# SHARP PROBABILITY ESTIMATES FOR RANDOM WALKS WITH BARRIERS 

KEVIN FORD


#### Abstract

We give sharp, uniform estimates for the probability that a random walk of $n$ steps on the reals avoids a half-line $[y, \infty)$ given that it ends at the point $x$. The estimates hold for general continuous or lattice distributions provided the 4th moment is finite.


## 1. Introduction

Let $X_{1}, X_{2}, \ldots$ be independent, identically distributed random variables with mean $\mathbf{E} X_{1}=0$ and variance $\mathbf{E} X_{1}^{2}=1$. Let $S_{0}=T_{0}=0$ and for $n \geq 1$ define

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

and

$$
T_{n}=\max \left(0, S_{1}, \ldots, S_{n}\right)
$$

The estimation of the distribution of $S_{n}$ for general random variables has a long and rich history (see e.g. [10]).

The distribution of $T_{n}$ was found more recently. In 1946, Erdős and Kac [5] showed that

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left[T_{n} \leq x \sqrt{n}\right]=2 \Phi(x)-1
$$

uniformly in $x \geq 0$, where

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t
$$

is the distribution function for the normal distribution. Several estimates for the error term have been proved on the assumption that $\mathbf{E}\left|X_{1}\right|^{3}<\infty$, the best uniform bound (and best possible uniform bound) being the result of Nagaev [13]

$$
\mathbf{P}\left[T_{n} \leq x \sqrt{n}\right]=2 \Phi(x)-1+O(1 / \sqrt{n}),
$$

uniformly in $x \geq 0$ (the constant implied by the $O$-symbol depends only on $\mathbf{E}\left|X_{1}\right|^{3}$ ). Sharper error terms are possible when $|x| \geq 1$, see e.g. Arak [3] and Chapter 4 of [2].

We are interested here in approximations of the conditional probability

$$
R_{n}(x, y)=\mathbf{P}\left[T_{n-1}<y \mid S_{n}=x\right]
$$

which are sharp for a wide range of $x, y$. By the invariance principle, we expect

$$
R_{n}(u \sqrt{n}, v \sqrt{n}) \rightarrow 1-e^{-2 v(v-u)} \quad(n \rightarrow \infty)
$$

Date: 11 July 2008.
The author was supported by NSF grants DMS-0301083 and DMS-0555367.
2000 Mathematics Subject Classification: Primary 60G50.
Key words and phrases : random walk, barrier, ballot theorems.
for $u, v$ fixed, $u \leq v$ and $v \geq 0$, since this holds for the case of Bernoulli random variables (see (2.1) below).

Before stating our results, we motivate the study of $R_{n}(x, y)$ with three examples, two of which are connected with empirical processes.

## 2. Three examples

The example which is easiest to analyze is the case of a simple random walk with Bernoulli steps. Let $X_{1}, X_{2}, \ldots$ satisfy $\mathbf{P}\left[X_{i}=1\right]=\mathbf{P}\left[X_{i}=-1\right]=\frac{1}{2}$. By the reflection principle, the number of walks of $n$ steps for which $T_{n} \geq y$ and $S_{n}=x$ is equal to the number of walks of $n$ steps with $S_{n}=2 y-x$ (by inverting $X_{k+1}, \ldots, X_{n}$, where $k$ is the smallest index with $S_{k}=y$ ). Thus, if $n$ and $x$ have the same parity, then

$$
R_{n}(x, y)=1-\frac{\binom{n}{\frac{n+x-2 y}{2}}}{\binom{n}{\frac{n-x}{2}}} .
$$

This includes as a special case a version of the classical Bertrand ballot theorem from 1887. Two candidates in an election receive $p$ and $q$ votes, respectively, with $p \geq q$. If the votes are counted in random order, the probability that the first candidate never trails in the counting is

$$
R_{p+q}(q-p, 1)=\frac{p-q+1}{p+1} .
$$

More generally, suppose $1 \leq y \leq n / 2,-n / 2 \leq x<y$ and $2 y-x \leq n / 2$. Writing $\beta=$ $(2 y-x) / n$ and $\alpha=x / n$, so that $\beta>\alpha>0$, we obtain by Stirling's formula,

$$
\begin{aligned}
& \left.R_{n}(x, y)=1-\frac{\left(\frac{n}{\frac{n}{2}(1+\beta)}\right. \text { ) }}{\left(\frac{n}{2}(1+\alpha)\right.}\right) \\
& \quad=1-(1+O(1 / n)) \sqrt{\frac{1-\alpha^{2}}{1-\beta^{2}}}\left(\frac{(1+\alpha)^{1+\alpha}(1-\alpha)^{1-\alpha}}{(1+\beta)^{1+\beta}(1-\beta)^{1-\beta}}\right)^{n / 2} \\
& \quad=1-(1+O(1 / n)) \sqrt{\frac{1-\alpha^{2}}{1-\beta^{2}}} \exp \left\{\frac{n}{2}\left(\alpha^{2}-\beta^{2}+O\left(\alpha^{4}+\beta^{4}\right)\right)\right\}
\end{aligned}
$$

If $x=O(\sqrt{n})$ and $y-x=O(\sqrt{n})$, then $\alpha=O\left(n^{-1 / 2}\right)$ and $\beta=O\left(n^{-1 / 2}\right)$ and we have

$$
\begin{equation*}
R_{n}(x, y)=1-(1+O(1 / n)) \exp \left\{\frac{n}{2}\left(\alpha^{2}-\beta^{2}\right)\right\}=1-e^{-2 y(y-x) / n}+O(1 / n) \tag{2.1}
\end{equation*}
$$

Two special cases are connected with empirical processes. Let $U_{1}, \ldots, U_{n}$ be independent random variables with uniform distribution in $[0,1]$, suppose $F_{n}(t)=\frac{1}{n} \sum_{U_{i} \leq t} 1$ is their empirical distribution function and $0 \leq \xi_{1} \leq \cdots \leq \xi_{n} \leq 1$ are their order statistics.

In his seminal 1933 paper [11] on the distribution of the statistic

$$
D_{n}=\sqrt{n} \sup _{0 \leq t \leq 1}\left|F_{n}(t)-t\right|
$$

Kolmogorov related the problem to a similar conditional probability for a random walk. Specifically, let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables with discrete distribution

$$
\begin{equation*}
\mathbf{P}\left[X_{j}=r-1\right]=\frac{e^{-1}}{r!} \quad(r=0,1,2, \ldots) \tag{2.2}
\end{equation*}
$$

Kolmogorov proved that for integers $u \geq 1$,

$$
\begin{aligned}
\mathbf{P}\left(\sup _{0 \leq t \leq 1}\left|F_{n}(t)-t\right| \leq u / n\right) & =\frac{n!e^{n}}{n^{n}} \mathbf{P}\left(\max _{0 \leq j \leq n-1}\left|S_{j}\right|<u, S_{n}=0\right) \\
& =\mathbf{P}\left(\max _{0 \leq j \leq n-1}\left|S_{j}\right|<u \mid S_{n}=0\right)
\end{aligned}
$$

Consider next

$$
Q_{n}(u, v)=\mathbf{P}\left[\xi_{i} \geq \frac{i-u}{v}(1 \leq i \leq n)\right]=\mathbf{P}\left(F_{n}(t) \leq \frac{v t+u}{n}(0 \leq t \leq 1)\right)
$$

for $u \geq 0, v>0$. Smirnov in 1939 proved the asymptotic $Q_{n}(\lambda \sqrt{n}, n) \rightarrow 1-e^{-2 \lambda^{2}}$ as $n \rightarrow \infty$ for fixed $\lambda$. Small modifications to Kolmogorov's proof yield, for integers $u \geq 1$ and for $n \geq 2$, that

$$
Q_{n}(u, n)=R_{n}(0, u)
$$

for the variables $X_{j}$ given by (2.2). When $v \neq n$, however, it does not seem possible to express $Q_{n}(u, v)$ in terms of these variables $X_{j}$.

In [8], new bounds on $Q_{n}(u, v)$ were proved and applied to a problem of the distribution of divisors of integers (see also articles [6], [7] for more about this application). A more precise uniform estimate was proved in [9], namely

$$
\begin{equation*}
Q_{n}(u, v)=1-e^{-2 u w / n}+O\left(\frac{u+w}{n}\right) \quad(n \geq 1, u \geq 0, w \geq 0) \tag{2.3}
\end{equation*}
$$

where $w=u+v-n$ and the constant implied by the $O-$ symbol is independent of $u, v$ and $n$. This was accomplished using $X_{j}=1-Y_{j}$, where $Y_{1}, Y_{2}, \ldots$ are independent random variables with exponential distribution, i.e. with density function $f(x)=e^{-x}$ for $x \geq 0, f(x)=0$ for $x<0$. Letting $W_{k}=Y_{1}+\cdots+Y_{k}$, Rényi [16] whowed that

$$
\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right) \text { and }\left(\frac{W_{1}}{W_{n+1}}, \frac{W_{2}}{W_{n+1}}, \cdots, \frac{W_{n}}{W_{n+1}}\right)
$$

have the same distribution. An easy consequence is

$$
Q_{n}(u, v)=\mathbf{P}\left[W_{j}-j \geq-u(1 \leq j \leq n) \mid W_{n+1}=v\right]=R_{n+1}(n+1-v, u)
$$

## 3. Statement of the main results

Our aim in this paper is to prove a result analogous to (2.1) and (2.3) for sums of very general random variables $X_{1}$. We will restrict ourselves to random variables with either a continuous or lattice distribution, to maintain control of the density function of $S_{n}$. Let $F$ be the distribution function of $X_{1}$ and let $F_{n}$ the distribution function of $S_{n}$ for $n \geq 1$. Let $\phi(t)=\mathbf{E} e^{i t X_{1}}$ be the characteristic function of $X_{1}$.

We henceforth assume that either
(C)

$$
\left\{\begin{array}{l}
X_{1} \text { has a continuous distribution and } \\
\exists n_{0}: \int|\phi(t)|^{n_{0}} d t<\infty
\end{array}\right.
$$

or that
(L)
$X_{1}$ has a lattice distribution.
If (L), let $f(x)=\mathbf{P}\left(X_{1}=x\right), f_{n}(x)=\mathbf{P}\left(S_{n}=x\right)$ and $n_{0}=1$. We also suppose the support of $f$ is contained in the lattice $\mathscr{L}=\{\gamma+m \lambda: m \in \mathbb{Z}\}$, where $\lambda$ is the maximal span of the distribution (the support of $f$ is not contained in any lattice $\left\{\gamma^{\prime}+m \lambda^{\prime}: m \in \mathbb{Z}\right\}$ with $\lambda^{\prime}>\lambda$ ). The support of $f_{n}$ is then contained in the lattice $\mathscr{L}_{n}=\{n \gamma+m \lambda: m \in \mathbb{Z}\}$. If (C), let $f$ be the density function of $X_{1}$, let $f_{n}$ the density function of $S_{n}$, define $\mathscr{L}=\mathbb{R}$ and $\mathscr{L}_{n}=\mathbb{R}$.

Define the moments

$$
\alpha_{u}=\mathbf{E} X_{1}^{u}, \quad \beta_{u}=\mathbf{E}\left|X_{1}\right|^{u}
$$

In what follows, the notation $f=O(g)$ for functions $f, g$ means that for some constant $c>0$, $|f| \leq c g$ for all values of the domain of $f$, which will usually be given explicitly. Unless otherwise specified, $c$ may depend only on the distribution of $X_{1}$, but not on any other parameter. Sometimes we use the Vinogradov notation $f \ll g$ which means $f=O(g)$. As $R_{n}(x, y)$ is only defined when $f_{n}(x)>0$, when $f_{n}(x)=0$ we define $R_{n}(x, y)=1$.
Theorem 1. Assume (C) or (L), $\beta_{u}<\infty$ for some $u>3$, and let $M>0$. Uniformly in $n \geq 1$, $0 \leq y \leq M \sqrt{n}, 0 \leq z \leq M \sqrt{n}$ with $y \in \mathscr{L}_{n}, y-z \in \mathscr{L}_{n}$ and $f_{n}(y-z)>0$,

$$
R_{n}(y-z, y)=1-e^{-2 y z / n}+O\left(\frac{y+z+1}{n}+\frac{1}{n^{\frac{u-2}{2}}}\right) .
$$

Here the constant implied by the $O$-symbol depends on the distribution of $X_{1}, u$ and also on $M$, but not on $n$, y or $z$.

Corollary 1. Assume (C) or ( $L$ ) and $\beta_{u}<\infty$ for some $u>3$. For $w \leq v$ and $v \geq 0$,

$$
R_{n}(w \sqrt{n}, v \sqrt{n})=1-e^{-2 v(v-w)}+O\left(n^{-1 / 2}\right)
$$

the constant implied by the $O$-symbol depending on $\max (v, v-w)$ and on the distribution of $X_{1}$.
Corollary 2. Assume (C) or (L), and $\beta_{4}<\infty$. If y and z satisfy y $\rightarrow \infty, y=o(\sqrt{n}), z \rightarrow \infty$, and $z=o(\sqrt{n})$ as $n \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty} \frac{R_{n}(y-z, y)}{2 y z / n}=1
$$

All three examples given in section 2 staisfy the hypotheses of Theorem 1 and the two corollaries. Indeed, for these examples all moments of $X_{1}$ exist.

Using "almost sure invariance" principles or "strong approximation" theorems (see e.g. [4], [15]), one can approximate the walk $\left(S_{n}\right)_{n \geq 0}$ with a Wiener process $W(n)$. Assuming that $\beta_{4}<\infty$ and no higher moments exist, one has $S_{n}-W(n)=o\left(n^{1 / 4}\right)$ almost surely, the exponent $1 / 4$ being best possible (cf. [4], Theorems 2.6.3, 2.6.4). This rate of approximation is, however, far too weak to prove results as strong as Theorem 1 .

In section 4 , we list some required estimates for $f_{n}(x)$. Section 5 contains two recursion formulas for $R_{n}(x, y)$. Although our main interest is in the case when $y \geq x$, we shall need estimates
when $y<x$ in order to prove Theorem 1, This is accomplished in $\S 6$, Finally, in $\$ 7$, we prove Theorem 1, It is critical to our analysis that the densities $f_{n}(x)$ have regular behavior, and the hypotheses ( C ), (L) and $\beta_{u}<\infty$ ensures that this is the case for $|x|=O(\sqrt{n})$. Extending the range of validity of the asymptotic for $R_{n}(x, y)$ beyond the range of $(x, y)$ covered by Theorem 1 would require that we have more precise estimates for $f_{n}(x)$ for $|x|$ of larger order than $\sqrt{n}$. In specific cases, such as the exponential distribution, normal distribution or binomial distribution, exact expressions for $f_{n}(x)$ make it possible to achieve this goal (see e.g. (2.3)).

It is of some interest to know if $\beta_{4}<\infty$ really is a necessary condition for Theorem 1 to hold. Recently, Addario-Berry and Reed [1] showed (as a special case of their Theorem 1), for an arbitrary lattice random variable $X_{1}$ with zero mean and finite variance, that

$$
\begin{equation*}
\frac{y z}{n} \ll R_{n}(y-z, y) \ll \frac{y z}{n} \quad\left(1 \leq y, z \leq \sqrt{n}, n \geq n_{0}\right) \tag{3.1}
\end{equation*}
$$

the constants implied by the $\ll$-symbols and $n_{0}$ depending on the distribution of $X_{1}$. The same proof gives (3.1) under hypotheses (C) and $\beta_{2}<\infty$; see (a) below (for non-lattice variables, the authors prove analogous bounds for the probability that $T_{n}<y$ given that $y-z-c \leq S_{n} \leq y-z$, for a fixed $c>0$ ). When $y=1$, the upper bound in (3.1) is the same as the conclusion as Theorem 1 but is proved under a weaker hypothesis. When $y$ is larger, however, the error term in the conclusion of Theorem 1 can be of much lower order than the main term, and a hypothesis stronger than $\beta_{2}<\infty$ should be required. Addario-Berry and Reed also construct examples of variables $X_{1}$ where $\mathbf{E} X_{1}^{2}=\infty$ or $k / \sqrt{n} \rightarrow \infty$, while $R_{n}(-k, 1)$ is not of order $k / n$.

## 4. Estimates for density functions

At the core of our arguments are approximations of the density function $f_{n}(x)$. This is the only part of the proof which uses the hypothesis on $\phi(t)$ from (C).

Lemma 4.1. Assumer (C) or $(L)$, and $\beta_{2}=1$. Then, uniformly for $n \geq n_{0}$ and all $x$,

$$
\begin{equation*}
f_{n}(x) \ll \frac{1}{\sqrt{n}} \tag{4.1}
\end{equation*}
$$

Assume $3 \leq u \leq 4, \beta_{u}<\infty$, and $(C)$ or $(L)$. Then, uniformly for $n \geq n_{0}$ and $x \in \mathscr{L}_{n}$,

$$
\begin{aligned}
f_{n}(x) & =\frac{e^{-x^{2} / 2 n}}{\sqrt{2 \pi n}}\left[1+O\left(\frac{|x|}{n}+\frac{|x|^{3}}{n^{2}}\right)\right]+O\left(n^{(1-u) / 2}\right) \\
& =\frac{e^{-x^{2} / 2 n}}{\sqrt{2 \pi n}}+O\left(\frac{|x|}{n^{3 / 2}\left(1+x^{2} / n\right)}+n^{(1-u) / 2}\right)
\end{aligned}
$$

Proof. We apply results from [10], $\S 46, \S 47$ and $\S 51$. Assume (C). By the proof of Theorem 1 in $\S 46$, we may replace conditions 1 ), 2) of $\S 46$, Theorem 1 and the theorem in $\S 47$ with the hypothesis that $n_{0}$ exists. Note that these theorems are only stated with the hypothesis that $\beta_{u}$ exists for intergal $u$, but straightforward modification of the proofs yields the above inequalities for real $u \in[3,4]$ : Start with the inequality $e^{i t}=1+i t-\frac{1}{2} t^{2}-\frac{i}{6} t^{3}+O\left(|t|^{u}\right)$, which follows from Taylor's formula for $|t| \leq 1$ and the triangle inequality for $|t|>1$. Consequently,

$$
\phi(t)=1-\frac{1}{2} t^{2}-\frac{i \alpha_{3}}{6} t^{3}+O\left(|t|^{u}\right)
$$

and hence, for $|t|$ small enough,

$$
\begin{aligned}
\phi^{n}(t) & =\exp \left[-\frac{n t^{2}}{2}-\frac{i \alpha_{3} n}{6} t^{3}+O\left(n|t|^{u}\right)\right] \\
& =e^{-n t^{2} / 2}\left[1-\frac{i \alpha_{3} n}{6} t^{3}+O\left(t^{6} n^{2} e^{O\left(|t|^{3} n\right)}+|t|^{u} n e^{O\left(|t|^{u} n\right)}\right)\right]
\end{aligned}
$$

Here we used the inequalities $\left|e^{v}-1\right| \leq|v| e^{|v|}$ and $\left|e^{v}-1-v\right| \leq|v|^{2} e^{|v|}$. Therefore,

$$
\begin{equation*}
\left|\phi^{n}(t)-e^{-n t^{2} / 2}\left(1-\frac{i \alpha_{3} n}{6} t^{3}\right)\right| \ll\left(t^{6} n^{2}+|t|^{u} n\right) e^{-n t^{2} / 4} \quad(|t| \leq c) \tag{4.2}
\end{equation*}
$$

for some $c>0$. In the proofs in $\S 46, \S 47$ and $\S 51$, use (4.2) in place of Theorem 1 of $\S 41$.

## 5. RECURSION FORMULAS

It is convenient to work with the density function

$$
\widetilde{R}_{n}(x, y)=f_{n}(x) R_{n}(x, y)=\mathbf{P}\left[T_{n-1}<y, S_{n}=x\right]
$$

The last expression stands for $\frac{d}{d x} \mathbf{P}\left[T_{n-1}<y, S_{n} \leq x\right]$ when (C) holds. Notice that if $f_{n}(x)=0$, then $\widetilde{R}_{n}(x, y)=0$ by our convention.

Lemma 5.1. Assume (C). Then, for $n \geq 2, y \geq 0$ and $s \geq 0$,

$$
\widetilde{R}_{n}(y+s, y)=\int_{0}^{\infty} f(s+t) \widetilde{R}_{n-1}(y-t, y) d t
$$

If $(L)$, then for $n \geq 2, y>0, s \geq 0$ and $y+s \in \mathscr{L}_{n}$,

$$
\widetilde{R}_{n}(y+s, y)=\sum_{\substack{s+t \in \mathscr{L}_{n} \\ t>0}} f(s+t) \widetilde{R}_{n-1}(y-t, y)
$$

Proof. If $S_{n}=y+s$ and $T_{n-1}<y$, then $X_{n}=s+t$ where $t>0$.
Lemma5.1 expresses $\widetilde{R}_{n}(x, y)$ with $x \geq y$ in terms of $\widetilde{R}_{n-1}(x, y)$ with $x \leq y$. The next lemma works the other direction, and is motivated by the reflection principle: a walk that crosses the point $y$ and ends up at $S_{n}=x$ should be about as likely as a walk that ends up at $S_{n}=2 y-x$ (by inverting the part of the walk past the first crossing of $y$ ). We thus expect that for $x<y$,

$$
\widetilde{R}_{n}(x, y) \approx f_{n}(x)-f_{n}(2 y-x)
$$

Lemma 5.2. Assume $n \geq 2, y>0$ and $a \geq 0$. If (C), then for any $x$

$$
\begin{aligned}
\widetilde{R}_{n}(x, y)=f_{n}(x) & -f_{n}(y+a)+\widetilde{R}_{n}(y+a, y) \\
& +\int_{0}^{\infty} \sum_{k=1}^{n-1} \widetilde{R}_{k}(y+\xi, y)\left(f_{n-k}(a-\xi)-f_{n-k}(x-y-\xi)\right) d \xi
\end{aligned}
$$

If ( $L$ ), then for $x, y+a \in \mathscr{L}_{n}$,

$$
\begin{aligned}
\widetilde{R}_{n}(x, y)=f_{n}(x) & -f_{n}(y+a)+\widetilde{R}_{n}(y+a, y) \\
& +\sum_{k=1}^{n-1} \sum_{\substack{y+\xi \in \mathscr{L}_{k} \\
\xi \geq 0}} \widetilde{R}_{k}(y+\xi, y)\left(f_{n-k}(a-\xi)-f_{n-k}(x-y-\xi)\right) .
\end{aligned}
$$

Proof. First, we have

$$
\begin{aligned}
\widetilde{R}_{n}(x, y) & =f_{n}(x)-\mathbf{P}\left[T_{n-1} \geq y, S_{n}=x\right] \\
& =f_{n}(x)-f_{n}(y+a)+f_{n}(y+a)-\mathbf{P}\left[T_{n-1} \geq y, S_{n}=x\right]
\end{aligned}
$$

If $T_{j} \geq y$, then there is a unique $k, 1 \leq k \leq j$, for which $T_{k-1}<y$ and $S_{k} \geq y$. Thus,

$$
f_{n}(y+a)=\sum_{k=1}^{n} \mathbf{P}\left[T_{k-1}<y, S_{k} \geq y, S_{n}=y+a\right]
$$

If (C) then

$$
\begin{aligned}
f_{n}(y+a) & =\sum_{k=1}^{n-1} \int_{0}^{\infty} \mathbf{P}\left[T_{k-1}<y, S_{k}=y+\xi, S_{n}=y+a\right] d \xi+\mathbf{P}\left[T_{n-1}<y, S_{n}=y+a\right] \\
& =\sum_{k=1}^{n-1} \int_{0}^{\infty} \widetilde{R}_{k}(y+\xi, y) f_{n-k}(a-\xi) d \xi+\widetilde{R}_{n}(y+a, y)
\end{aligned}
$$

Likewise, if (L) then

$$
f_{n}(y+a)=\widetilde{R}_{n}(y+a, y)+\sum_{k=1}^{n-1} \sum_{\substack{y+\xi \in \mathscr{L}_{k} \\ \xi \geq 0}} \widetilde{R}_{k}(y+\xi, y) f_{n-k}(a-\xi)
$$

In the same way

$$
\begin{aligned}
\mathbf{P}\left[T_{n-1} \geq y, S_{n}=x\right] & =\sum_{k=1}^{n-1} \mathbf{P}\left[T_{k-1}<y, S_{k} \geq y, S_{n}=x\right) \\
& =\sum_{k=1}^{n-1}\left\{\begin{array}{cc}
\int_{0}^{\infty} \widetilde{R}_{k}(y+\xi, y) f_{n-k}(x-y-\xi) d \xi & \text { if (C) } \\
\sum_{\substack{y+\xi \in \mathscr{L}_{k} \\
\xi \geq 0}} \widetilde{R}_{k}(y+\xi, y) f_{n-k}(x-y-\xi) & \text { if (L). }
\end{array}\right.
\end{aligned}
$$

Motivated by the reflection principle, we will apply Lemma 5.2 with $a$ close to $y-x$. The integral/sum over $\xi$ is then expected to be small, since $f_{n-k}(y-x-\xi)-f_{n-k}(x-y-\xi)$ should be small when $\xi$ is small (by Lemma 4.1) and $\widetilde{R}_{k}(y+\xi, y)$ should be small when $\xi$ is large. This last fact is crucial to our argument, and we develop the necessary bounds in the next section.

## 6. Rough Estimates

Roughly speaking, if $T_{n-1}<y$ and $S_{n}=y+s$ with $s \geq 0$, then $S_{n-1}$ will be close to $y$ with high probability. The probability that $T_{n-1}<y$ is about $\min (1, y / \sqrt{n})$ (see Lemma 6.1 below) On the other hand, if $y / \sqrt{n}$ is large, then $S_{n-1} \approx y$ is a rare event. Therefore, as a function of $y$, $\widetilde{R}_{n}(y+s, y)$ should increase linearly in $y$ for $1 \leq y \leq \sqrt{n}$, then decrease for larger $y$.

We begin with a lemma concerning the distribution of $T_{n}$. Part (1) is due to Kozlov ([12], Theorem A, (13)) and part (2) was proved by Pemantle and Peres ([14], Lemma 3.3 (ii)). In [14], (2) is stated only for $h=0$, but the same proof gives the more general inequality.

Lemma 6.1. Assume $X_{1}$ is any random variable with $\beta_{2}=1$. Then
(1) $\mathbf{P}\left\{T_{n} \leq h\right\} \ll(h+1) / \sqrt{n}$.
(2) $\mathbf{E}\left\{S_{n}^{2} \mid T_{n} \leq h\right\} \ll n$, uniformly in $h \geq 0$.

Theorem 2. Assume (C) or ( $L$ ), $\beta_{2}=1$ and $n \geq 1$. For all $y \geq 0, z \geq 0$, we have

$$
\begin{equation*}
\widetilde{R}_{n}(y-z, y) \ll \frac{\min (y+1, \sqrt{n}) \min (z+1, \sqrt{n})}{n^{3 / 2}} . \tag{a}
\end{equation*}
$$

If $n \geq 3 n_{0}, y \geq \sqrt{n}$ and $0 \leq z \leq y / 2$, then

$$
\begin{equation*}
\widetilde{R}_{n}(y-z, y) \ll \frac{\min (z+1, \sqrt{n})}{y^{2}} . \tag{b}
\end{equation*}
$$

Proof. The proof of (a) follows the upper bound proof of Theorem 1 from [1]. The idea is to consider simultaneously the random walk $0, S_{1}, S_{2}, \ldots$ and the "reverse" walk $0, \widetilde{S}_{1}, \widetilde{S}_{2}, \ldots$, where $\widetilde{S}_{k}=-\left(X_{n}+X_{n-1}+\cdots+X_{n-k+1}\right)$ Let $\widetilde{T}_{n}=\max \left(0, \widetilde{S}_{1}, \ldots, \widetilde{S}_{n}\right)$. Note that $T_{n} \leq y$ and $S_{n}=y-z$ imply $\widetilde{T}_{n} \leq z$.

Inequality (a) is trivial for $1 \leq n<3 n_{0}$. Let $n \geq 3 n_{0}$, put $a=\lfloor n / 3\rfloor$ and $b=n-a$. Then $\widetilde{R}_{n}(y-z, y) \leq \mathbf{P}\left(E_{1}, E_{2}, E_{3}\right)$, where $E_{1}=\left\{T_{a} \leq y\right\}, E_{2}=\left\{\widetilde{T}_{a} \leq z\right\}$ and $E_{3}=\left\{S_{n}=y-z\right\}$. Think of the random walk $0, S_{1}, \ldots, S_{n}$ as the union of three independent subwalks: one consisting of the first $a$ steps, one consisting of steps numbered $a+1$ to $b$, and one consiting of the last $a$ steps reversed. Note that $E_{3}=\left\{S_{b}-S_{a}=y-z-S_{a}+\widetilde{S}_{a}\right\}$. Since $S_{b}-S_{a}$ is independent of $S_{a}, \widetilde{S}_{a}$ and of events $E_{1}$ and $E_{2}$, we have by (4.1)

$$
\mathbf{P}\left(E_{3} \mid E_{1}, E_{2}\right) \leq \sup _{w} f_{b-a}(w) \ll n^{-1 / 2}
$$

As $E_{1}$ and $E_{2}$ are independent, we have by Lemma6.1 part (1)

$$
\widetilde{R}_{n}(y-z, y) \leq \mathbf{P} E_{1} \mathbf{P} E_{2} \mathbf{P}\left\{E_{3} \mid E_{1}, E_{2}\right\} \ll \frac{\min (y+1, \sqrt{n}) \min (z+1, \sqrt{n})}{n^{3 / 2}} .
$$

To prove (b), we observe that $S_{n}=y-z \geq y / 2$. Thus, $S_{a} \geq y / 6, S_{b}-S_{a} \geq y / 6$ or $\widetilde{S}_{a} \leq-y / 6$. Suppose first that $S_{a} \geq y / 6$. Replace $E_{1}$ by $E_{1}^{\prime}=\left\{S_{a} \geq y / 6\right\}$ in the above argument and note that

$$
\mathbf{P}\left\{S_{a} \geq y / 6\right\} \leq \frac{\mathbf{E} S_{a}^{2}}{(y / 6)^{2}}=\frac{36 a}{y^{2}} \ll \frac{n}{y^{2}}
$$

Arguing as in the proof of (a), we find that

$$
\mathbf{P}\left\{T_{n} \leq y, S_{n}=y-z, S_{a} \geq y / 6\right\} \ll\left(\frac{n}{y^{2}}\right) \frac{\min (z+1, \sqrt{n})}{n} \ll \frac{\min (z+1, \sqrt{n})}{y^{2}} .
$$

Next, suppose that $S_{b}-S_{a} \geq y / 6$. In the above argument, replace $E_{1}$ with $E_{1}^{\prime \prime}=\left\{S_{b}-S_{a} \geq y / 6\right\}$. Then $E_{3}=\left\{S_{a}=y-z-\left(S_{b}-S_{a}\right)+\widetilde{S}_{a}\right\}$. Again, $\mathbf{P}\left\{E_{3} \mid E_{1}^{\prime \prime}, E_{2}\right\} \leq \sup _{w} f_{a}(w) \ll n^{-1 / 2}$ and we obtain

$$
\mathbf{P}\left\{T_{n} \leq y, S_{n}=y-z, S_{b}-S_{a} \geq y / 6\right\} \ll \frac{\min (z+1, \sqrt{n})}{y^{2}}
$$

Finally, suppose $\widetilde{S}_{a} \leq-y / 6$. Replace $E_{2}$ with $E_{2}^{\prime}=\left\{\widetilde{S}_{a} \leq-y / 6, \widetilde{T}_{a} \leq z\right\}$. Here we use the trivial bound $\mathbf{P} E_{1} \leq 1$ and deduce

$$
\mathbf{P}\left\{T_{n} \leq y, S_{n}=y-z, \widetilde{S}_{a} \leq-y / 6\right\} \leq \mathbf{P} E_{1} \mathbf{P} E_{2}^{\prime} \mathbf{P}\left\{E_{3} \mid E_{1}, E_{2}^{\prime}\right\} \ll n^{-1 / 2} \mathbf{P} E_{2}^{\prime}
$$

By Markov's inequality and Lemma 6.1 parts (1) and (2),
$\mathbf{P} E_{2}^{\prime} \leq \mathbf{P}\left\{\widetilde{T}_{a} \leq z\right\} \mathbf{P}\left\{\widetilde{S}_{a} \geq y / 6 \mid \widetilde{T}_{a} \leq z\right\} \leq \mathbf{P}\left\{\widetilde{T}_{a} \leq z\right\} \frac{\mathbf{E}\left\{\widetilde{S}_{a}^{2} \mid \widetilde{T}_{a} \leq z\right\}}{(y / 6)^{2}} \ll \frac{\min (z+1, \sqrt{n})}{\sqrt{n}} \cdot \frac{n}{y^{2}}$.
This completes the proof of (b).
Combining Theorem 2 with Lemma 5.1 gives us useful bounds on $\widetilde{R}_{n}(y+\xi, y)$ when $\xi \geq 0$.
Theorem 3. Assume (C) or (L), and $\beta_{2}=1$. Suppose $y \geq 0$ and $\xi \geq 0$. Then

$$
\widetilde{R}_{n}(y+\xi, y) \ll \frac{y+1}{n^{3 / 2}} \int_{0}^{\infty}(t+1) f(\xi+t) d t \ll \frac{y+1}{n^{3 / 2}}
$$

If $n \geq 3 n_{0}+1$ and $y>\sqrt{n}$, then

$$
\widetilde{R}_{n}(y+\xi, y) \ll \frac{1}{y^{2}} \int_{0}^{\infty}(t+1) f(\xi+t) d t+\frac{1-F(\xi+y / 2)}{n^{1 / 2}} .
$$

Proof. Apply Lemma 5.1 and Theorem 2 (a) for the first part, and observe that the integral is $\leq \mathbf{E}\left|X_{1}\right|$. For the second part, use Theorem 2(b) for $t \leq y / 2$, and $\widetilde{R}_{n-1}(y-t, y) \ll n^{-1 / 2}$ for $t>y / 2$.

## 7. Proof of Theorem 1

We begin by proving a lemma which is of independent interest.
Lemma 7.1. Assume $\beta_{u}<\infty$ for some $u \geq 2$, and $y \geq 0$. If (C) then

$$
\sum_{n=1}^{\infty} \int_{0}^{\infty} \xi^{u-2} \widetilde{R}_{n}(y+\xi, y) d \xi=O(1)
$$

If $(L)$ then

$$
\sum_{n=1}^{\infty} \sum_{\substack{y+\xi \in \mathscr{L}_{n} \\ \xi \geq 0}} \xi^{u-2} \widetilde{R}_{n}(y+\xi, y)=O(1)
$$

Proof. Assume (C). First,

$$
\sum_{n=1}^{3 n_{0}} \int_{0}^{\infty} \xi^{u-2} \widetilde{R}_{n}(y+\xi, y) d \xi \leq \sum_{n=1}^{3 n_{0}} \int_{0}^{\infty} \xi^{u-2} f_{n}(y+\xi) d \xi \ll \sum_{n=1}^{3 n_{0}} \mathbf{E}\left|S_{n}\right|^{u-1} \ll 1
$$

By Theorem 3,

$$
\begin{aligned}
& \sum_{n \geq 3 n_{0}+1} \int_{0}^{\infty} \xi^{u-2} \widetilde{R}_{n}(y+\xi, y) d \xi \ll\left(\sum_{3 n_{0}+1 \leq n \leq y^{2}+1} \frac{1}{y^{2}}+\sum_{n>y^{2}+1} \frac{y+1}{n^{3 / 2}}\right) \\
& \times \int_{0}^{\infty}(t+1) \int_{0}^{\infty} \xi^{u-2} f(\xi+t) d \xi d t \\
&+\sum_{n \leq y^{2}+1} \frac{1}{n^{1 / 2}} \int_{0}^{\infty} \xi^{u-2} \int_{\xi}^{\infty} f(v+y / 2) d v d \xi \\
& \ll \mathbf{E}\left(\left|X_{1}\right|^{u}+\left|X_{1}\right|^{u-1}\right)+(y+1) \int_{0}^{\infty} v^{u-1} f(v+y / 2) d v \\
& \ll 1+\mathbf{E}\left|X_{1}\right|^{u} \ll 1
\end{aligned}
$$

The proof when ( L ) holds is similar.
Remark. A random walk $S_{0}, S_{1}, \ldots$ with $\beta_{2}=1$ crosses the point $y$ with probability 1 . There is a unique $n$ for which $T_{n-1}<y$ and $S_{n} \geq y$, and Lemma 7.1 states that $\mathbf{E}\left(S_{n}-y\right)^{u-2}=O(1)$.

We now prove Theorem 1 (again showing the details only for the case of (C) holding). It suffices to assume that $n$ is sufficiently large. Let $n \geq 10 n_{0}$ and put $x=y-z$. By Lemma5.2 with $a=z$,

$$
\begin{align*}
\widetilde{R}_{n}(x, y)=f_{n}(x)- & f_{n}(y+z)+\widetilde{R}_{n}(y+z, y) \\
& +\int_{0}^{\infty} \sum_{k=1}^{n-1} \widetilde{R}_{n-k}(y+\xi, y)\left(f_{k}(z-\xi)-f_{k}(-z-\xi)\right) d \xi \tag{7.1}
\end{align*}
$$

If $\beta_{u}$ exists, where $3<u \leq 4$, then

$$
\int_{0}^{\infty}(t+1) f(\xi+t) d t=\mathbf{P}\left\{X_{1} \geq \xi\right\}+\int_{0}^{\infty} \mathbf{P}\left\{X_{1} \geq \xi+t\right\} d t \ll \frac{1}{(\xi+1)^{u-1}}
$$

Therefore, by Theorem 3,

$$
\begin{equation*}
\widetilde{R}_{n}(y+\xi, y) \ll \frac{y+1}{n^{3 / 2}(1+\xi)^{u-1}} \tag{7.2}
\end{equation*}
$$

Let $V_{1}$ be the contribution to the integral in (7.1) from $1 \leq k \leq n_{0}$, let $V_{2}$ be the contribution from $n_{0}+1 \leq k \leq n / 2$ and $V_{3}$ is the contribution from $n / 2<k \leq n-1$. By (7.2),

$$
\begin{equation*}
V_{1} \ll \frac{y+1}{n^{3 / 2}} \sum_{k=1}^{n_{0}} \int_{0}^{\infty} f_{k}(z-\xi)+f_{k}(-z-\xi) d \xi=2 n_{0} \frac{y+1}{n^{3 / 2}} \tag{7.3}
\end{equation*}
$$

When $k \geq n_{0}+1$, Lemma 4.1 implies that

$$
\begin{align*}
& f_{k}(z-\xi)-f_{k}(-z-\xi)=\frac{e^{-\frac{1}{2 k}(z-\xi)^{2}}}{\sqrt{2 \pi k}}\left(1-e^{-2 \xi z / k}\right)+O\left(\frac{1}{k^{(u-1) / 2}}\right) \\
& \quad+O\left[\left(\frac{|z-\xi|}{k^{3 / 2}}+\frac{|z-\xi|^{3}}{k^{5 / 2}}\right) e^{-(z-\xi)^{2} / 2 k}+\left(\frac{z+\xi}{k^{3 / 2}}+\frac{(z+\xi)^{3}}{k^{5 / 2}}\right) e^{-(z+\xi)^{2} / 2 k}\right]  \tag{7.4}\\
& \quad \ll \frac{1}{k^{(u-1) / 2}}+\frac{(z+1)(\xi+1)}{k^{3 / 2}} e^{-(z-\xi)^{2} / 2 k}
\end{align*}
$$

By (7.2), we have

$$
\begin{aligned}
V_{2} & \ll \frac{y+1}{n^{3 / 2}} \sum_{n_{0}+1 \leq k \leq n / 2} \int_{0}^{\infty} \frac{1}{k^{(u-1) / 2}(\xi+1)^{u-1}}+\frac{z+1}{k^{3 / 2}(\xi+1)^{u-2}} e^{-(z-\xi)^{2} / 2 k} d \xi \\
& \ll \frac{y+1}{n^{3 / 2}}\left[1+(z+1) \sum_{k \leq n / 2} \frac{1}{k^{3 / 2}} \int_{0}^{\infty} \frac{1}{(\xi+1)^{u-2}} e^{-(z-\xi)^{2} / 2 k} d \xi\right] .
\end{aligned}
$$

The integral on the right side is

$$
\begin{aligned}
& \leq e^{-z^{2} / 8 k} \int_{0}^{z / 2} \frac{d \xi}{(\xi+1)^{u-2}}+\int_{-z / 2}^{\infty} \frac{e^{-w^{2} / 2 k}}{(z+w)^{u-1}} d w \\
& \ll e^{-z^{2} / 8 k}+\min \left(\frac{1}{(z+1)^{u-3}}, \frac{k^{1 / 2}}{(z+1)^{u-2}}\right) .
\end{aligned}
$$

Hence

$$
\begin{align*}
V_{2} & \ll \frac{y+1}{n^{3 / 2}}(z+1) \sum_{k=1}^{\infty} k^{-3 / 2}\left(e^{-z^{2} / 8 k}+\min \left(\frac{1}{(z+1)^{u-3}}, \frac{k^{1 / 2}}{(z+1)^{u-2}}\right)\right) \\
& \ll \frac{y+1}{n^{3 / 2}}(z+1)\left[\frac{1}{z+1}+\frac{1}{(z+1)^{u-2}} \sum_{k \leq z^{2}} \frac{1}{k}\right] \ll \frac{y+1}{n^{3 / 2}} . \tag{7.5}
\end{align*}
$$

By Lemma 7.1 and (7.4),

$$
\begin{equation*}
V_{3} \ll\left(\frac{z+1}{n^{3 / 2}}+\frac{1}{n^{(u-1) / 2}}\right) \sum_{j=1}^{\infty} \int_{0}^{\infty}(\xi+1) \widetilde{R}_{j}(y+\xi, y) d \xi \ll \frac{z+1}{n^{3 / 2}}+\frac{1}{n^{(u-1) / 2}} \tag{7.6}
\end{equation*}
$$

Putting together (7.1), (7.2), (7.3), (7.5) and (7.6), we arrive at

$$
\widetilde{R}_{n}(x, y)=f_{n}(x)-f_{n}(y+z)+O\left(\frac{y+z+1}{n^{3 / 2}}+\frac{1}{n^{(u-1) / 2}}\right) .
$$

Since $|x| \leq M \sqrt{n}$, Lemma4.1]implies $f_{n}(x) \gg n^{-1 / 2}$ for sufficiently large $n$, the implied constant depending on the distribution of $X_{1}$ and also on $M$. Hence

$$
R_{n}(x, y)=1-\frac{f_{n}(y+z)}{f_{n}(x)}+O\left(\frac{y+z+1}{n}+\frac{1}{n^{(u-2) / 2}}\right) .
$$

Finally, by Lemma 4.1 again,

$$
\begin{aligned}
\frac{f_{n}(y+z)}{f_{n}(x)} & =e^{-\frac{1}{2 n}\left((y+z)^{2}-x^{2}\right)}+O\left(\frac{|x|+y+z+1}{n}+\frac{1}{n^{(u-2) / 2}}\right) \\
& =e^{-2 y z / n}+O\left(\frac{y+z+1}{n}+\frac{1}{n^{(u-2) / 2}}\right)
\end{aligned}
$$

Again the implied constant depends on $M$. This concludes the proof of Theorem1
Acknowledements. The author thanks Valery Nevzorov for suggesting to utilize the reflection principle in a form similar to that in Lemma 5.2. The author is grateful to the referees for carefully reading the paper and for several small corrections and suggestions.

## REFERENCES

1. L. Addario-Berry and B. Reed, Ballot theorems for random walks with finite variance, preprint July, 2008. ArXiv math.PR/0802.2491.
2. M. Ahsanullah and V. B. Nevzorov, Ordered random variables, Nova Science Publishers Inc., Huntington, NY, 2001. MR MR2019107 (2004j:62002)
3. T. V. Arak, The distribution of the maximum of the successive sums of independent random variables, Teor. Verojatnost. i Primenen. 19 (1974), 257-277, Russian. English summary. English translation in Theor. Probability Appl. 19 (1974), 245-266.
4. M. Csörgő and P. Révész, Strong approximations in probability and statistics, Academic Press, 1981.
5. P. Erdős and M. Kac, On certain limit theorems of the theory of probability, Bull. Amer. Math. Soc. 52 (1946), 292-302. MR MR0015705 (7,459b)
6. K. Ford, Du théorème de Kolmogorov sur les distributions empiriques à la théorie des nombres, L'héritage de Kolmogorov en mathématiques, Editions Belin, Paris, 2004, (French), pp. 111-120.
$\qquad$ , From Kolmogorov's theorem on empirical distribution to number theory, Kolmogorov's legacy in mathematics, Editions Belin / Springer-Verlag, Paris, 2007, (English), pp. 97-108.
7. _ The distribution of integers with a divisor in a given interval, Ann. Math. 168 (2008), 367-433.
8. _, Sharp probability estimates for generalized Smirnov statistics, Monatshefte Math. 153 (2008), 205-216.
9. B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Translated from the original 1949 Russian edition, annotated, and revised by K. L. Chung. With appendices by J. L. Doob and P. L. Hsu. Revised edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills., Ont., 1968. MR MR0233400 (38 \#1722)
10. A. N. Kolmogorov, Sulla determinazione empirica di una legge di distribuzione (on the empirical determination of a distribution law), Giorn. Ist. Ital. Attuar. 4 (1933), 83-91.
11. M. Kozlov, On the asymptotic probability of nonextinction for a critical branching process in a random environment, Teor. Verojatnost. i Primen. 21 (1976), 813-825, Russian. English summary. English translation in Theor. Probability Appl. 21 (1976), 791-804.
12. S. V. Nagaev, The rate of convergence of the distribution of the maximum of sums of independent random variables, Teor. Verojatnost. i Primenen 15 (1970), 320-326, Russian. English Translation in Theor. Probability Appl. 15 (1970), 309-314.
13. R. Pemantle and Y. Peres, Critical random walk in random environment on trees, Ann. Prob. 23 (1) (1995), 105140.
14. W. Philipp, Invariance principles for independent and weakly dependent random variables, Dependence in Probability and Statistics (Oberwolfach, 1985), Progr. Probab. Statist. 11, Birkhäuser, Boston, MA, 1986, pp. 225-268.
15. A. Rényi, On the theory of order statistics, Acta Math. Acad. Sci. Hung. 4 (1953), 191-232.

Department of Mathematics, University of Illinois, Urbana, IL 61801
E-mail address: ford@math. uiuc.edu

