
Divisors of the Euler and Carmichael functions

Kevin Ford and Yong Hu
University of Illinois, Urbana

October 3, 2007

1 Introduction
Two of the most studied functions in the theory of numbers are Euler’s totient function φ(n) and
Carmichael’s function λ(n), the first giving the order of the group (Z/nZ)∗ of reduced residues
modulo n, and the latter giving the maximum order of any element of (Z/nZ)∗. The distribution of
φ(n) and λ(n) has been investigated from a variety of perspectives. In particular, many interesting
properties of these functions require knowledge of the distribution of prime factors of φ(n) and
λ(n), e.g., [3], [5], [4], [6], [7], [12], [19].

The distribution of all of the divisors of φ(n) and λ(n) has thus far received little attention,
perhaps due to the complicated way in which prime factors interact to form divisors. From results
about the normal number of prime factors of φ(n) and λ(n) [5], one deduces immediately that
τ(φ(n)) and τ(λ(n)) are each exp{ log 2

2
(log log n)2} for almost all n. However, the determination

of the average size of τ(φ(n)) and of τ(λ(n)) is more complex, and has been studied recently by
Luca and Pomerance [13].

In this note we investigate problems about localization of divisors of φ(n) and λ(n). Our
results have application to the structure of (Z/nZ)∗, since the set of divisors of λ(n) is precisely
the set of orders of elements of (Z/nZ)∗. We say that a positive integer m is u-dense if whenever
1 ≤ y < m, there is a divisor of m in the interval (y, uy]. The distribution of u-dense numbers
for general u has been investigated by Tenenbaum ([17], [18]) and Saias ([14], [15]). According
to Théorème 1 of [14], the number of u-dense integers m ≤ x is � (x log u)/ log x, uniformly for
2 ≤ u ≤ x. In particular, the number of 2-dense integers m ≤ x is � x/ log x, that is, the 2-dense
integers are about as sparse as the primes.

By contrast, we show that 2-dense values of φ(n) and λ(n) are very common.

Theorem 1. If x is sufficiently large, then for� x integers n ≤ x, both φ(n) and λ(n) are 2-dense.
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There are relatively simple heuristic reasons for believing Theorem 1. Recall that

φ(pe1
1 · · · p

ek
k ) = pe1−1

1 (p1 − 1) · · · pek−1
k (pk − 1),

λ(pe1
1 · · · p

ek
k ) = lcm[λ(pe1

1 ), . . . , λ(pek
k )],

where λ(pei
i ) = φ(pei

i ) if pi is odd or pi = 2 and ei ≤ 2, and λ(2e) = 2e−2 for e ≥ 3. In
particular, φ(n) and λ(n) have the same prime factors. Most of these prime factors are factors of
shifted primes p − 1 where p|n, and thus it is important to understand the distribution of prime
factors of shifted primes. By classical results in probabilistic number theory (see, e.g., Theorem
10 of [10]), most numbers n ≤ x have about log log x prime factors, roughly uniformly distributed
on a log log−scale. For most primes p, p − 1 has about log log p prime factors [3], that is, the
multiplicative structure of a typical shifted prime p−1 ≤ x is similar to the multiplicative structure
of a typical integer m ≤ x. Thus, we find that for most values of n,

Ω(φ(n)) ≈
∑

k≤log log n

k ≈ 1

2
(log log n)2,

where Ω(m) is the number of prime power divisors of m (see [5] for a precise result of this kind).
We have Ω(m) ≈ log log x for most m ≤ x, so usually φ(n) has far more divisors than a typical
integer of its size. We therefore expect the divisors of φ(n), especially the smaller divisors, to be
“very dense” for most n, and the same should be true of small divisors of λ(n). On the other hand,
there are a large proportion of n for which the divisors of φ(n) and λ(n) are not very dense. To
state our next result, we define θ to be the supremum of real numbers c so that there are� x/ log x
primes p ≤ x with p− 1 having a prime factor > pc. Many papers have been written on bounding
θ, and the current record is θ ≥ 0.677 and due to Baker and Harman [1].

Theorem 2. Let 0 < c < 2θ − 1. If x is sufficiently large, then for �c x of the integers n ≤ x,
neither φ(n) nor λ(n) is xc-dense.

It is conjectured that θ = 1, and this would imply the conclusion of Theorem 2 for any c < 1.
If u < 2, there are no u-dense integers m > 1. However, it is possible that the divisors of

a given integer in some long interval do have consecutive ratios which are ≤ u. We say that an
integer n is u-dense in a set I if for every y ∈ I , the interval (y, uy] contains a divisor of n.
The following makes precise what we claimed earlier about the “very dense” nature of the small
divisors of φ(n) and λ(n).

Theorem 3. For every positive integer h and 0 < δ < 1, there is a constant c = c(h, δ) > 0 so
that if x is sufficiently large, then for more than (1− δ)x of the integers n ≤ x, φ(n) and λ(n) are
both (1 + 1/h)-dense in [h, xc].
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Notice that the left endpoint h of the interval cannot be replaced by h− 1, since if h− 1 ≤ a <
h/(1 + 1/h), there are no integers in (a, a(1 + 1/h)]. Likewise, if we assume that θ = 1, then we
cannot take c independent of δ in light of Theorem 2.

Using Theorem 3, we prove a more general version of Theorem 1.

Theorem 4. For every positive integer h, there are �h x integers n ≤ x such that φ(n) is (1 +
1/h)-dense in [h, φ(n)/(h + 1)) and λ(n) is (1 + 1/h)-dense in [h, λ(n)/(h + 1)).

We also record a limiting case of Theorem 3.

Corollary 1. Suppose g(x) is a positive function decreasing monotonically to 0 and let h be a
positive integer. Almost all n ≤ x have the property that φ(n) and λ(n) are (1 + 1/h)-dense in
[h, xg(x)].

Analogous to the problems studied in [9], [8], [16], we can study the distribution of integers
with φ(n) having a divisor in a single interval. Let

B(x, y, z) = |{n ≤ x : ∃ d|φ(n), y < d ≤ z}|.

An almost immediate corollary of Theorems 1, 2 and 3 is the following result in the special case
z = 2y.

Corollary 2.

(i) Uniformly for 1 ≤ y ≤ x/2, we have B(x, y, 2y) � x.

(ii) Fix 1− θ < c < 1/2. Then, uniformly for xc ≤ y ≤ x1−c, we have x−B(x, y, 2y) � x.

(iii) Let g(x) → 0 monotonically. Then, for 1 ≤ y ≤ xg(x), we have B(x, y, 2y) ∼ x.

We leave as an open problem the determination of the order of magnitude of B(x, y, z) for all
x, y, z.

We note that easy modifications of our proofs give the same results for the sum of divisors
function σ(n) in place of φ(n), since σ(p) = p + 1 for primes p.

The authors would like to thank Igor Shparlinski for posing the question to study the divisors
of φ(n).
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2 Preliminaries
Throughout this paper, the letters p and q, with or without subscripts, will always denote primes.
Constants implied by the O and � symbols are absolute, unless dependence on a parameter is
indicated by a subscript. All constants are effectively computable as well. We denote by P+(m)
the largest prime factor of m, with the convention that P+(1) = 0.

Our key lemma, presented below, says roughly that the small prime factors of φ(n) are quite
dense.

Lemma 2.1. For some large constant C, if C/ log x ≤ g ≤ 1/10 and 1/(g log x) ≤ ε ≤ 1
4
, then the

number of n ≤ x for which φ(n) does not have a prime divisor in (xg, xg(1+ε)] is� gε/2 log(1/g)x.

Proof. First, note that the conclusion is trivial if ε log(1/g) ≤ 1, hence we may assume that
ε log(1/g) ≥ 1. Next we claim that for large x and w ≥ x6g, that

|{p ≤ w : p− 1 has no prime factor in (xg, xg(1+ε)]}| ≤
(

1− 2ε

3

)
w

log w
. (2.1)

Let π(w; q, a) be the number of primes p ≤ w which satisfy p ≡ a (mod q). For positive integer
q, write

π(w; q, 1) =
li(w)

φ(q)
+ E(w; q),

where
li(w) =

∫ w

2

dt

log t
.

Using the Bombieri-Vinogradov Theorem ([2], Ch. 28) and the Mertens’ estimates, the number of
primes p ≤ w that p− 1 does have a prime factor in (xg, xg(1+ε)] is

≥
∑

xg<q≤x(1+ε)g

π(w; q, 1)−
∑

xg<q1<q2≤x(1+ε)g

π(w; q1q2, 1)

=
∑

q

(
li(w)

q − 1
+ E(w; q)

)
−
∑
q1,q2

(
li(w)

(q1 − 1)(q2 − 1)
+ E(w; q1q2)

)
= li(w)

[
log(1 + ε)− 1

2
log2(1 + ε) + O

(
1

log2 xg

)]
+ O

(
w

log3 w

)
≥ 3ε

4

w

log w
.

For the last step, we used the fact that w ≥ x6g ≥ e6C and C is sufficiently large. This proves (2.1).
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Consider x/ log x < n ≤ x such that φ(n) does not have a prime divisor in (xg, xg(1+ε)]. We
can write n = qα1

1 qα2
2 ...qαk

k m, where q1 > q2 > · · · > qk > x6g, αi ≥ 1 for 1 ≤ i ≤ k and
P+(m) ≤ x6g. Then q1, . . . , qk ∈ T , the set of primes p such that p − 1 does not have a prime
factor in (xg, xg(1+ε)]. By (2.1) and partial summation,∑

x6g<q≤x
q∈T

∑
a≥1

1

qa
≤
(

1− 2ε

3

)(
log

1

6g
+

1

log x

)
+
∑

q>e6C

1

q(q − 1)

≤
(
1− ε

2

)
log

1

6g

for sufficiently large x. By Theorem 07 of [10], for some positive constant c0 and uniformly in
x ≥ z, y ≥ 2, the number of integers n ≤ x divisible by a number m > z with P+(m) ≤ y is
� x exp{−c0

log z
log y

}. Consequently, the number of n with m > x1/3 is � xe−c0/18g � gx. For
other n, we may assume that m ≤ x1/3, and thus k ≥ 1. Again by the above theorem, the number
of n with q1 ≤ log10 x is� x/ log x � gx. For remaining n, we have qα1−1

1 · · · qαk−1
k ≤ log2 x, for

otherwise, q
bα1/2c
1 · · · qbαk/2c

k ≥ q
(α1−1)/2
1 · · · q(αk−1)/2

k > log x and the number of n divisible by d2

for some d > log x is O(x/ log x). Hence q1 · · · qk ≥ x1/2. In particular, q1 ≥ max(x
1
2k , log10 x)

and α1 = 1. Given qα2
2 , . . . , qαk

k , and m, the number of q1 is, by the Chebyshev estimates for
primes,

� x

qα2
2 · · · qαk

k m log(x/(qα2
2 · · · qαk

k m))
� kx

log x

1

qα2
2 · · · qαk

k m
.

Given qα2
2 , . . . , qαk

k , ∑
P+(m)≤x6g

1

m
� log(x6g) = 6g log x.

With fixed k, we have

∑
q2,...,qk∈T

∑
α2,...,αk≥1

1

qα2
2 · · · qαk

k

≤ 1

(k − 1)!

( ∑
x6g<q≤x

q∈T

∑
a≥1

1

qa

)k−1

≤
((1− ε

2
) log 1

6g
)k−1

(k − 1)!
.
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The total number of such n is

� gx + gx
∑

1≤k≤1/(6g)

k

(k − 1)!

((
1− ε

2

)
log

1

6g

)k−1

� gx + gx

(
log

1

6g

) ∞∑
j=0

((1− ε
2
) log 1

6g
)j

j!

= gx + gx

(
log

1

6g

)(
1

6g

)1− ε
2

� g
ε
2

(
log

1

g

)
x.

This completes the proof.

Remarks. Since φ(n) and λ(n) have the same prime factors, Lemma 2.1 holds with φ replaced
by λ. With a finer analysis, it is possible to remove the factor log(1/g) appearing in the conclusion
of Lemma 2.1. Also, if ε is fixed, then gε/2 log(1/g) �ε gε/3, an inequality we shall use in the
application of Lemma 2.1.

We next give a method of constructing integers which are dense in an interval.

Lemma 2.2. Suppose that h is a positive integer, y ≥ h, and D is (1 + 1/h)-dense in [h, y].
Suppose also that m = Dm1 · · ·mk, where for 1 ≤ j ≤ k, mj ≤ (y/h)m1 · · ·mj−1. Then m is
(1 + 1/h)-dense in [h,m1 · · ·mky].

Proof. By hypothesis, the lemma holds for k = 0. Suppose the lemma is true for k = l, m
satisfies the hypotheses with k = l + 1 and put m′ = Dm1 · · ·ml. Then m′ is (1 + 1/h)-dense
in [h,m1 · · ·mly]. Multiplying the divisors of m′ by ml+1, we find that m is also (1 + 1/h)-
dense in [ml+1h,m1 · · ·ml+1y]. Our assumption about ml+1 implies that m is (1 + 1/h)-dense in
[h,m1 · · ·ml+1y], as desired.

Lemma 2.3. Given any positive integer D, n is divisible by a prime q ≡ 1 (mod D) for almost
all n.

Proof. By a theorem of Landau [11], the number of n ≤ x which have no prime factor q ≡ 1
(mod D) is asymptotic to c(D)x(log x)−1/φ(D) for some constant c = c(D).

Luca and Pomerance [12] have recently proven a stronger statement, namely that for some
constant c1, for almost all integers n, φ(n) is divisible by every prime power ≤ c1

log log n
log log log n

.
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3 Proof of the theorems
Proof of Theorem 3. Fix h and δ, and let y be sufficiently large, depending on h, and such that
y > h5. Let D be the product of all prime powers ≤ y. Let ε = 1

4
and let Y = (y/h)4/5. Let C be

the constant in Lemma 2.1.
Consider the intervals Ij = (Y (5/4)j−1

, Y (5/4)j

] (1 ≤ j ≤ J), where Y ≥ eC . Fix c so that
0 < c ≤ 1/20, let x be sufficiently large, and take J so that Y (5/4)J−2

< xc ≤ Y (5/4)J−1 . Then
Y (5/4)J

< (Y (5/4)J−2
)2 < x2c ≤ x1/10. By Lemma 2.1, if y is large enough, then the number of

integers n ≤ x for which φ(n) does not have prime factors in Ij is

�ε

(
log Y (5/4)j−1

log x

)1/12

x.

Summing over j, we find that φ(n) has a prime factor in every interval Ij for all n ≤ x except for
a set of size

�

(
log Y (5/4)J

log x

)1/12

x < (2c)1/12x.

If c is small enough, for at least (1 − δ/2)x of the integers n ≤ x, φ(n) has a prime factor in
every interval Ij . Applying Lemma 2.3, for at least (1− δ)x integers n ≤ x, φ(n) is divisible by a
prime q ≡ 1 (mod D3) and has a prime factor in every interval Ij . For each such n, let p1, . . . , pJ

be primes dividing φ(n) and such that pj ∈ Ij for 1 ≤ j ≤ J . By hypothesis, p3 > (y/h)5/4 > y,
hence pj - D for j ≥ 3. Since D3|(q − 1)|λ(n)|φ(n), we have that λ(n) and φ(n) are each
divisible by Dp1 · · · pJ . By definition, D is divisible by every positive integer ≤ y, hence D is
(1 + 1/h)-dense in [h, y]. Also, p1 ≤ Y 5/4 = y/h, and for j ≥ 2,

pj ≤ Y (5/4)j ≤ Y 5/4
∏

1≤i≤j−1

Y (5/4)i−1 ≤ (y/h)p1 · · · pj−1.

By Lemma 2.2, φ(n) and λ(n) are (1 + 1/h)-dense in [h, p1 · · · pJy]. Since pJ > Y (5/4)J−1 ≥ xc,
this concludes the proof.

Proof of Theorems 1 and 4. Applying Theorem 3, there is a positive integer k so that when z is
large enough, for more than half of the positive integers d ≤ z, φ(d) and λ(d) are (1 + 1/h)-dense
in [h, z1/k]. Put ε = 1

5k2 , let x be sufficiently large and x
1
2 < d ≤ x

1
2
+ε, where φ(d) is (1 + 1/h)-

dense in [h, x
1
2k ]. Consider distinct primes p1, p2, . . . , pk ∈ I := [x

1
2k
−2ε, x

1
2k
−ε] which do not

divide d. Note that
x1−2kε ≤ dp1p2 · · · pk ≤ x1−(k−1)ε. (3.1)
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Let q be a prime not dividing dp1 · · · pk and satisfying

1

2

x

dp1 · · · pk

< q ≤ x

dp1 · · · pk

, (3.2)

so that by (3.1) and the definition of ε,

x
1
6k ≤ q ≤ x

2
5k . (3.3)

We claim that for all such numbers n = dp1 · · · pkq satisfying the additional hypothesis

λ(n) ≥ x1−ε, (3.4)

φ(n) is (1 + 1/h)-dense in [h, φ(n)/(h + 1)) and λ(n) is (1 + 1/h)-dense in [h, λ(n)/(h + 1)).
Let y = x

1
2k . Observe that φ(n) = φ(d)(p1 − 1) · · · (pk − 1)(q − 1), φ(d) is (1 + 1/h)-dense in

[h, y], pi − 1 ≤ x
1
2k
−ε < (y/h) (1 ≤ i ≤ k) and q ≤ (y/h). By Lemma 2.2 with D = φ(d),

mi = pi − 1 (1 ≤ i ≤ k) and mk+1 = q − 1, φ(n) is (1 + 1/h)-dense in [h,w], where w =
y(p1 − 1) · · · (pk − 1)(q − 1). By (3.1) and (3.2),

w ≥ 2−k−1yp1 · · · pkq ≥ 2−k−2x1+ 1
2k

d
≥ h

√
x.

But φ(n) is also (1 + 1/h)-dense in [φ(n)/w, φ(n)/(h + 1)) since d|m ⇐⇒ (m/d)|m, conse-
quently φ(n) is (1 + 1/h)-dense in [h, φ(n)/(h + 1)).

The argument for λ(n) is similar, except that now

λ(n) = λ(d)
q − 1

f

k∏
i=1

pi − 1

fi

,

where f is some divisor of q − 1 and fi is some divisor of pi − 1 (1 ≤ i ≤ k). Here we use (3.4),
which implies that ff1 · · · fk ≤ xε. By Lemma 2.2 with D = λ(d), mi = (pi − 1)/fi (1 ≤ i ≤ k)
and mk+1 = (q − 1)/f , we see that λ(n) is (1 + 1/h)-dense in [h,w], where

w = y
q − 1

f

k∏
i=1

pi − 1

fi

≥ 2−k−2x1+ 1
2k
−ε

d
≥ h

√
x.

As with φ(n), we conclude that λ(n) is (1 + 1/h)-dense in [h, λ(n)/(h + 1)).
Notice that for the above n, when h = 1, φ(n) is 2-dense in [1, φ(n)/2). Since φ(n) is a divisor

of itself, we conclude that φ(n) is 2-dense in [1, φ(n)) and hence 2-dense. This conclusion also
holds for λ(n) by similar arguments.
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Finally, we show that the number of such integers n ≤ x is �h x. First, (3.4) holds for almost
all n by Theorem 2 of [6]. By the prime number theorem and (3.3), given d, p1, . . . , pk, the number
of possible primes q is �k x/(dp1 · · · pk log x). We also have∑

p1,...,pk∈I

1

p1 · · · pk

�k 1,

and
∑

1/d � log x by partial summation. Hence, there are �k x tuples (d, p1, . . . , pk, q) with
product n ∈ (x/2, x] and with φ(n) and λ(n) being (1 + 1/h)-dense respectively. Given such an
integer n, n has at most 6k prime factors ≥ x

1
6k , hence the number of tuples (d, p1, . . . , pk, q) with

product n is bounded by a function of k. Thus the proof is complete.

Proof of Theorem 2. Suppose 0 < c < 2θ − 1, and Let ε > 0 be so small that 2θ − 1 − 6ε > c.
Consider n = pm ≤ x, where x1−2ε < p ≤ x1−ε, and P+(p − 1) > pθ−ε. By the definition
of θ, there are � z/ log z such primes ≤ z, if z is large enough. Then φ(n) and λ(n) are each
divisible by a prime q with q > x(1−2ε)(θ−ε) > xθ−3ε, and therefore neither function has divisors in
[x1−θ+3ε, xθ−3ε]. The number of such n is, by partial summation,

=
∑

x1−2ε<p≤x1−ε

P+(p−1)>pθ−ε

⌊
x

p

⌋
�ε x,

and the proof is complete.

Proof of Corollary 1. Let δ > 0. By Theorem 3, if x is sufficiently large, then for at least (1− δ)x
integers n ≤ x, both φ(n) and λ(n) are (1 + 1/h)-dense in [h, xg(x)]. Since δ is arbitrary, the
corollary follows.

Proof of Corollary 2. (i) The elementary inequality
∑

n≤x n/φ(n) � x implies that

|{n ≤ x : φ(n) ≤ εn}| � εx (0 < ε ≤ 1).

Consequently, using Theorem 1, if c is small enough then there are � x of the integers n ≤ x for
which φ(n) is 2-dense and φ(n) ≥ cx. This proves (i) for y ≤ cx. For a given constant f ∈ [c, 1/2],
it is an elementary fact that fx < φ(n) ≤ 2fx for �f x integers n ≤ x. This completes the proof
for the remaining y.

(ii) From the proof of Theorem 2, for a positive proportion of integers n, φ(n) has no divisors
in [xc, x1−c].

(iii) This follows immediately from Corollary 1.
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vol. 85, Birkhäuser Boston, Boston, MA, 1990, pp. 165–204. MR MR1084181 (92a:11113)
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