THE JUMPING CHAMPIONS OF THE FAREY SERIES
CRISTIAN COBELI, KEVIN FORD AND ALEXANDRU ZAHARESCU

ABSTRACT. Let §, be the sequence of Farey fractions of order Q. We study the dis-
tribution of differences between consecutive Farey fractions, in particular the differences

which occur most frequently.

1. INTRODUCTION

Let M = {v1,...,7m} be a set of real numbers ordered increasingly and let D(M) =
{Yiz1 — 7 = 1 < i < M — 1} be the set of gaps between consecutive elements of M.
Usually we think of the elements of D(M) as being arranged in ascending order, keeping
in the list all the numbers with their multiplicities. A number d is called a jumping
champion of M (for short champion or JC ) if the multiplicity of d is largest among all
elements of D(M). According to [9], the term jumping champion was introduced by J.H.
Conway in 1993.

Finding the JC of a set may be a very difficult problem. Certainly this is the case when
M = P,, the set of primes less than or equal to n. This problem has been investigated
by Nelson [8], Erdés and Straus [1], and Harley [4]. Assuming conjectures for counts of
prime r-tuples, Gallagher [2], [3] proved that D(P,) approaches a Poisson distribution as
n — oo. Odlyzko, Rubinstein and Wolf [9] give empirical and heuristic evidences that
the JC for primes are 1, 2, 4 and the primorials 6, 30, 210, 2310, ... But the technical
difficulties encountered when dealing with consecutive primes are formidable enough, that
they cannot give a proof of this result even under the assumption of the prime r-tuple

conjecture.
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Our object here is to study the JC problem for the Farey series. Unlike the case of
primes, in the case of Farey fractions we may prove, unconditionally, asymptotics for the
size of champions, and understand some of their arithmetical properties.

In the next two sections we introduce some terminology and state our main results,
which are then proved in the following sections. At the end of the paper we attached

samples from three tables showing the JC ’s for Farey sequences and related quantities.

2. NOTATIONS

Let §, be the sequence of Farey fractions of order (). Taking into account the symmetry
of §, with respect to 1/2, in what follows we will only work with Mg = §, N [0,1/2].
Then the number of gaps between consecutive elements of Mg is [D(Mg)| = (|, —1)/2.

Looking at 1 < @ <9, one finds that all the elements of D(Myg) are distinct, so they
all share the position of champion. When () = 10, we have

1 11111212 3132341
Mio={0. 7,2 2o m 5 o 2 5 5 550 J

and

1111111111111111}

D :{_a_a_a_:_a_a_a_a_’_a_’_:_a_a_a_
(Mo) 10°90°72°56°42°30°45°36°28° 70" 30" 24" 40" 35" 63" 18

The gap 1/30 appears twice in D(Mg), so it is the JC of Fo.

We know that if Z—:, Z—Z are consecutive fractions in §,, then the gap between them is

a’ a 1

T g = ga7r SO We need to focus mainly on the pairs of consecutive denominators of

Farey fractions. Moreover, there is a bijection (see [5]) between these pairs and the lattice

points from

To={(a,2): 1<q0,<0Q, a1 +¢ >Q, ged(q, ) =1} .

This motivates the following definitions. Denote by A(D, @) the number of gaps of length
1/D in Mg, and this can be written as:

h(D,Q) :‘{(Qb%) €To: 2=D, ¢ < %}‘

=|[{dD: ged(g,2)=1, 2<q<Q 2+q>Q}.
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It is plain that

ID(Mg)| =D _h(D,Q).

D>1

Then any JC is a solution of the maximum problem:
M(Q) = maxh(D, Q).

We set,

Champs(Q) = {D : h(D,Q)=M(Q)}.

Usually we refer to the elements of Champs(@)) as being champions, although, strictly
speaking, the champions are the inverses of the elements of Champs(Q). Next, we denote

by H(Q) the number of distinct gaps (participants in the competition for JC ), i.e.

HQ) = |[{D: h(D,Q)>1}|.

Then we define H,.(Q) to be the number of gaps with multiplicity r, that is

H,(Q) =|{D: hD,Q)=r}.
Clearly

HQ) =) H(Q).

r>1

We also consider G,(@), the number of gaps with multiplicity > r, or

G(Q =|{D: nD,Q) >} =D HiQ).

©>r
Note that G1(Q) = H(Q). There is another equivalent definition of h(D, Q) which is

more convenient in our problems. Let

vVD/Q? if D> 3Q?
B=8(D,Q)= / 1 T
1(1+4/1-4D/Q% if D < 1Q?
Then

h(D,Q) = {q|D : ged(q,D/q) = 1,Q < ¢ < Q}]. (1)
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In other words, h(D, Q) counts certain divisors of D lying in a short interval (note that
B > ). To study divisors of numbers in short intervals, Tenenbaum [11] introduced the

functions

T(n,y,2) = {dn:y <d <z}

H(z,y,2) = |[{n<z:7(n,y,z) > 1}|.
We will be more concerned with slight variations of these, namely
m™(n,y,2) = |{d|n: ged(d,n/d) =1,y <d < 2},
H*(z,y,2) = |{n <z :7%(n,y,z) > 1}].
Tenenbaum [11] (see also Theorem 21 of [6]) has determined the approximate growth of

H(z,y,z), and simple modifications of the proofs yield the following. For some constant
c1, if a, B are fixed with 0 < a < 8 < 1, we have

Q?
(log Q)?v/Toglog Q"
where 0 = 1 — % = 0.08607.... If further 0 < v < § < 1 the following estimate
holds:

H(Q? aQ, Q) < (2)

2
H*(62%, ax, Bz) — H*(y2?, ax, Bz) > (lozizc)e exp (—cl\/log log = log log logx) . (3)

for x > zo(c, 5,7, 9).

Throughout, variables ¢y, ¢s, ... denote positive absolute constants. Let w(n) be the

number of distinct prime factors of n and let [z] be the greatest integer < z.

3. STATEMENTS OF RESULTS

We raise two problems related to the JC problem for the Farey series. The first one is to
estimate M (@) and determine the multiplicative structure of the numbers in Champs(Q).

The second one is to estimate the quantities H(Q), H,(Q) and G,(Q).

Theorem 1. We have:

. log @ log @
M(Q) = exp (2 log 23 1og 0 ¢ (m)) '
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Corollary 1. If D € Champs(Q) then

log @ log @
D)y=2——+4+0| ——— | .
AP = 2105 QT ((log log Q)?
Since w(n) < 21027{50 ?Q +O( (1ogki§gQQ)2) for all n < @2, the JC have close to the maximum

possible number of prime factors for integers of their size. In particular, most of the prime

factors of D € Champs(Q®) are small.

Corollary 2. If 1o§Q — 00 as Q) — oo, then almost all the prime factors of D are < R.

An interesting problem would be to bound the largest prime factor of any D € Champs(Q).

For convenience in stating the next results, let

L(z) = exp (01 V/loglog x loglog log x) : (4)
Theorem 2. We have:
Q? Q?
<« H )
(05 1(@) <@ < (g vioeloeq

We separate upper and lower bounds for G, (Q).

Theorem 3. For any r > 2, we have

log7
elog2(loglog @ + ¢3) &2
G, 2 .
Q) < @2 (“EeE

Notice that the upper bound given by Theorem 3 is useless when r < (log Q)%¢!°82,

_ . . Q2
where £log¢ = /e, since by Theorem 2 it follows that G:(Q) < G1(Q) < oo iesior g

We give two lower bounds for G,(Q). The first one is given by the following theorem.
Theorem 4. Let () be sufficiently large. We suppose | is an integer with 1 < [ <
lozz,:lloogg%’ put r = [ (il)] , and K = c4(2loglog Q + 21) log(2loglog @ + 21). Then

Q2

log Q)P L(Q) (*1*'5 5 ) K

G'I‘(Q) 2 06(
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For example, the case [ =1, r = 2 gives
Q? 1
(log @)?L(Q) (loglog @)8(logloglog @)*

By Theorems 2 and 4, if | = o (M>, equivalently r = eo(log)log)logQ), it follows that

G2(Q) >

logloglog Q
__ @
9 TlagQm
On the other hand, when m — 00, we get G,(Q) > I(QBW But since [ ~ ;—i)gg’"—Q, this

ogr

yields G,(Q) > Q*(logr)™ (L+o(W)igg2 | This should be compared with the upper bound in
Theorem 3.

A better lower bound of G,(Q) for intermediate [, loglog@ < [ < %mlgigq’ is given

below.

Theorem 5. Suppose 2loglog@ < | < %log)ng and put r = 111(1)gQ( ) For positive

absolute constants cg, c7, we have

Q? e log loglog i\ \*
G Q) > ce—2 (£ 1 —
(@) 2 %5102 0 \ 20 \"%8 Tlogl ~ " log

In this middle range for [, putting together Theorems 3 and 5, we obtain the following.

logr
Qlogloglog Q

_ (elog2+0(1))loglog @ g3
6@ = ( o )"

Corollary 3. Suppose @ > Q, IogTos — 00 and logr = (log Q)°Y). Then

An interesting problem would be to determine, if it exists, the limit

. H,(Q)
oW T (5)

for each fixed r. The problem of comparing H,(z,vy, 2) to H(z,y, z) (where H,(x,y, z) =

{n <z :7(n,y,z) =r}|) was studied by Tenenbaum [12], but the results are not strong
enough to answer our question. In particular, Theorem 1 of [12] requires z < z!/("+1),

The same question can be asked for the ratio ((Q)) The following argument supports the

hypothesis that G,(Q) >, H(Q). Suppose that for fixed «, 5 we have

$2

(logz)? f(z)’

H(z?% ar, Br) <
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with f(z) being smooth and slowly increasing. If T(n,ﬁi —61) > 1, then

(Gn ) > 2 and consequently

199

2

6
N ACES > T gz ).
< (:r 2 x) (logz)? f () (:r 2 x)

4. SIMPLE INEQUALITIES

By (1), we immediately get the upper bound

h(D,Q) <7(D,Q/2,Q) < 7(D,Q/2,Q). (6)
A useful lower bound is

(D, 2Q/3,Q) if Q2/4 < D < 4Q?/9
hD.Q) > ( /3,Q) / /' ™

0 otherwise

A consequence of these bounds is

Lemma 1. We have
H(Q) < H(Q*Q/2,Q) < H(Q.Q/2.Q),
H,(Q) <G(Q) <{D <Q*:7(D,Q/2,Q) >},
H(Q) > H'(4Q°/9,2Q/3,Q) — H*(Q*/4,2Q/3,Q),

G,@Q)>{L <D< (D,2 Q) >r}.

Theorem 2 now follows immediately from (2), (3), and Lemma 1.

Suppose that w(D) = k. Then h(D,Q) < 7(D,Q/2,Q) < 7*(D,0,D) = 2F. We can
do a little bit better using Sperner’s Theorem. Let S = {p® : p*||D}. There is a natural
bijection between the subsets of S and divisors ¢ of D satisfying ged(q, D/q) = 1. Also,
the relation C defines a partial order on the subsets of S. In any chain of distinct subsets
Ry C Ry C --- C Ry, at most one of the associated divisors is counted by 7*(D, Q/2, Q).
Sperner’s Theorem (e.g. [10], page 732, fact # 7) tells us that the subsets of S can be
partitioned into (Lk’/“2 j) chains. We thus have the following.
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Lemma 2. Let w(D) = k. Then

0.0 () <2
CT T\ Lk/2] vk
The inequality in Lemma 2 is nearly best possible, at least if k£ is not too large as a

function of (). For example, let k£ be even, let p1, ..., pr_1 be distinct primes in the interval

((?)2/’6, (%)Q/k)], let p; be a prime in the interval (%(%)Q/k,%(%)yk], and set
D =p;---pg. Then 1Q? < D < Q. Let ¢ be any product of £ primes p;, 1 <i < k—1.

Then %Q <qg< %Q. By (7), ¢ is counted in h(D, @), therefore

wo () -4()> %

5. THE SizE OF JC ~PROOF OF THEOREM 1

We turn to the problem of finding the size of M (Q)) when @ — oc.

Let g; be the j—th prime and suppose ¢1 - ¢ < Q% < q1¢2 - * gmt1- Then if D < Q?,
it follows that w(D) < m, and by Lemma 2, M(Q) < ([m%}) < 2™ Now 6(gn) <
2log @ < 0(gm+1), where 6 is the Chebyshev function. By the Prime Number Theorem

(with classical error term), we have ¢, = 2logQ+O ((]og Q)e‘cgvloglogQ> , which implies

m= 20 4 O (%> . This gives the upper bound.

" loglogQ (loglog Q)?
Let A = exp (CQIOE’ng) , in which cg is some large constant. Suppose q;:::qop, <
2 . .
% < q1 - - - gopto- By the Prime Number Theorem, n = 102)&?@ +0 ((logl‘;fngQ)Q) .If t is the
product of any n primes < ¢, then ¢ = %exp (O (log’lgogQ)) . Choose ¢g so that

A Q
Bz SOt SE<gugiegon < 7

By the box principle, for some z € [A?/% A?/Q} , the interval [z,1.12] contains > @(277)

2Q/3 0.7Q

z 7z

because % > A2 — 00 as @ — oo. Then Dy has > -1+ (*") divisors in (2Q,0.77Q)] and

log A
2 0.7 2
DOS% zQSA?ﬂ'

numbers t. Let s; be a prime in ( ] and Dy = q1---@q2,81- Such an s; exists
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Q°/4 Q°/3
Do * Do

Let sy # s1, s be a prime in ( } ,and D = s9Dy. Such an s, exists because

g—z > AY? — 0o as Q — oco. Using (7), we conclude that

(2") 2 loglog Q log @ log @
HD.Q) > o > £ R = oo (@02 B +0 (i) )

This estimate concludes the proof of Theorem 1.

In order to prove Corollary 1, let us see that if D is a champion, then h(D,Q) =
M(Q) < 2¢P) and therefore w(D) > % This gives the lower bound. The upper

bound comes from the proof of Theorem 1.

6. THE SIZES OF THE PRIME FACTORS OF CHAMPIONS

Let now @ be large, and let D € Champs(Q). Corollary 2 follows from the next lemma.

Lemma 3. Suppose R > 3log Q. Then the number of prime factors of D that are > R is

log @ 1
loglog Q log (

310gQ)

In order to prove the lemma, let w = w(D). Then by Corollary 1 and the Prime Number

Theorem,
log @ )

ceeg. > 02 O
G g > @ eXp< Clologlog 0

and ¢, < 3logQ if ) is large. Since

1 N
QQEDZQr--qw_NRNqu---qw<E>zQzexp(—cm 08 @ )( B ) ,

loglog @ 3logQ

we get the lemma.

Another corollary of Lemma 3 is that the champions are not too small.

Corollary 4. If D € Champs(Q), then D > - 3Q

Proof. Assume D < ¢1;/ log3 (@, where cq; is a sufficiently small positive constant. If ¢;5 is

w(D)

large enough, then at most prime factors of D are > c¢i5log (). Thus D has a divisor

de (202 gg TG 2012612ogQ . Since Q/d > 2c¢15log @), there exists a prime number s € (%%, %]

1 D , Which

does not divide D. Let D' = Dst < &= Then ™D, 2Q,Q) > M(Q)+1, the divisors being

which does not divide D. Since Ds < Q , there exists a prime number ¢ < 1
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the M (Q) divisors of D which are in (3(D, Q)Q, Q], plus sd. We obtained a contradiction,
which completes the proof of the corollary. O

An interesting question which arises is the following. What is the approximate size
range of % for champions D ? Ts this ratio always > (log Q)~2 for some B > 07?

7. UPPER BOUNDS ON G,(Q)

In this section we prove Theorem 3.
Let [ be the smallest integer with ([l /2]) > r. By Lemmas 1, 2 and a theorem of Hardy

and Ramanujan [7], there is a constant ¢, so that

2 -1
k>l

IfI—1 <loglog@ + cy, the bound in Theorem 3 is trivial, because the right hand side of
(3) is > @2 in that case. Otherwise, we write z = loglog@ + co, | — 1 = (B2, and 8 > 1.
Then

logQ (B2)" e ﬂz_ e(loglog @ + ¢9) =1
g UESIE D S(E) ‘( -1 ) '

h>pBz h>pBz

Lastly, | — 1 < igg; and the theorem follows.

8. LOWER BOUNDS FOR G,(Q),

Proof of Theorem 4. First, the upper bound on [ gives K < c¢i3log@ and thus if
B = Q/K"!, then

log @
B > — |14+ ——==1| (logl 1
_QeXP( [ +loglogQ+03] (loglog @ + Ogcl3)>
log @
> 2 ¥
=P <Cl4 log log Q)

if c3 is large enough. By (3), it follows that H*(B?, B/2, B) > c;5
Let

32
(log B)'L(B) *

A= {m < B*: 7"(m,B/2,B) > 1, w(m) < 2loglog B}.
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By the Hardy-Ramanujan Theorem and Stirling’s formula,

) B? B’ B*
H| 215 7——57rmy ~ G167 310551 = OV 1o BT (1)
HI 200 Gog BYLB) ~ “*Tlog BEwe2T = " {log BYPL(B)
) (8)
2C17 g -
(log B)YL(Q)

Let m € H, and let d | m, B/2 < d < B, ged (d,) = 1. Also let J be the interval

(2 Q2\7 1.1 [Q?\ 7
T \as \B2) 75 \B? '

By hypothesis, — (Q—2) e > 2 (2loglog Q+21) log(2loglog Q+21). By the Prime Num-

c1g \ B2

ber Theorem, if CCTSS is sufficiently large, then J contains > 2loglog Q+2] > 2loglog B+2l

primes. Thus J contains primes sq, So, ..., Sy that do not divide m. Then
11\2
D() = MS189 -+ -89 S (—) QQK_Q.
C18

Each product of [ of the numbers s; lies in the interval

R (OIGOION]

By the box principle, for some z € Z, the interval (z,1.12] contains at least [% (QZI)} =r

such products. Let ¢ be a prime in (QQ/ 39 } that does not divide Djy. Since % > B% >

dz 7 1l.1dz

(1_5;% = (%‘)l K > K if ¢;g > 1.1, the interval contains > 2loglog B + 21 + 1 primes,

so t exists. Then tDy has at least r divisors ¢ with ged (q, t%) =1,and 2Q/3 < ¢ < Q.

Let u be a prime in (Q2/4 4Q2/9] that does not divide tDy. Since

tDg ’ tDg
@ (Cﬁ)” g2119% 5 5 (—C“3 )IKQBKI > K
tDy = \1.1 Q 1.21 Q
if ¢15 > 3, u exists. Finally let D = utD, € (1Q% 2Q?] . By (7), h(D,Q) > 1(*).

w(D)
21+2

w(D) < 20+ 2+ 2loglog @, (7) implies the result.

Since D = utsy - - - soym, at most ( ) values of m produce the same value of D. Since
Proof of Theorem 5.

11
Let ¢19 be large enough so that 7(ci9llogl) > 201 for large I. Let B = <$logl) . By

hypothesis, B > cjgllogl. Let s; < --- < s9; be any primes < B, and put m = 5155 - - - 59;.



12 COBELI, FORD, ZAHARESCU

There are (21) products s;, ---s;, each lying in [1, B']. Thus, for some z € [1, B], the

interval (z,1.1z] contains at least r such products. Let ¢ be a prime in (23Q, - 12} that

does not divide m. Such ¢ exists because Q/z > Q/B' = cigllogl (ie. 7 (&) -7 (%) >

1.1z
2l +2). Let s be a prime in (g—fn, g%} that does not divide ¢gm. Such s exists because

1.1z > s;---5 > $r and thus f—m > 1?; > 11213?, > 1oxllogl. Put D = sqm, so

De (Q—2 @] . Also, (D, 2Q/3,Q) > 7(qm,2Q/3,Q) > r, so h(D, Q) > r. Now each

47 9
21+2

D comes from at most ( 9

) values of m. Therefore,

G, ( 1
3z 7 <q< 1Q %<3§g?j
ged(g,m)=1
QZ/qm Q2 1
>> - .
l2 — zq: log lzlogQQ;m
Lastly,
1 1 1 1 1
2> I 81 PR D,
. m (20)! s1<B 51 < 52 s91<B 52
so#s] sorE{s1,--0s s91—1}
1 1 1 1
DD DRI Dl
(QZ)! s1<B 51 ¢2<s52<B 52 qu<sx<B o
1 . 2
> o ( x )
1<s<B
e 1 2
> (— loglog B — loglog qo + O .
2l log ga
Now
1 log
loglog B = log OgQ—i—O o8 ;
l log @
loglog!
log log go; = loglog (2l(log! + O(loglog!))) = loglog! + O log

and the theorem follows.

We conclude by proving Corollary 3. The upper bound comes from Theorem 3, while

the lower bound follows from Theorem 5, by taking [ = ;foggg + O(loglog Q).
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9. TABLES OF CHAMPIONS

Table 1: The H-values and the Champions for a given Q

Q [[pmo)l [ HQ [ Hi(@) [ H2(Q) [ Hs(@) [ Ha(@) [ Ha(@) [ 1/3C

2 1 1 1 0 0 0 0 2

3 2 2 2 0 0 0 0 3,6

4 3 3 3 0 0 0 0 4, 6,12

5 5 5 5 0 0 0 0 5, 10, 12, 15, 20

6 6 6 6 0 0 0 0 6, 10, 12, 15, 20, 30

7 9 9 9 0 0 0 0 7, 14, 15, 20, 21, 28, 30,
35, 42

8 11 11 11 0 0 0 0 8, 14, 20, 21, 24, 28, 30,
35, 40, 42, 56

180 4940 4481 4069 372 33 7 0 8190, 8580, 9240, 9570,
9660, 10010, 10710

181 5030 4594 4199 360 29 6 0 8580, 9240, 9570, 9660,
10010, 10710

182 5066 4608 4200 366 35 6 1 10010

183 5126 4654 4235 374 38 6 1 10010

184 5170 4686 4257 382 40 6 1 10010

185 5242 4744 4301 396 40 6 1 10010

186 5272 4754 4299 401 46 7 1 10010

187 5352 4825 4365 402 50 7 1 10010

188 5398 4860 4390 411 51 7 1 10010

189 5452 4905 4426 420 51 7 1 10010

190 5488 4918 4422 433 53 9 1 10010

Table 2: Selected lists of Champions
Champion Decomposition | No.ofappearances || The values of Q
102 2-3-17 1 17
104 2%.13 2 13, 17

continued on next page

13
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Champion Decomposition | No.ofappearances || The values of Q
105 3.5-7 2 17, 21
110 2.5.11 4 11-13, 17
112 24.7 1 17
117 32.13 2 13, 17
119 7-17 1 17
120 23.3.5 1 17
126 2-32.7 6 17-22
130 2-5-13 2 13, 17
132 22.3.11 3 12,13, 17
136 2%.17 1 17
143 11-13 2 13, 17
144 24 . 32 1 17
153 3%.17 1 17
154 2.7-11 4 17, 22-24
156 22.3.13 2 13, 17
165 3.5-11 1 17
168 2%.3.7 5 24-28
170 2.5-17 1 17
176 2411 1 17
182 2.7-13 2 17, 26
187 11-17 1 17
195 3-5-13 1 17
198 2-32.11 7 22-28
1540 22.5.7-11 5 55, 59-62
1550 2-52.31 1 62
1566 2-3%.29 4 59-62
1650 2-3-5%.11 2 75, 76
1674 2-3%.31 1 62
1716 22.3.11-13 5 55, 59-62
1798 2-29-31 1 62
1938 2-3-17-19 4 59-62
1980 22.3%.5.11 5 55, 59-62
2310 2-3-5-7-11 27 70-96
2520 23.32.5.7 5 72-76

continued on next page
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continued from previous page

Champion Decomposition | No.ofappearances || The values of Q
2730 2.-3.5.7-13 18 91-108
3570 2.3.5.7-17 20 107-126
3990 2.3.5.7-19 15 114-126, 133-136
4290 2-3.5-11-13 1 130
4620 22.3.5.7-11 5 132-136
4830 2-3-5-7-23 1 138
5460 22.3.5-7-13 9 140-148
6930 2.32.5.7-11 43 126-168
7140 22.3.5-7-17 16 140-153, 167, 168
7590 2-3-5-11-23 12 167-178
7980 22.3.5-7-19 26 140-153, 167-178
8190 2-3%.5-7-13 38 130153, 167-180
8580 22.3.5-11-13 19 167-181, 195, 196, 201, 202
9240 23.3.5.7-11 14 168-181
9570 2.3.5.11-29 8 174-181
9660 22.3.5.7-23 15 167-181
20910 2.3.5-17-41 4 269-272
21930 2-3-5-17-43 4 269-272
22230 2-32.5-13-19 4 269272
22440 2%.3.5-11-17 4 269-272
22610 2.5.-7-17-19 4 269-272
22770 2-32.5-11-23 4 269-272
23562 2-32.7-11-17 4 269-272
26334 2.32.7-11-19 4 269-272
27846 2.32.7-13-17 4 269-272
30030 2.3-5-7-11-13 87 231-233, 269-352
31122 2.32.7-13-19 8 269-272, 349-352
39270 2-3-5-7-11-17 56 269-272, 349-400
40698 2-3%.7-17-19 8 349-356
43890 2-3-5-7-11-19 17 349-356, 399-407
53130 2-3-5-7-11-23 8 349-356

15
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Table 3: The H-values for a given Q

Q | IPMa)l || Hg) | aid | ey | Hay | my | oy | e
31 154 || 0.9733 | 0.0267 | 0 0 0 0
32 162 || 0.9747 | 0.0253 | 0 0 0 0
33 172 || 0.9636 | 0.0303 | 0.0061 | 0 0 0
34 180 || 0.9408 | 0.0533 | 0.0059 | 0 0 0
35 192 || 0.956 |0.033 |0.011 |0 0 0
100 | 1522 || 0.9059 | 0.0869 | 0.0065 | 0.0007 | 0 0
101 | 1572 || 0.9161 | 0.079 | 0.0042 | 0.0007 | 0 0
102 || 1588 || 0.9102 | 0.0829 | 0.0062 | 0.0007 | 0 0
103 || 1639 || 0.9233 | 0.0707 | 0.0053 | 0.0007 | 0 0
104 || 1663 || 0.9217 | 0.0718 | 0.0059 | 0.0007 | 0 0
105 || 1687 || 0.9156 | 0.0759 | 0.0071 | 0.0006 | 0.0006 | 0
106 | 1713 || 0.9108 | 0.0809 | 0.0071 | 0.0006 | 0.0006 | 0
107 || 1766 || 0.9212 | 0.0714 | 0.0062 | 0.0012 | 0 0
108 || 1784 || 0.9207 | 0.072 | 0.0061 | 0.0012 | 0 0
109 || 1838 || 0.9278 | 0.0658 | 0.0059 | 0.0006 | 0 0

110 1858 0.9216 | 0.0702 | 0.0076 | 0.0006 | O 0

311 14770 0.89 0.0954 | 0.0121 | 0.0023 | 0.0001 | 0.0001
312 14818 0.8886 | 0.0965 | 0.0123 | 0.0025 | 0.0001 | 0.0001
313 14974 0.8927 | 0.0934 | 0.0117 | 0.0021 | 0.0001 | 0.0001
314 15052 0.8908 | 0.0954 | 0.0116 | 0.002 | 0.0001 | 0.0001
315 15124 0.8898 | 0.0959 | 0.0119 | 0.0022 | 0.0001 | 0.0001
316 15202 0.8892 | 0.0964 | 0.012 | 0.0022 | 0.0001 | 0.0001
317 15360 0.8931 | 0.0934 | 0.0113 | 0.002 | 0.0001 | 0.0001
318 15412 0.8914 | 0.0945 | 0.0118 | 0.0021 | 0.0001 | 0.0001
319 15552 0.8906 | 0.0954 | 0.0117 | 0.0022 | 0.0001 | 0.0001
320 15616 0.8903 | 0.0957 | 0.0117 | 0.0022 | 0.0001 | 0.0001

| o|lo|lo|lo|lo|lo|lo|lo|lo|loo |l ool |lo|lo|lo|lo|lo|lo | o
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