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Abstract

An old question of Erds asks if there exists, for each numbéra finite setS of integers
greater thanV and residue classegn) (mod n) for n € S whose union isZ. We prove
that if Y _o1/n is bounded for such a covering of the integers, then the least member of
S is also bounded, thus confirming a conjecture ofédSraénd Selfridge. We also prove a
conjecture of Erds and Graham, that, for each fixed numbéer> 1, the complement ifZ of
any union of residue classeg) (mod n), for distinctn € (N, K N|, has density at leaglx
for N sufficiently large. Herelx is a positive number depending only énh Either of these
new results implies another conjecture of &dind Graham, that # is a finite set of moduli
greater thanV, with a choice for residue classe:) (mod n) for n € S which cover<Z, then
the largest member &f cannot beO(N). We further obtain stronger forms of these results
and establish other information, including an improvement of a related theorem of Haight.

1 Introduction

Notice that every integer satisfies at least one of the congruences
n =0 (mod 2), n=0 (mod 3), n =1 (mod 4), n =1 (mod 6), n = 11 (mod 12).

A finite set of congruences, where each integer satisfies at least one them, is cailestiag
system A famous problem of Er@s from 1950 [4] is to determine whether for evéyy there is a
covering system with distinct moduli greater th&n In other words, can the minimum modulus
in a covering system with distinct moduli be arbitrarily large? In regards to this problerasErd
writes in [6], “This is perhaps my favourite problem.”

It is easy to see that in a covering system, the reciprocal sum of the moduli is at least 1.
Examples with distinct moduli are known with least modulus 2, 3, and 4, where this reciprocal
sum can be arbitrarily close to 1, see [1§/},13. Erdds and Selfridge [5] conjectured that this fails
for all large enough choices of the least modulus. In fact, they made the following much stronger
conjecture.

Conjecture 1. For any numberB, there is a numbeNg, such that in a covering system with
distinct moduli greater thaV, the sum of reciprocals of these moduli is greater ttian

A version of Conjecture 1 also appears in [7].

Whether or not one can cover all &f it is interesting to consider how muchBfone can cover
with residue classegn) (mod n), where the moduli come from an interval N, K N| and are
distinct. In this regard, Efis and Graham [7] have formulated the following conjecture.

Conjecture 2. For each numbef< > 1 there is a positive numbel; such that ifV is sufficiently
large, depending ork’, and we choose arbitrary integergn) for eachn € (N, K N], then the
complement irZ of the union of the residue classg$:) (mod n) has density at leasty.
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In [6], Erdds writes with respect to establishing such a lower baiyador the density, “I am not
sure at all if this is possible and | give $100 for an answer.”

A corollary of either Conjecture 1 or Conjecture 2 is the following conjecture also raised by
Erdds and Graham in [7].

Conjecture 3. For any numberK > 1 and N sulfficiently large, depending oR, there is no
covering system using distinct moduli from the inter(\s] £ N].

In this paper we prove strong forms of Conjectures 1, 2, and 3.

Despite the age and fame of the minimum modulus problem, there are still many more ques-
tions than answers. We mention a few results. Following earlier work of Churchhouse, Kruken-
berg, Choi, and Morikawa, Gibson [9] has recently constructed a covering system with minimum
modulus 25, which stands as the largest known least modulus for a covering system with distinct
moduli. As has been mentioned,if (mod n;) for i = 1,2,... 1 is a covering system, then
> 1/n; > 1. Assuming that the moduh; are distinct and larger than 1, it is possible to show
that equality cannot occur, that s, 1/n; > 1. The following proof (of M. Newman) is a gem.
Suppose tha} _ 1/n; = 1. If the system then covers, a density argument shows that there cannot
be any overlap between the residue classes, that is, we haxaeircovering systeriiVe suppose,
as we may, that; < ny < --- < n; and each; € [0,n; — 1]. Then

l l
=ldz+2"4-=) (M4 )=y

i=1 =1

T4

1—z 1 — zni

The right side of this equation has poles at the primitiy¢h roots of 1, which is not true of the

left side. Thus, there cannot be an exact covering system with distinct moduli greater than 1 (in
fact, the largest modulus must be repeated).

Say an integef{ is “covering” if there is a covering system with distinct moduli with each
modulus a divisor off exceeding 1. For example, 12 is covering, as one can see from our open-
ing example. From the above result,Af is covering, therw(H)/H > 2, whereo is the sum-
of-divisors function. Benkoski and Ebd [2] wondered ifo(H)/H is large enough, would this
condition suffice forH to be covering. In [11], Haight showed that this is not the case. We obtain
a strengthening of this result, and by a shorter proof.

If n1,no,...,n; are positive integers and = {(n;,r;) : i = 1,2,...,1} is a set of ordered
pairs, leto = 6(C') be the density of the integers that @t in the union of the residue classes
(mod n;). If ny, ne, ..., n, are pairwise coprime, there is no mystery abbundeed, the Chinese
remainder theorem implies that for any choice of residyes,, ..., r,

l

o =]J@—1/m).
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which is necessarily positive if eaech > 1.

One central idea in this paper is to determine how to estimatden the moduli are not
necessarily pairwise coprime. We note that for apyn,, . . ., n;, there is a choice far,, 5, ..., 1
such that

l
H 1—1/n;). (1.1)

Indeed, this is obvious if = 1. Assume it is true for, and say we have chosen residues
ri,Te, ..., such that the residual sthas density satisfying (1.1). The residue classes modulo
nyyq partition any subset af, and in particular partitiori, so that at least one of these residue
classes, when intersected wilh has density at least/n,, ;. Removing such a residue class, the
residual set for thé+ 1 congruences thus has density at most

+1
0 =0/ mypr = (1= 1/my)s < JJ(1 = 1/ny).
i=1
Thus, the assertion follows.
Note that
Il -1/n)=|NJ/|EN|—1/K asN — o,
N<n<KN
so thatd in Conjecture 2 must be at most/A’. We show in Section 4 that any numhek 1/ K
is a valid choice forlx.
A key lemma in our paper allows us to almost reverse the inequality (1.3) fhlamely we
show that for any choice of residues ry, ..., 1,

l
H 1=1/m)— ) nln (1.2)

i<j v
ged(ng,nj)>1

We then maneuver to show that under certain conditions the product is larger than the sum, so that
no choice of residue classesallows a covering. As kindly pointed out to us by the referee, the
inequality (1.2) bears a resemblance to thedswlLocal Lemma, but seems to be independent of
it. We shall discuss this connection more in the next section.

If S is a finite set of positive integers, 1&t (S) be the minimum value of(C') whereC' runs
over all choices of (n,7(n)) : n € S}. Thatis, we are given the modulic S, and we choose the
residue classegn) (mod n) so as to cover as much as possible fiénthens—(.5) is the density
of the integers not covered. Further, let

o(8) = [T - 1/m),

nes
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so that (1.1) implies we have (S) < «(5). With this notation we now state our principal results.

Theorem A.Let0 < ¢ < 1/3 and letN be sufficiently large (depending eh If S is a finite set
of integersn > N such that

Y

Z 1 < log N log loglog N
—<c
n loglog N

nes

theno—(S) > 0.
Theorem B.For any numbersg with0 < ¢ < 1/2, N > 20, and K with

1 < K < exp(clog N logloglog N/loglog N),
if S'is a set of integers contained (v, K V], then
07 (5) = (1 +o(1))(S5)

as N — oo, where the function§(1)” depends only on the choice of

Theorems A and B are proved in Section 4. Using Lemma 3.4 below, we can make tterm

in Theorem B explicit in terms oV andc. Both Theorems A and B, as well as several other of

our results, are proved in a more general context of multiSeis equivalently, where multiple
residue classes are allowed for each modulus. Note that Theorems A and B prove Conjectures 1
and 2, respectively, and so Conjecture 3 as well.

In the context of Theorem B, if we relax the upper bound on the largest modulus, we are able
to construct examples of sets of integ8raith least member arbitrarily large and whergS) is
much smaller tham(S). Proved in Section 5, this result might be interpreted as lending weight
towards the existence of covering systems with the least modulus being arbitrarily large.

Similar to the definition ob~(5), let 67 (S) be thelargestpossible density for a residual set
with S being a set of (distinct) moduli. It was shown by Rogers, see [13], pp. 242—-244, that for
any finite set of positive integels the density™(S) is attained when we choose the residue class
0 (modn) for eachn € S. Thatis,d"(S) is the density of integers not divisible by any member
of S. There is an extensive literature on estimatiigS) when S consists of all integers in an
interval (see e.g. [8] and Chapter 2 of [14]). In particular, it is known from early work ob&rd
[3], that for eache > 0 there is somey > 0, such that ifS is the set of integers iGN, N1+,
theno*(S) > 1 — ¢ for all large N. In fact, we almost have an asymptotic estimatelfer ™ (S)
for such a sef: Among other results, it is shown in Theorem 1 of [8] that@ox n < 1/2 and
N > 217 §%(S) is betweenl — c1n?(log 1/7)~%/? and1 — cyn’(log 1/1)~3/2, wherecy, ¢, are
positive absolute constants and whére 1 — (1 + loglog2)/log2 = 0.08607 .. ..

In the above example with > 0 fixed, we haved—(S) < «(S) = (1 + o(1))N~7 = o(1),
while for large N, 6 (S) is bounded away from 0. If the residue classes are chosen randomly,
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should we expect the density of the residual set to be cloger(t®), «(.5), ord*(S)? We show in
Sections 5 and 6 that for any finite integer Sethe average (and typical) case has residual density
close toa(S).

Finally we mention a problem we have not been able to settle. Is it true that for each positive
numberB, there are positive numbersg, N, such that ifS is a finite set of positive integers
greater thanVg with reciprocal sum at modB, thend—(S) > Apg? If this holds it would imply
each of Conjectures 1, 2, and 3. For more problems and results concerning covering systems, the
reader is directed to [16] and [18].

Acknowledgements. We would like to thank the referee for insightful comments regarding our
inequality (1.2), and in particular for the content of Remark 2 in the next section. We also would
like to thank G. Tenenbaum for informing us of the theorem of Rogers mentioned above.

2 A basic lemma and Haight's theorem

To set some notation, we shall always have positive integer, withP(n) = P*(n) the largest
prime factor ofn for n > 1 and P(1) = 0. We shall also lef"~(n) denote the least prime factor
of n whenn > 1, and P~ (1) = +oo. The letterp will always represent a prime variable. We
useN, K, () to represent real numbers, usually large. We use the Vinogradov notetifsam
analytic number theory, so that < B is the same ad = O(B), but is cleaner to use in a chain
of inequalities. In additionAd > B is the same a8 < A. All constants implied by this notation
are absolute and bounds for them are computable in principfeisia multiset, and we have some
product or sum witlm € S, it is expected that is repeated as many times in the product or sum
as it appears iy.

Let C be a finite set of ordered pairs of positive integeisr), which we interpret as a set
of residue classes (mod n). We say such a set israsidue systemlLet S = S(C) be the
multiset of the modulin appearing inC'. The number of times an integerappears ins we call
the multiplicity of n. By R(C') we denote the set of integemst congruent to- (mod n) for any
(n,r) € C. SinceR(C) is a union of residue classes modulo the least common multiple of the
members of5(C), it follows that R(C') possesses a (rational) asymptotic density, which we denote
by 6(C). If C = {(ny,m),...,(n,7)}, then we set

0 I (- H6-2) e T

nes(C Jj=1 i<j
ged(ng,n;)>1

Note thata(C') depends only o(C'), so it is notationally consistent with(S) from Section 1.
Lemma 2.1. For any residue systeifi, we haved(C') > «(C) — 5(C).
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Proof. Let « = «(C) and = ((C). We use induction on. If [ = 1, theng = 0 and the
statement is trivial. Let > 1; we will describe an induction step from— 1 to /. We denote
C"={(n,m),..., (=1, 1)}, C" ={(ny,r;) : 5 <, ged(nj, ) =1},

o = a(C) = ﬁ (1 - ni) and ' =B(C") = ) L

j=1 J icj<io1, '
gcd(ni,nj)>1
By the induction supposition,
5(C) >d - 7. (2.1)
Also, . .
5(C" < ! — = ! —. :
(COEI(O — =8(C") + Z — (2.2)
njes(c\scr) j<l /
ged(ng,mg)>1

The density of integers covered by the residue clagsnod n;) but not covered by; (mod n;)
for everyn; € S(C”) is equal tad(C")/n,;. Therefore,

§(C") — 6(C) = density{n = r; (mod n;) : n € R(C")}
< density{n = r;, (mod ny) : n € R(C")} = §(C") /ny,
so that, by (2.1) and (2.2),
5(C) > 5(C") — (5(0') + Y %)nll

j<l
ged(nj,ng)>1

This completes the proof of the lemma. O

Remarkl. The proof of Lemma 2.1 actually gives the better bound

() >alC)— Y nlnl_[(l_niu>'

i<j Y u>j




Remark2. The referee has pointed out to us that Lemma 2.1 can be formulated in a more gen-
eral way involving a finite number of events in a probability space. In particular suppose that
Ey, Es,, ..., E; are events in a probability space with the property thdi;ifs independent indi-
vidually of the eventsy;,, E;,, ... E;,, then it is independent of every event in the sigma algebra
generated by, , j,,..., Ej,. Then

l

P(NLE)=[IPE) - > PEIPE). (2.3)

i=1 1<i<j<l
E;,E; dependent

We can retrieve Lemma 2.1 from this statement if weHgbe the event that an integeris in the
residue class; (mod n;). Indeed,E; is independent of); if and only if n; andn; are coprime.

The extra condition involving the sigma algebra is easily seen to hold (and was used strongly in
our proof). The proof of (2.3) is the same as that of Lemma 2.1, namely an inductionTms

result bears a resemblance to the &sx Local Lemma (for example, see [1]), and may be stronger
than it in some situations.

There is a very interesting negative result of Haight [11]. As in the introduction, we say an
integer H is covering if there is a covering system with the moduli being the (distinct) divisors
of H that are larger than 1. It is shown in [11] that there exist integéthat arenot covering,
yet Zd‘H 1/d = o(H)/H is arbitrarily large. Although Haight’s theorem follows directly from

Theorem A (by takingx fixed, N large andH to be the product of the primes (W, NX]), Lemma
2.1 by itself leads to a new (and short) proof of a stronger version of Haight's result:

Theorem 1. There is an infinite set of positive integetswith
o(H)/H = (loglog H)'/? + O(logloglog H),
such that for any residue systerhwith S(C') ={d:d > 1, d | H}, we have
0(C) > (1+o0(1))a(C).
In particular, for large H in this set, no sucl’ can havej(C) = 0.

Proof. Let N be a large parameter, and let

H= H p.

evVIog Nog N<p<N

Then

1 1 1 1 loglog N + O(1)
082 d 2 <p " <p2>) g 8% Viog N

d|H eVIog N Jog N<p<N



by Mertens’ theorem. Thus, &sg H = (1 + o(1))N by the prime number theorem, we have

Z 7= (log N)*? —loglog N + O(1) = (loglog H)*? + O(logloglog H).
d|H

Let C be aresidue system with(C') = {d:d > 1, d | H}. We have

log a(C) = Z log(1—1/d) = Z 1/d+0(exp( \/logN)),

deS(C) deS(C)
so that
alC —exp< Vieg N + O(1 )logN.
Also, . .
d>1 dy,d2eS(C) d|H d>1 d |H d|H, d>1
d|di, d|da d2|H
Further, . .
Z - < Z - < exp( \/logN> (log N)!
d|H, d>1 d>eViog N log N
Thus,
B(C) < exp (—\/log N> — o(a(C))
and the theorem follows from Lemma 2.1. O

Remark3. An examination of our proof shows that we have a more general resuli lbet the
set of integers? which have no prime factors belowp(y/loglog H) loglog H. ASH — oo in'H
we have for any residue systethwith S(C') = {d:d > 1, d | H} thatd(C) > (1 + o(1))a(C).
In particular, at most finitely many integefs € ‘H are covering.

We also remark that the proof gives the following result. Say that a positive intégers-
covering, if for eachi | H with d > 1 there ares integersr,, . ..,7q4s such that the union of
the residue classes; (mod d) fori = 1,...,s, andd | H with d > 1 is Z. Then for each
fixede > 0 there are values off whereo(H)/H is arbitrarily large, yet{ is nots-covering with
s = [(loglog H)'~¢]. Indeed, takeH to be the product of the primes {fxp ((log N)'~</3) , N|
and follow the same proof. This too strengthens a result in [11].



3 The smooth number decomposition

The relative ease of using Lemma 2.1 in the proof of Haight’s theorem is due to the fact that the
moduli that we produce for the proof have no small prime factors, so that it is easy to bound the
sum for3(C). In going over to more general cases it is clear we have to introduce other tools. For
example, ifS(C') is the set of all integers in the interv@V, K N], then the sum fop(C') tends to
infinity with K, while the expression far is always less than 1. Thus, the lemma would say that
the residual set of integers not covered has density bounded below by a negative quantity tending
to —oo. This is clearly not useful! To rectify this situation, we choose a para@tand factor each
modulusn asngng, whereng is the largest divisor o composed solely of primes jn, )], and
ng = n/ng. We then find a way to decompose our syst€rbased on these factorizations, and
use Lemma 2.1 on the parts corresponding to the numbgvehich have no small prime factors.

To set some terminology, for a numb@r > 1, we say a positive integer is ()-smooth if
P(n) < Q. Thus,ng is the largest)-smooth divisor ofu.

Lemma 3.1. LetC be an arbitrary residue system. L@t> 2 be arbitrary, and set
M =lem{ng : n € S(C)}.
For0 < h < M —1,letC, be the set
Cy = {(n@r) : (n,r) € C, r =h (mod ng)}

Then

1 M—-1

5(C) =+ > a(C).
h=0
Proof. Fix h sothatd < h < M — 1. For(n,r) € C, the simultaneous congruences
x = r (modn), x = h (mod M)

have a solution if and only if = & (mod ng), sinceng = ged(n, M), in which case the system
is equivalent to the system

z =1 (mod ng), x =h (mod M).

Thus, R(Cy) N (h mod M) = R(C) N (h mod M). Observe that all elements; of S(Cy) are
coprime toM . Thus, the proportion of the numbersi{C},) in the class: moduloM is equal to
d(Ch). Hence, the density a®(C') N (h mod M) is §(C},)/M and the result follows. O
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We now take advantage of the fact that the prime factors of a numbare all larger thar@)
to allow us to get a reasonable upper bound for the quantiti€s). The proof is similar to that
in Theorem 1.

Lemma 3.2. Let K > 1, and supposé€’ is a residue system withi(C') consisting of integers in
the interval(V, K N], each with multiplicity at most. Supposé&) > 2, and define\/ andC), as
in Lemma 3.1. Then Y
1 «— s2log?(QK)

o hz B(G) <« =5~ (3.1)
Proof. Form|M, let S,, be the set of distinct numberg; = n/ ged(n, M), wheren € S(C') and

ng = ged(n, M) = m. Form,m' | M, let

From, v’ m)=#{0<h<M—1:h=r(modm), h=r"(modm')}.

Then
iM_lﬁ(C)<iZ Z =S Z F(r,m,r',m')
M o= nn' s
h=0 m|M  n€ESm (nm,r)eC
m/|M  n'ES,. (n'm/ r"eC
ged(n,n’)>1
SinceF (r,m,r',m’) is either0 or M /lem[m, m'], the inner sum is at most
2 M
lem[m, m/]’
Next,

nESm p>Q nNESm
n/GSm/ TLIESm/
ged(n,n/)>1 p|n, p|n’
> o >
n n' |
p>Q \N/m<n<KN/m N/m/<n/<KN/m'
pln, P~(n)>Q pln’, P~ (n")>Q

By standard sieve methods (e.g., Theorem 3.3 of [12]), uniformly In2, ~ > 2, the number of
integers< z which have no prime factor z is < z/log z + 1. By partial summation,

1 1 1 1 [log K lo K
TS () -
Nm<n<kN/m ' P~ own b \log plog
pln, P~ (n)>Q P (1)>0

11



and similarly withm/, n” replacingm, n. We have the estimafe, _, p 2 < 1/(Qlog @), which
follows from the prime number theorem and partial summation. Thus,

1 log?(QK
Z - < gl(% )7
TL/ESm/
ged(n,n’)>1

1 s log?(QK) 2 log*(QK)

— E ﬁ(C’h) E = E E ufl.

M pr Qlog®Q rr lcm [m, m/| Qlog®Q B m|M M
m/|M lem[m,m/]=u

With 7(n) denoting the number of natural divisorsrafthe double sum is equal to
- 3 5 1+1/p 1+1/p
Zu 1T<u2)<H(1+_+_+...):H7<H7<<10g362
- 2 _ 2 — _ 2 ’
o i p P i A= 1/p) 7 L (1= 1/p)
and this completes the proof. O]

To complement Lemma 3.2, we would like a lower bound for the sum of{hg ). Key to this
estimate will be those moduli if(C') which areQ)-smooth. If the residue classes corresponding
to these moduli do not cover everything, we are able to get a respectable lower bound for the sum
of thea(C},).

Lemma 3.3. Suppose that’ is a residue systend) > 2, and defineV/ andC}, as in Lemma 3.1.
Also letC’ = {(n,r) € C :n|M} = {(n,r) € C': P(n) < Q} and supposé(C’) > 0. Then

=

-1
a(Cy) > (a(c))(1+1/Q)/5(C’)_

h=0

S
M
Proof. Note thatl € S(C},) if and only if there is a paifn,r) € C’ with h = r (mod n). Let
M={0<h<M-1:1¢5(C)}, M =|M]|.
Then

M/

<7 =90, (3.2)

12



The hypothesig(C’) > 0 thus implies that\/’ > 0. Observe that € S(C}) impliesa(C}) = 0.
By the inequality of the arithmetic and geometric means,

% Jg a(Ch) = — h;/ a(Cr) > 2L (hg a(ch)) I/M/
o)

heM’' n’eS(Cy,
Sincelog(1 — 1/k) > —2(1 + §) for k > 2 and since each’ > @, we have
1
1-— m >exp (—A/n'), whereA=1+1/Q.
Thus,

=

-1

1 M’
i @<Ch>>exp< DS )

0 heM’ n/eS( ch)

M (MM -M) N = 1
_MGXP ,

>
Il

M ' n

where the last inequality uses that S(C},) for h ¢ M'.
Each pair(n, r) € C'maps to thos€’, with i = r(mod ng), so it produces the pairg, r) in
exactly M /nq setsCy, for h € [0, M — 1]. We thus have

zz%sz———Mz—

e
h=0 n'eS(Cp) nesc) 12 "Q nes(c

(Note that the inequality holds since several pairg’imay map to the same pair in sorog,
where they would be counted just once.) Thus,

M-1

1 M’ AM — M’ AM 1
a(Ch) >—exp ( i )_M’ Z - 1.
h=0 nes(c)

Also, (M'/M) exp ((M — M')/M’) > 1. Thus,

<

% a(Ch) > exp (?\]4\{ Z i) > (Q(C))AM/JW"

0 nes(C)

>
Il
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The lemma follows by (3.2). O]

We now combine our lemmas into one easily-applied statement.

Lemma 3.4. Supposes > 1, N is a positive integer, and’ is a residue system witfi(C') con-
sisting of integers it NV, K N], each with multiplicity at most. Let@ > 2, and as in Lemma 3.3,
letC" = {(n,r) € C: P(n) < Q}.If6(C") > 0, then

2
5(C) > a(C)HHIABC) | (M
- Q )
where the implied constant is uniform in all parameters.

Proof. DefineM andC), as in Lemma 3.1. By Lemmas 2.1, 3.1, 3.2, and 3.3, we have

1 M-1 M-1 1 M-1
0(C) =77 2_0(Ch) = 4/ > a(Ch) - 27 2 PCh)
h=0 h=0 h=0
2
> o(C) I+ 4 o %) .
Thus, we have the lemma. O

4 Lower bounds ond(C)

In this section we prove stronger versions of Theorems A and B. We begin with a useful lemma
about smooth numbers.

Lemma 4.1. Supposé&) > 2 and@ < N < exp(v/Q). Then
log N
log@Q"

1
Z — < (logQ)e™ 8" whereu =
n

n>N
P(n)<Q

Proof. We use standard upper-bound estimates for the distribution of smooth numbers: The num-
ber of @-smooth numbers at mostis < t¢/u;*, whereu, = logt/log@, provided@ < t <

exp (Q'~°) ([15], Theorem 1.2 and Corollary 2.3). Further, for- exp (61/Q), the Q-smooth
numbers are distributed more sparsely than the squares. We thus have

Qz+1 0o 1
Z S AEDIRTEEDS / Sovare [ L3 a
N<n<t 0<i<10v/Q n<t exp(6v/Q) n<t
( )<Q P(n)<Q P(n)<Q P(n)<Q

1 o 1
< 3—/2dt<<°gQ
U+Z Xp(G\/_)t

>0
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implying the lemma. O]

Let

log1 log N
L(N,s) = exp (logN oglog(s log ))

log(slog N)

Theorem 2. Supposé) < b < % 0<c< %(1 — 4b?) and let N be sufficiently large, depending
on the choice ob andc. Suppos& is a residue system withi(C') consisting of integers > N,
each having multiplicity at most wheres < exp (by/Iog Nloglog N), and such that

1
Z — < clog L(N, s). (4.1)
nes(C) "

Thens(C) > 0.

Proof. Throughout we assume that is sufficiently large, depending only dnandc. Let A =
(1 —4b*) and pute = (X — ¢). First, we have

1 1 1 1
—loga(C) < —+ =)< (1+—= — < (c+¢e)log L(N,s) =G,
za )‘g@(n =)= ( N)g@nx )log L(N. 5
say. Define
Qo=L(N,s)'™%, Q=exp(Q)F) (j=1) (4.2)
and
Kj=exp (Q3'F)  (G>1).
Let
C;=A{(n,r) € C: P(n) <Qj;}.
Also, define
o=1—¢, 0;= e~ 1mCGU+1/Q0)/0j1 (7 >1), (4.3)

whereG is defined above. Singg is finite and@, tends to infinity withy, it follows thatC' = C}
for largej. Thus, the theorem will follow if we show that

6(Cj) = d; (1 =0). (4.4)

First, by Lemma 4.1,

1 log N

1-6(Co)<s Y = 1 —uloev whereu = .

( O) =7 N Y < S( % QO)e ’ ! log Qo
P(n)<Qo

15



By the definition of(),, we have

B log(slog N)
~ (1 —¢)loglog(slog N)

so thatlogu > (1 — ¢) loglog(slog N) andulogu > log(slog N). Hence(Cy) > do.
Next, supposg > 1 andd(C;_1) > d;_;. Letsy = exp (b\/logNlog log N') and observe that
for N large ands < sy, we have

loglog(slog N) - log log sg - loglog N - (1 —¢)loglog N
log(slog N)  ~ log(sglog N) — 2log(sglog N) — 2by/log Nloglog N

Therefore,

32 S exp (2b\/10gN10g10g N) S L(N, 8)4b2/(1—5) — ng2/(1—5)2 S QébQ(l-‘r&E) S Q;Llii(l-i-?)a)‘

Let
Ci={(n,r)eC;:n< K;}, Cf ={(n,r) €Cj:n>K;}.

Observe that
5({(n,r) € C;: P(n) < Q;_1}) 2 0(Cjo1) > 6;-1  and  o(C)) = a(C) > e .
By Lemma 3.4 with)) = Q,;_; andK = K /N, there is an absolute constantsuch that

82 IOgZ(QJ_lK]/N)
Qi1 (4.5)

> e —G(141/Qo)/6j-1 Q_1+4b2 14-3¢)+2A+5¢ > 25 Q~__>\+8€.

8(C5) = (G-t —

Also, by Lemma 4.1,

1
—0(C) <5 Y < sllogQylenEY, (4.6)
n>Kj n
P(n)<Q;
where
log K R
J long Jj—1

Thus,1 —§(CY) < Q;,. Together with (4.5), this implies
8(Cy) = 6(C) — (1= 6(CY)) = 20; — Q™. (4.7)

16



To complete the proof of (4.4) and the theorem, it suffices to prove that
QA< (=) (4.8)

First,
Qa)\+9€ — [1(]\[7 s)(—>\+96)(1—8) < L<N7S)—>\+10€ _ L(N, 8)—0—105’

while
51 > eflfG(lJrl/Qo)(lJrl.la) > L(N,S)ici%.

This proves (4.8) when = 1. Suppose (4.8) holds for sonjie> 1. SinceG < log )y, we have

—logdj 1 =1+ G(1+1/Qo)/0; <2GQ}7{" < Q77"
And, by (4.2), we have-log(Q; ") > Q}*f. Thus,Q;*" < §;,1 and by induction (4.8)
holds for allj. This completes our proof. O

Theorem 2 implies Theorem A of the introduction by setting 1. Observe that the bound
on the sum in Theorem 2 given in (4.1) decreases iasreases. If one is interested in a result
similar to Theorem A but with an emphasis on allowing the multiplicity of the moduli to be large,
one may take arbitrarily close tol /2 in Theorem 2.

Theorem 2 should be compared with Theorem 5 of the next section which shows that coverings,
even exact coverings with squarefree moduli, exist when we allow the multiplicity of the moduli
to be of sizeexp (y/Iog Nloglog N).

We can also consider the case tH&af") consists of integers frofiV, K N] with multiplicities
at mosts < exp (b\/logNloglogN), whereb < /3¢/4. If 0 < ¢ < 1/3, N is large, and
K = L(N, s)(/3=9)/s then Theorem 2 implies tha{C') > 0. By a different argument, we can
extend the range ak a bit.

Theorem 3. Supposé) < ¢ < (1 —log2)™, b < £4/(1 —log2)e and N is sufficiently large,
depending on the choice efandb. Suppose thaf’ is a residue system with(C') consisting
of integers from(V, K N| with multiplicity at mosts, wheres < exp (b\/logNlog log N) and

K = L(N, s)((1-1e2)™"=e)/s_Thens(C) > 0.

Note that fors > log N, K = 1 + o(1). Before proving Theorem 3, we present a lemma.

Lemma 4.2. Supposes is a positive integer and’ is a residue system with(C') consisting of
integers from(1, B] with multiplicity at most. Let

Co={(n,r) € C: P(n) <VsB}.
If 5(Co) > 0, thend(C) > 0.

17



Proof. Suppose thaf(C,,) > 0. Denote byP the product of all primes if/sB, B], and letL be
the least common multiple of the elementsSgt’;).

Let p be a prime divisor of?. Sincep > /sB impliessB/p < p, there are at mogi — 1
multiples ofp in the multisetS(C'). Call themm, ..., m,, and letry, ..., r, be the corresponding
residue classes. Then there is a choicebfer b(p) € {0,1,...,p — 1} such that each integer
satisfyingz = b (mod p) is not covered by (i.e., does not satisfy) any of the congruences,
(mod m;) with1 < j <t

By assumption, there is a residue classiod L contained inR(Cj). Let A be a solution to
the Chinese remainder systetn= a (mod L) andA = b(p) (mod p) for each primep dividing
P. Then not only do we havd # r (mod n) for each(n,r) € Cj, we also have for each prime
p | Pand(n,r) € C'withp | n, thatA # r (mod n). Since this exhausts the pairs, ) € C, we
haveA € R(C), so we have the lemma. O

Proof of Theorem 3We may suppose that> 0 is sufficiently small ands > 2. LetC,, be as in
Lemma 4.2 where we takB = K'N. Then

1 1 1 1
e D D D D D Dl

neS(Co) N<n<KN N<n<KN N<n<KN
P(n)<vsKN P(n)>vVsKN

=slog K+ O(s/N) —s Z Z %

VSKN<p<KN N/p<m<KN/p

D=

Now,

Z 1 Jlog K +O(p/N), p<N
log(KN/p)+0O(1), N <p<KN.

N/p<m<KN/p
Thus,

> ooy 2

p
VSKN<p<KN  N/p<m<KN/p

S (logK+O(1/N))+ 3 (logK+logN—logp+O(1))

VikNapen N Nep<ikn N P p
log K log N —1
= > = > P52 =8P 4 O(log K/ log N)
ViRN<p<kN T N<p<KN p
log K'1 K
= log 2log K + O<Og+§;\;8)> = (log2+0(1))log K.
0g

18



Hence, since-log a(Co) < >, c5(c,) 1/n + O(s/N), we have
—loga(Cy) < s(1—log2+o0(1))log K < (1 — (1 —log2)e + o(1)) log L(N, s).

Let@ = L(N,s)' ™, wherex = 1((1 —log2)e — 4b?). Also letC” = {(n,r) € Cy : P(n) < Q}.
As before, using Lemma 4.1 yields

! 1 —
5(0):1+O<3 E " =1+o0(1) (N — 00).
n>N
P(n)<Q

Hence,
a(co)(1+1/Q)/6(C’) > L(N, S)fl+(lflog2)sf)\.
On the other hand,
5 1og*(QK)
Q
By Lemma 3.4, we havé(Cy) > 0 for N sufficiently large. Thusj(C) > 0 by Lemma 4.2. [

< L(N, S)_1+4b2+2>\.

We now show that i< is a bit smaller than in Theorem 3, then in fact
I(C) > (1+o0(1))a(C).
The following result generalizes Theorem B from the introduction.

Theorem 4. Supposd) < ¢ < 1/2,0 < b < %\/E and N > 100. Suppose that’ is a residue
system withS(C') consisting of integers fromiV, K N| with multiplicity at mosts, wheres <
exp (by/log Nloglog N) and K = L(N, s)(!/279)/*_Then

5(C) > (1 +0 (m» a(C),

where) is a positive constant depending only oandb.

Proof. We follow the same general plan as in the proof of Theorem 2. Since the suym &ir alll
n € (N,KNJ]islog K + O(1/N) we have

a(C) > L(N,s)~ Y/t
LetQ = L(N,s)/>7*, whereX = (e — 4b?). In particularQ > log” N. Letu = log N/log @,
and letC’ be as in Lemma 3.4. By Lemma 4.1, we have

slog @) < slog N

1 _ !/
o) < ut (slog N)2+A’
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so thatl /6(C") =1+ O ((slog N)~'7*). Since|log a(C)| < log N, we have
a(C)IHVANE) = (1 4+ 0(1/(log N)M)a(O).

So, by Lemma 3.4 it suffices to show thdflog QK)?/Q = O(a(C)(log N)~). But, for largeN
we haves? < L(N, )%, Thus,

s*(log QK)?  s?log® L(N, s) 1 < 1 a(C)
Q L(N, 3)1/2—A L(N, 8)1/2—2>\—4b2 L(N, S)l/2—a+>\ L(N, s))"

This completes the proof. O

5 Coverings and near-coverings of the integers

In this section, we address two items. The first shows that there are coverings of the integers with
the moduli bounded below by and the multiplicity of the modulhearthe upper bound on the
multiplicity of the moduli given by Theorem 2. The second shows that, when we dlldw be

large, the density of the integers which are not covered by a covering system using distinct moduli
from (IV, K N| can be considerably smaller than what is suggested by Theorem 4.

Theorem 5. For sufficiently largelV and s = exp(+/log N loglog N), there exists an exact cover-
ing system with squarefree moduli greater thisirsuch that the multiplicity of each modulus does
not exceed.

Proof. Letp denote a prime and let; = (j + 1)’*! for j = 0,1,.... We first show that
Y X=X (=), (5.1)
Xj-1<p<X;

Here|[z] denotes the largest integer which<dsz. Note that (5.1) holds fof < 5. Suppose then
thatj > 6. Using the estimates (3.4), (3.17), and (3.18) in Rosser and Schoenfeld [17], we have
that

Yo /=X Y, Yp-a(X))

Xj-1<p=X; Xj1<p<Xj
log X 1 1
Z XJ (log 1 o8 - 2 - 3)
og Xjo1  log” X, logX;—3

The expression in the parentheses is

log (G+Dlog(i+1) 1 1

jlog j j2log?j  (j+1)log(j +1) —

N
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1 (j+1 j+1  j+1 | 0.43
> s . - D) - 7 2 . . B > N .

J+1 J 27 j2log”j log(j+1)—3/(25+2) j+1
And X; = (j + 1)5%(1 + 1/)7 > 2.5(j + 1);7. Thus,

2.5(j +1)0.43 . .
> X/p > 25(j +1)043 . ) 7>,
X 741
j—1<p<Xj

which proves (5.1).

We describe now an explicit construction of a covering system, which we will then show satis-
fies the conditions of the theorem. Fér> 1 ands = X ;, we establish that there exists an exact
covering systent’'; with squarefree moduli greater than

J—1
Ny =]
j=0
such that the multiplicity of each modulus does not exceeset
Pi={p: Xjo1 <p < X}

We constructC';, through induction on/, by choosing moduli of the form; - - - p; where each
p; € P;. Observe that such a produget---p; is necessarily> N;. One checks thaf, =
{(2,0),(2,1)} satisfies the conditions far; with .J = 1. Now, suppose that we havg as above
for someJ > 1. Thus, we have an exact covering syst€mwith moduli of the formp, ---p;
where eaclp; € P;. Fix suchamodulus = p, - --p;, and let(n, ), ..., (n,r), witht < X, be
the pairs of the fornin,r) in C;. Letq; < ¢ < --- be the complete list of primes frof; ;. To
constructC'; 1, we replace each pain, r;), : < [X;.1/q], with theq, pairs(ng,, r; +nu), where
w=0,...,q — 1. Notice that the multiplicity of the modulusy, is at most X ;1 /q1|¢1 < Xj11.
Next, we replace each pain,r;), [X,i1/¢1] < @ < [Xji1/q1] + [Xs11/¢], with the ¢ pairs
(nge,m; + nu), wherep = 0,...,¢2 — 1. We proceed with this construction until all the pairs
(n,r1),...,(n,r) are replaced with new pairs. As< X, this will happen at some point by
(5.1). This completes the inductive construction of our exact covering systems

To complete the proof of the theorem, it suffices to show @iV, loglog N; > log* s for

large.J. Now
! I 1 1
log Ny = Zjlogj > /1 tlogtdt > 5J2logJ— ZJQ,

j=1
so that

loglog N; > 2log J + loglog J —log2 + log(1 — 1/(2log J)) > 2log J + loglog J — 1,
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for J > 7. Thus,

log log J
2log J

1
log N;loglog N; > J?log? J+§J2 log J <log logJ — 1.5 — ) > J%log® J+3J log® J,

for J > 350. Butlog®s = (J 4 1)?log?(J 4 1) < J?log®J + 3.Jlog® J in the same range. This
completes the proof of the theorem. O

Remark4. A more elementary proof, that does not use the estimates from [17], is possible by
defining the sequenck; inductively as the minimal numbers for which (5.1) holds.

Supposes = 1 andN, KN are integers in Theorem 4. ThéliC') consists of distinct integers
chosen from( NV, K'N| so that

Thus, Theorem 4 implies a lower bound of approximatelys for any 6(C') with S(C) C
(N, KN], provided K is not too large. It is clear that the expressibf¥ is not far from the
truth, since the argument of the introduction gives a residue sysStavith §(C) < 1/K. How-
ever, we might ask about the situation whi€ns large compared t&/. The following result shows
thatd(C') can in fact be considerably smaller thgf’\' when K is much larger thamv.

Theorem 6. SupposeV and K are integers withV > 1 and K sufficiently large. Then there is
some residue systefconsisting of distinct moduli frortyV, K N| such that

5(C) < - exp (—bgK) .

K 3N

Before giving a proof of the above theorem, we give a lemma that will also play a role in the
next section. For a séft of positive integers, we l&f(7") be the set of residue systerfiswith
S(C) =T and whergn,r) € C implies1 < r < n. Also, define

W(T) = #C(T) = [ n.

neTl

Lemma 5.1. LetT be a set of positive integers. Then the expected valugdfoverC € C(T),
denotedEd(C), is[[,cr(1 — 1/n).
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Proof. PutWW = W(T') and sayl < m < W. The number of systems € C(T') withm € R(C)
is[[,er(n — 1), since for eachn € T, there aren — 1 choices forr with 1 < » < n andr # m
(mod n). Thus,

DRIED DD DRI Sl ST B) 1 (RS | ((1)

cec(T) CeC(T) 1<m<W m=1 CeC(T) m:lneT neT
meR(C) meR(C)
The result follows by dividing this equation By'. O

Remark5. It is not hard to prove a version of Lemma 5.1 that allows for taking moduli fiom
with multiplicity greater than 1.

Proof of Theorem 6There is a covering system with distinct moduli and smallest modiiya
result of Gibson [9]), so Theorem 6 follows fof < 24. Henceforth we may assume thét> 25;
however our argument holds fof > 4. We shall construct a residue systéim= {(n,r(n)) :

N < n < KN} as follows. We will randomly choose the values¢f) € [1,n] for N < n < 2N

so that each residue class modul@ taken with the same probability'» and the variables(n)

are independent. Based on the random choice of sichfor N < n < 2N, we then select the
remaining values of(n) with 2N < n < K N via a greedy algorithm. In fact, we show that, under
our construction, the expected valuejof’) over all randomly chosen values«fn) € [1, n] for

N <n<2Nis
< 1 log K
=K P\ 3N )
The result thus follows.

Let Con = {(n,r(n)) : N < n < 2N}, where eachr(n) is chosen randomly fromt, n|.
From Lemma 5.1, it follows thdLd(Cs2n) = 1/2. Hence, by the arithmetic mean—geometric mean
inequality,

We will also make use of Lemma 5.1 in another wayDlfis a subset of the integers {V, 2N]
andC = {(d,r(d)) : d € D}, then it is not difficult to see that the expected valug @) over
all randomly chosen values ofd) € [1,d] for d € D is the same as the expected value @)
over all randomly chosen values ofn) € [1,n| for n € (IN,2N]; in other words, the random
selection of extra residue classes not associated @ittill not affect the expected valugC).
Thus, Lemma 5.1 implieEd(C) = a(C) where the expected value is over all randomly chosen
r(n) € [1,n] for N <n < 2N.

Suppose then that the values¢f) € [1,n] for N < n < 2N have been chosen randomly. For
2N < j < KN, we describe how to selectj). For this purpose, we sé€t; = {(n,r(n)) : N <
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n < j}. We use the greedy algorithm to choos¢) to be a residue class modula@ontaining the
largest proportion of2(C;_;). As in the introduction, this gives trivially

5(C)) < (1 - 1,) 5(Cy_y).

J

We can sometimes do better. jfhas a divisord with N < d < 2N, then there are residue
classes modulg not intersecting?(C;_,). In particular, the residue clas§d) (mod d) contains
r (mod j) whenr = r(d) (mod d). Let

D(j)={d: d|j,N <d< 2N}, C,;={(d,r(d):de D()}.

Let f(j) be the number of residue classe&nod ;) for whichr # r(d) (mod d) for eachd €
D(j). If we choose(j) appropriately from among thegé&;) choices for-, we have

1
6(Cy) < (1 - m) 6(Cj-1)- (5.3)

The last equality is nonsensefifj) = 0, but in that case we havg(C;_,) = (), and the theorem is
trivial. Also, there is nothing to prove f(j) = 1 since thenk(C;) = (). Throughout the following
we assume that(j) > 1.

We see from (5.3) and linearity of expectation that

Elog 6(C;) — Blog 6(C; 1) < Elog (1 _ ﬁ) <_E (L) . (5.4)

Using Lemma 5.1 as described above, we have

B5(C) = [ (1_-5).

deD(j)

Sincej is a common multiple of the members b{ y), it follows thaté(CN*j) = f(j)/7, so that

Ef(j) = jES(C _]dll <1——)

By the arithmetic mean-harmonic mean inequality, we thus have

2(ri) 2 I (-3) =5+ 25
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After substituting the last inequality into (5.4), we get

1 1
Elog§(C;) — Elog §(C; — - Z —.
I Y
Thus,
KN
Elogd(C) — Elog6(Cay) < — Z = - Z Z —
j:2N+1 J=2N+1deD(j)
SO ED SID S
d?l
j= 2N+1 d=N+12N/d<I<KN/d
2N
log K + O(1)
—log(K/2) + O(1/N) =} —————
d=N+1
We have forN > 4 the estimate
Z /2N+1 dt N - 1
Pl 2= 2 (N+1)(2N+1) — 29N
Therefore, by (5.2),
log K +O(1)
< — P - R S
Elogd(C) < —log K 50N
The theorem now follows. O

6 Normal value of §(C)

It is reasonable to expect thafC') ~ «(C) for almost all residue systents with fixed S(C).

In this section, we establish such a result wisg¢n') consists of distinct integers, by considering
the variance ob(C') overC' € C(T'), where, as before(T) is the set of residue systeraswith
S(C)="T.

Theorem 7. LetT be a set of distinct positive integers with minimum elemént 3. Leta be the
common value ok (C') for C' € C’(T). Then,

Z ’5 Oé2 lOg N
2 .
CeC N
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Proof. From Lemma 5.1, we hav6(C) = a(C) = a. Writing W = W (T'), we deduce then that
1
— Z 6(C) — af? = T > (e -a?). (6.1)
CEC(T CeC(T)
We have
) 1 >
do0er=3 (w 2 1) =gz 2 >, L
cec(T) cec(T) 1<m<W 1<my,mo<W  CeC(T)
mGR(C) mi szR(C)
As in the proof of Lemma 5.1, the inner sum is

e I e-2-w[(-2) I °5

neT neT nel neT

mi=mgz (mod n) mi1Zmsa (mod n) mi1=mgz (mod n)
9 n—1 9 n—1
=a'W ='W 1—— .
el T i (i) 1T
neT neTl neT neT
n|(m1—m2) n|(m1—m2)

Letu = 3", . 1/n* and definef (m1,m2) = [ e, njmy—ms (@ — 1)/(n — 2). Thus,

Z(S (1—u+0(;2)) > flma,my). (6.2)

CeC(T 1<my,ma<W

For S afinite set of integers which are 3, let M (S) denote[ ], .o (n—2), and letL(S) denote
the least common multiple of the membersSofWe have

f(my,me) = H <1+ni2)= Z %

neT SCT
n|(mi—ma2) L(S)|(m1—m2)
Thus, . .
S tmm) =Y e Y =Y (63)
1<my,me<W SCT M<S) 1<my,ma<W SCT M(S)L(S)
L(8)|(m1—ma2)
In this last sum we separately consider the terms with< 1 and#S > 2. We have
1 1

— =1 — =1 O (1/N?). 6.4
2 TG St X g S L et O () (6-4)
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If S C T and#S > 2, letk > h be the largest two members §f ThenL(S) > lem[h, k] =
hk/ ged(h, k), so that

B 1 ged(h, k) 1
E.—ZWS > (h—2)(k — 2)hk 2 MUY

SCT k>h>N UC[N,h—1]
#5>2

The inner sum here is identical {q,,,_,(n — 1)/(n — 2) = (h — 2)/(N — 2), so that

dhk 1 1 1 1
E<<N Z i Z Z hl{:?:ﬁz Z d?wv? <<NZ Z d*w?

k>h>N d>1 k>h>N d>1 v>w>N/d d>1 w>N/d
d|h, d|k

In this last double sum, # < N, then the sum om is < d/N, so that the contribution t& is
< (log N)/N2. And if d > N, the sum onv is < 1, so that the contribution t&' is < 1/N?2. We
conclude tha¥’ < (log N')/N?. Thus, with (6.3) and (6.4) we have

Z fmi,ma) = W?(1+u+ O((log N)/N?)),

1<my,me<W

so that from (6.2) and < 1/N, we get

Z 5(C)? = a’W (1+O((log N)/N?)) .
Cec(T
The result now follows immediately from (6.1). O
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