,. Suppose L(s,x) has a
simple zero at s = p; for each x € S, L(s, x2) has a simple zero at s = py, and no
other non-trivial zeros of any L-function in Cj have real part exceeding 3. Let

Dy(2) := ¢(9) (g0, (¥) = Tg,05(2)),  Da(@) := $(q)(Tg,a5 () = Tg,a, (2))-

By Lemma 1.1 and our hypotheses, if = is sufficiently large,

D 2202 §R eQitlong O 1 W _ _
1(z) = log© [ <m ) + (logm)} ) = Xz (az) — Xz(a1),

Ds(z) = 120“':; {m (f:jg;z) +0 (10;33)] . 2= (x(az) — X(as)).

XES

Ax) =

1 it log x 1
—arg c —7 ) — =
T o1+t 2

1
= H;(tlogx + al"gZ‘i'tan_l(Ul/t))H :
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If A(z) > (logz)~/2, then |Dy(x)| > z°t/log®? z. But Di(x) = O(z°), so for
such z, 7y q,(x) is either the largest or the smallest of the three functions. When
A(z) < (logz)~1/2, then

eZz’t logz
C(z) := arg (7W>

g9 —|—22t

02

2t
1

=argW + tan™* (;—z) —2argZ — 2tan~! (%) + 0 (\/m)

=argW —2argZ — F(z) (mod 7),

= argW — ~ + tan™! (

2 )+2t10ga:

where 1/(2t) < F(z) < 1/t for large . The number of possibilities for argW —
2 arg Z depends only on ¢, hence we may assume either
B=1largw —2arg2)} — 2
=< —(ar —2ar - =
T & 8 2
satisfies either B = 0 or |B| > 2/t > 2F(x) (by taking T, sufficiently large). We

have
C(r)=rB+ g — F(z) (mod 7).

If B =0, then C(z) is either 7/2 — F(z) or 37/2 — F(z) (mod 27), whence D (x)
takes only one sign for such z. Likewise, C(z) € (w/2 + 2/t,m) if B > 2/t and
C(z) € (=F(z),m/2 —2/t) if B < —2/t. In all cases, when A(z) < (logz)~'/2,
D, (z) takes only one sign. Therefore, one of the orderings mg o, () > g q,(z) >
Tg,as (L) OF Mg a,(T) > Mg a4(T) > g 4, (z) does not occur for large z. O

Remark. By similar reasoning, for any integer £ > 2 one may construct a
barrier with one zero having imaginary part ¢ and another zero having imaginary
part kt.

3. SECOND CONSTRUCTION

The basic idea of this section is to find a character x so that the values x(a1),
x(az2), x(a3) are nicely spaced around the unit circle, but not too well spaced (e.g.
cube roots of 1 or translates thereof). In almost all circumstances we can find such
a character.

Lemma 3.1. Let s; = ordg(az/a1), sz = ordy(as/az) and s3 = ordy(a1/as). If
one of s1, Sa, 3 is not in {3,7,13,21}, then for some relabeling of the a;’s, there is
a Dirichlet character x satisfying either

(i) x(a1) = x(a2) # x(as); or
(ii) x(a;) = e(r;) with0 <1 <7re <rz3 <1, anddy = ro—r1, do = r3 — 1o
satisfy

1

1
(31) g <d1 <d2 < 55 or (dl’dQ) € {(%’%)’(%’%)}
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Remark. In the case that (i) holds, the hypotheses of Lemma 2.1 hold with
S = {x}, and thus there is a finite barrier for D with |B| = 2. Therefore, in this
section we confine ourselves with the case that (ii) holds (Lemma 3.5 below).

Before proving Lemma 3.1, we begin with some simple lemmas about the exis-
tence of characters with certain properties.

Lemma 3.2. Suppose g > 3 and (b,q) = 1. Let m be the order of b modulo q.
Then there is a Dirichlet character x modulo q with x(b) = e(1/m).

Proof. Suppose ¢1,. .. ,g: generate (Z/qZ)* and b = g7* - - -gtft. Let s; = ordgg; for

each i, and s, be the order of g;*. Then s, = s;/(fi,si) and m = lem[s], ..., s}].
Let f; = fi/(fi,si), so in particular (s, f/) = 1. The gcd of the ¢t + 1 numbers
m, flm/s; is 1, so there are integers hi,...,h; so that Y h; f;f" = 1 (mod m).

Take the character x with x(g;) = e(hi/s;) for each i, then x(b) = []x(g:) =
e(hifi/s1+---+ hufi/s) = e(l/m). O

Lemma 3.3. Suppose b,c are distinct residues modulo q with (b,q) = (¢,q) = 1.
Suppose that r|ord,b and for every p®||r with a > 1, p**! { ordyc. Then there is a
Dirichlet character x modulo q such that

x(b) =e(l/r),  x(c)"=1.

Proof. Let s; = ord,b and s = ordyc. By Lemma 3.2, there is a character x; with
X1(b) = e(1/s1) and therefore a character xa with x2(b) = e(1/r). Since ¢ has order
s2, x2(c) = e(g/s2) for some integer g. Write s, = vu where (u,r) = 1 and v|r.
Define z by zu =1 (mod 7), and let x = x3*. Then x(b) = x2(b)* = e(1/r) and
x(c) = e(gzu/s2) = e(gx/v) = e(gz(r/v)/r). O

Definition. An odd number m is “good” if for every j, 1 < j <m —1, there is a
number k such that among the points (0,k/m,kj/m) mod 1, either two are equal
(and not equal to the third), or two of the three distances d1,ds,ds (with sum = 1)
between the points satisfy (3.1).

Remark. To prove that a number m is good, we need only to check 2 < j <
(m +1)/2, since for j = 1 we take k = 1, and if k works for j = jo then the same
k works for j = m + 1 — jp.

Lemma 3.4. Every odd prime p except p € P = {3,7,13} is good, and forp € P,
p? is good. Also, the numbers 39, 91 and 273 are good.

Proof. A short computation implies that if p € P, then p is not good, but p? is
good. Also, by a short computation, all other odd primes < 83 are good, as well
as 39, 91 and 273. The following j values have no associated k-value: for m = 3,
j=2form=7,5=3,5 form=13; j =3,5,6,8,9,11; for m = 21, 5 = 5,17.

Suppose that m = p > 84 is prime and write each product kj = #p + r with
0 < 7 < p. We shall prove that for each j € [2, ’%1], there is a k so that two of the
three distances satisfy % <d; <ds < % We now divide up the j € [2, 1%1] into 9
cases:
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Case 1. j € {3,5, 7,’%1}. For j = 3 take p/6 < k < 2p/9 and for j = 5,7 take
any k with p/(27) < k < p/(2j — 2). There is such a k when p > 84. Then p — jk
and jk — k both lie in (p/3,p/2). For j = 21t take k = 2 [p/3], then r = [p/3], so
both r and k — r lie in (p/3,p/2) for p > 6.

Case II. 9 < j < p/6+ 1. Take m = | 2(j — 1)|. Then

1/2 5 1/2 1/3 5 7/12
mtl2 5 Y2 L o mAlS 5 T2,
7—1 12 5-1 2’ 7—1 12 j57—1
Therefore, if
p(m +1/3) k< p(m+1/2)
j—1 j—1 7

then k and r — k lie in (p/3, p/2). But the above interval has length p/(6j —6) > 1
so such a k exists.

Case III. 2 < j <p/3+1,j even. Take k = 25~ L Then r = p— j/2 and both k
and r — k lie in (p/3 p/2).

Case IV. p/3+1 < j < 3p/7,7 even. Take h so that 1 < h < 222 and

2h+2/3 . _2h+1
6h+1 P> S 6n+1?

The largest admissible h is at least £ 1819, so the above intervals cover (gg; _123 ,3p/7),
which contains [ij4 3p/7) for p > 64. Then take k = E5% — 3h, so that r €
(p/2,2p/3).
Case V. 2p/5+1 < j < 21 j even. We take h so that 1 < h < % and
U T Vi
ah 1P/ ah+1 P
The largest admissible & is at least 2252, so these intervals cover (2p/5, ggz _18)
which includes (2p/5, 252] for p > 13. Then take k = 251 —2h, sor—k € (p/3,p/2).
Case VI.p/3+1<j < %,j odd. Take h, 0 <
2h+1 < < 2h + 4/3
an+3" =7 sh+3 ?
Than take k = ;3 2h, so that k —r € (p/3,p/2). The above intervals cover

(p/3, 252 prov1ded that p > 24.

Case VIL p/3 —1 < j < p/3+ 1. Write j = 2 where -2 < t < 2,
t # 0. Here we take k = 3 [p/9] + b, where 0 < b < 2 and ¢ + 3b = w (mod 9),
=395

w € {5,7}. If p > 28 then k € (p/3,p/2). If w then » = 5p/9 + E, where
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|E| < 22/9. Thus, r € (p/2,2p/3) when p > 44. When w = 7, t = 1,b = 2, then
r € (Tp/9,7p/9 + 14/9].

Case VIIIL. 5p/21 < j <p/3—1,7 odd. Take 1 < h < ”1;83 so that

6h—1 _ . _ 2
1837 7 S 6h+1

p-

Take k = p%l —3h,sor € (p/3,p/2). The above intervals cover (5p/21,p/3 — 1).

. . . _5
Case IX. p/6 +1 < j < 5p/21,5 odd. If p/5 < j —1 < 4p/15, take k = E52, so
that r € (5p/6 —5/2,p — 5/2). If p/7 < j — 1 < 4p/21, then k = 25° works and if
5p/27 < j < 2p/9 then k = % works. [

Proof of Lemma 3.1. By hypothesis, there are two possibilities:
(i) some s; (say s1) is divisible by a prime power p¥ other than 3,7, or 13;
(ii) Each s; divides 273 and some s; (say s1) equals 39, 91 or 273.
Say s; is divisible by p¥, with p¥*1 { s5 and p¥*+! { s3. By Lemma 3.3, there is a
character x; with x;(az/a1) = e(1/p™) and x1(as/az) = e(m/p™) for some integer
m. If p=2, let x = x2° ', so that x(az/a;) = —1 and

1 = x(az/a1)x(as/az)x(a1/as) = —x(as/az)x(a1/as).

But each character value on the right is either -1 or 1, so either x(a2) = x(as3)

or x(a1) = x(a3) and (i) is satisfied. If p is odd, let xo = le’w if p ¢ P and
X2 = Xfw_Q if p € P. Then x2(az/a1) = e(1/p*), where u = 2 if p € P and
u = 1 otherwise. Write x2(az/a2) = e(j/p™). If j = 0 then x2(a2) = x2(a3) and
(i) is satisfied. Otherwise, since p* is good by Lemma 3.4, there is a number k so
that two of the three distances of the points (0, k/p*, kj/p*) (mod 1) satisfy (3.1).
Taking x = X gives (ii) for some relabeling of the a;’s.

In the case that each s; divides 273 and s; € {39, 91,273}, by Lemma 3.3 there
is a character x1 with x1(as/a1) = e(1/r) and x1(as/az2) = e(g/r) for some integer
g. (here r = s1). Since r is good by Lemma 3.4, there is a k such that two of the
three distances of the points (0, k/r, kj/r) (mod 1) satisfy (3.1). Taking x = x*¥
gives (ii) for some relabeling of the a;’s. O

Lemma 3.5. Suppose that for some relabeling of aq,as,a3 and some Dirichlet
character x modulo q, x(a;) = e(r;) with 0 < 1 < r9 <13 < 2,dy =r3—11
and d2 = 3 — 19 and (dy,ds2) satisfies (3.1). Then there is a finite barrier B for
D = (g, a1, as,a3) with |B| < 14. If dy > %, then |B| < 3.

Proof. For some 1/2 < 8 < a < o and large v, suppose L(s,x) has a zero at
s = a+ 47 of order ¢y, and L(s, x?) has a zero at s = a + 247 of order ¢y, where

(1a2) dl > %
(c1,02) =% (5,9) di =5
(335) dl = %
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Suppose all other non-trivial zeros of L-functions modulo ¢ have real part < 3. Let

Di(a) = P87 (1 (@)~ Ty (@),

()_M(

Tg,a5(T) = Tg,a, (7))

Let u = logz. For large x, Lemma 1.1 and the identity

sin(a — b) — sin(a — ¢) = 2 cos(a — 2£¢) sin(52)
give
Dy (z) = % S % sin(dym) cos(yu — (ry + r2)t) + O(1/77),
(3.2) o
Dy (x) = % Z 7 sin(dgfn) cos(byu — (ry + r3)ml) + O(1/4%).

(=1

For j = 1,2 define
gj(y) = c1sin(nd;) cosy + %2 sin(27d,) cos 2y

= ¢y sin(wd;) (cos Yy + 2 cos(md;) cos 2y) .
Because 0 < d; < 1/2, coswd; and sinwd; are both positive. We claim that
(3.3)  min(gi(yu— (r1 +r2)m),g2(yu— (r2 +r3)m)) <0 (u > 0),

which is equivalent to showing

min(g1(y), g2(y — 7(d1 + dz))) <0

for all real y. Since g; and g2 are periodic and continuous, in fact the minimum
above is < —6 for some ¢ > 0. If 7 is large (depending on §), this implies that one
of the two functions on the left in (3.2) is negative for all large z. Thus for large x,
Tq,as(T) > Tq e, (%) > Tg.q, () does not occur.

To prove (3.3), we consider the one parameter family of functions h(y;\) =
cosy + Acos(2y) for 0 < A < 1. These are all even functions, so it suffices to look
at 0 < y < m. We have h(y; A) positive for 0 < y < vy and negative for vy <y < ,
where vy = cos™ [ (=1 + v8X2 +1)]. As a function of X, vy decreases from 7/2
at A\=0tom/3at A =1. For i = 1,2, let z; = vy, for A\; = (ca/c1) cos wd;. Since
m(dy + d2) < 7, (3.3) will follow from

(3 4) z21 + 22 <7I'(d1+d2).
When (dy,d2) € {(3, ), (32, 32)}, (3.4) follows by direct calculation. When 1 <

di, we have c; =1, ca =2 and Aj = 2cosmd; (j =1,2). We claim for j = 1,2 that
zj < mdj, or equivalently cos zj > cosmd; = %)\j. Since 0 < A; < 1,

2 4 2
/82 +1-1 § \/4Aj+4,\j+1—1_ﬁ

4X; Y 2"

which proves (3.4) in this case as well. [

cos z; =

Combining Lemmas 3.1 and 3.5 gives the following.
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Corollary 3.6. Let s; = ordy(az/a1), s2 = ordy(az/az) and s3 = ordy(a1/asz). If
one of s1, 82, s3 1is not in {3,7,13,21}, then there is a finite barrier B for D with
B < 14

4. THIRD CONSTRUCTION

Throughout this section, we assume that a1, a2, a3 do not satisfy the conditions
of Lemma 2.1.

Lemma 4.1. Let x be a character modulo q such that there are at least two different
values among x(a1), x(a2), x(a3). Then the following hold:

(a) x(a1), x(a2), x(a3) are distinct;

(b) Rx(a1), Rx(az), Rx(as) are distinct;

(¢) All the values x(a1), x(az2), x(a3) are not +1.

(d) x has order > 7.

Proof. (a) If this does not hold, the conditions of Lemma 2.1 hold with S = {x}.

(b) If x(a1) = Xx(az), then, by (a), Rx(as) # Rx(a1), and the conditions of
Lemma 2.1 hold for S = {x, x}-

(¢) If x(a3) = 1 and k is the order of the character x, then the conditions of
Lemma 2.1 hold for S = {x,x? ...,x*"1}. If x(az) = —1 and none of x(a;) =
1, then x?(a3z) = 1 # x2%(a1), and the conditions of Lemma 2.1 hold for S
{x2,x%, ..., x*" 2} where h is the order of x2.

(d) This follows directly from (b) and (c).

Lemma 4.2. There exists a character x modulo q of order > 7 such that

(4.1) R(x(as) — x(a2))R(x*(a2) — x*(a1)) # R(x(az) — x(a1))R(x*(as) — x*(a2))

and for some integers h,k with 1 < h <k < 3,
(4.2)
S(x"(as) — x"(a2))S(x* (a2) — x*(a1)) # S(X"(a2) — x"(a1))S(x"*(as) — X" (a2))-

Proof. Let x be any character modulo ¢ such that x(az/a;) # 1. By Lemma 4.1
(a), the values x(a1), x(az), x(as) are distinct. Denote x(a;) = €>™%i (j = 1,2, 3).

By Lemma 4.1 (b), the values cos(¢1), cos(p2), cos(ps) are distinct. Therefore,

the matrix A = cos (go])% é’l’g is nonsingular. Since cos(2¢) = 2cos?(p) — 1, the

matrix cos(&pj)zzéf:g is also nonsingular, and this implies (4.1).
Next, by Lemma 4.1 (c), sin(¢;) # 0 (j = 1,2,3). Therefore, the matrix B =

sin(¢p;) cos (gog)% 3’1’3 is nonsingular. Using the identities sin(2¢) = 2sin(y) cos(y),

sin(3p) = 2sin(y)(4 cos?(p) — 1), it follows that the matrix sm(fcpj)%:ig”g is also

nonsingular. This implies (4.2).
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Lemma 4.3. Let z1 and zy be complex numbers. We can associate with each
x € Cy a non-negative real number A\, such that

2= Y AM(X(a2) = X(a1)),

(4.3)
2= Y A (X(as) — X(a2)).

Proof. Write z; = u; +4v; (j = 1,2), where uy, ug, v1,v2 are real. By Lemma 4.2,
there is a character xy = xo for which (4.1) and (4.2) hold. Thus, we can find real
numbers A; and A, such that

MR (x0(az) — xo(a1)) + AeR(xG(a2) — x5 (a1)) = u1/2,
MR (xo(as) — xo(a2)) + AeR(xg(as) — x5 (a2)) = ua/2,

and real numbers A3 and A4 such that

By Lemma 4.1, the six characters xo, X3, X8, Xo, Xa; Xo are distinct. Now set Py =
A1 for x € {x0,Xo}s By = A2 for x € {x2,X3}, and p, = 0 for other characters.
Also, let Ve = A3, Uxh = — A3, Vs = A4, Uk = -4, and v, = 0 for other
characters. Let 6, = u, + v, for each x. Then (4.3) holds with A, = 6, for each ¥,
but it may occur that 6, < 0 for some x. However, by Lemma 4.1, a; # 1 (mod gq)
for each j, so ercq x(a;) = —1 for every j. Thus, for any real y, (4.3) holds with

Ay = 0y + y for each x.

Lemma 4.4. If a1,a2,a3 do not satisfy the conditions of Lemma 2.1, then for all
>0 and o > %, there is a finite barrier for D = (q, a1, a9, a3), with each B(x)
consisting of numbers p with Rp < o and Sp > T.

Proof. By Lemma 4.3, we can find such nonnegative 1/>(<1) and 1/>(<2) that
L= Z Vﬁl)(i(az) —X(a1)),
X
—i=Y v (x(as) — X(a2)),
X
(4.4) ‘ () B
t= ZVX (x(az) —x(a1)),
X

i=> v (x(as) — X(az))-

X
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Fix small positive € > 0 and take a positive integer () and nonnegative integers N,El),
N,?) for all characters x modulo g such that |1/,(<1) —N,gl)/Q| <eg, |V,(<2)—N,£2)/Q| <e.
For some o1 € (f1,0] and large v > 7, suppose that for all characters x € C,

and for k = 1,2 the function L(s,x) has a zero at s = oy + ki7y of order NSC).
Suppose all other non-trivial zeros of L-functions modulo ¢ have real part < (.

Let D1(z) = ¢(q)(Tg,0, (&) — Mg e, (z)) and Da(x) = ¢(q)(7g,a,(T) — Tq,a5(x)). By
Lemma 1.1 and (4.4), we have

logz

o Dy(z) = %(2 cos(ylogz) + cos(2ylogz) + e1(x) + O(1/7)),

log z

o Dy(z) = %(—2 cos(ylogz) + cos(2ylogz) + ea(x) + O(1/7)),

where the functions e1(z), e2(x) are uniformly small if € is small. Taking into
account that min(2 cosu + cos 2u, —2 cosu + cos 2u) < —1 for all u, we obtain that
for large x, mq 4, (2) > g a,(x) > Tq,q,(x) does not occur. O

5. A BARRIER SATISFYING GSH,

The construction of this barrier is modeled on the construction in §2. For one
character, B(x) is infinite, the number of elements of B(x) with imaginary part < T
growing like /7. By altering the parameters in the construction, we can create
barriers with /T replaced by T*¢ for any fixed e. Assume that for some relabeling
of a1, a9, as, there are two characters yi,xs satisfying

(5.1) x1(a1) = x1(a2) # x1(as), xz2(a1) # xz2(a2).

Suppose that % < B < 09 < o1, that t is large and that L(s,x1) has a simple
zero at s = o1 + it. Suppose that L(s, x2) has simple zeros at the points s = p;
(j =1,2,...), where p; = 03 —0; + ivy;, 6; > 0, v; > 0, 6;; = 0 and v; — o0
as j — 00, and ) 1/v; < co. Also, suppose the numbers ¢,71,72,... are linearly
independent over Q. Define

Z =X, (a2) — X1(a3), W = Xy(a2) — X (a1).
By (5.1), Z # 0 and W # 0. Also define

arglW 1
2w 4’

1
a=—— (tan_l o1 +argZ) , B=
e t

Let H be the set of integers h such that ||ha + ]| < L. Since the number of
possibilities for 7 is finite, if ¢ is large then
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It follows that in every set of |10¢] + 1 consecutive integers, one of them is in H.
As in section 2, define

Dy (2) := ¢(q) (g0, (%) = Tg,05(2)),  Da(®) := $(q)(7g,a5 (%) — Tg,a,(%))-

Suppose z is sufficiently large, and for brevity write u = logx. By Lemma 1.1 and
our hypotheses,

(52) Da(a) = 22 [% (; T%Z) 9 G)]

and
202 [ (=d;+ivj)u —dju
Dy(z) = i Z R (LW> +0 (e 2J ) + O(2P log” )
U o9 — 05 + 15 Vi
(5.3) 1<z L J
2102 [ —d;u
=3 §RBj+O(e 2 ) + 028 log? o),
“ i<z L i
where
e(—0;+iv;)u
(5.4) Bj=W———

i’y_j
By assumption, > [B;| < 1, thus Di(z) < z°2 /u. Modulo 2,

itu
arg

t
- ZEtu—tan_l——}—argZEtu—z—wa.
o1+ 1t o1 2

By (5.2), when ||tu/m — a| > w9 Dy(z) > z°t/(logz)*?, and thus for these x
either 7, 4, () is the largest or smallest of the three functions. Next assume that

|tu/m — o < w22,
We choose d; and v; as follows: 0 < 6; < 02 — 3, j7° < §; < j73, v; = 2th; +

O(5~19), where for j > 10t we have h; € H, hj11 > h; and j2 < h; < j2+ 4. With
these choices,

— e —yl/4 4 4 ~3/4
Z 7 <e Z 1/5% + Zl/j <u
j=1 rYJ j<ul/4 j>ul/4
and 5
e %Y
Z ~ < et s 2,
J

j<u1/4 or j>u2/5
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Thus, by (5.3) and (5.4),

(5.5)

Dy (z) = > RB;+ 0"

u1/4<j<u2/5

Suppose ul/4 < j < u?/5. Since h; € H, we have

1 T
= H% (argW—l—'yju— —)H

1
H%argBj 5

14
- HB + —hi+ O™

=B+ hje+ O™ <0.21

for large u. Hence RB; > |B;| cos(0.42m) > £|B;|. Therefore,

S owgs> Y Lsus

u1/4<j<u2/5 u1/3<j<2u1/3 ’YJ

It follows from (5.5) that for u large and ||% — a|| < u~°? that

cx’2

Di(z) > ——
1($) (10g.’17)4/3

where ¢ > 0 depends on ¢, t and W. This implies that the inequality 7 4,(z) >
Tq,a5(T) > Tq 4, (z) does not occur for large .
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