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ABSTRACT. We determine asymptotically the maximal order of log d(d(n)), where d(n) is the number of
positive divisors of n. This solves a problem first put forth by Ramanujan in 1915.

1 Introduction
Let d(n) denote the number of positive divisors of an integer n. The extreme large values of d(n) were

studied by Wigert [10], (see also [4, Theorem 432]). Wigert proved that

m1(x) := max
n6x

log d(n) ∼ (log 2)
log x
log2 x

.

Here logk x denotes the k-th iterate of the logarithm. The lower bound comes from considering integers of
the formNk = p1 · · · pk, where pj denotes the jth smallest prime. Here d(Nk) = 2k, while logNk ∼ k log k
by the prime number theorem. In his seminal 1915 paper on highly composite numbers [7], Ramanujan gave
a more precise asymptotic for m1(x). At the very end of his paper, Ramanujan posed the problem of finding
the extreme large values of d(d(n)). By considering integers of the form

(1.1) 21 · 32 · 54 · · · ppk−1
k ,

Ramanujan showed that

m2(x) := max
n6x

log d(d(n)) > (
√

2 log 4 + o(1))
√

log x
log2 x

.

The problem of finding the order of m2(x) has been mentioned in Erdős [1], Ivić [5], and has been
mentioned by Ivić in problem sessions in Ottawa [6] and Oberwolfach.

Erdős and Kátai [3] showed m2(x) = (log x)1/2(log2 x)O(1) (see (4.1) on p. 270 of [3]). Twenty years
later Erdős and Ivić [2] improved the upper bound to

m2(x)�
(

log x log2 x

log3 x

)1/2

.

Smati [8, 9] gave a further improvement

m2(x)�
√

log x,

the best estimate known to date. Constructions similar to Ramanujan’s seem rather natural, and one might
expect that m2(x) �

√
log x

log2 x
. This is indeed the case, as we now show. More precisely, we prove an

asymptotic formula for m2(x) with an error term.

Theorem 1. We have

m2(x) =
√

log x
log2 x

(
c+O

(
log3 x

log2 x

))
,
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where

c =

(
8
∞∑
j=1

log2(1 + 1/j)

)1/2

= 2.7959802335 . . . .

In particular, Theorem 1 implies that

lim sup
n→∞

log d(d(n)) log2 n√
log n

= c.

Ramanujan’s examples (1.1) are seen to be suboptimal with respect to the constant c, since
√

2 log 4 =
1.9605 . . ..

There is a closely related problem, to estimate the extreme values of ω(d(n)), where ω(n) is the number
of distinct prime factors of n. In fact, both Erdős and Ivić [2] and Smati [9] obtained upper bounds for
d(d(n)) by first bounding ω(d(n)) and then using the elementary inequality log d(m) � (log2m)ω(m)
(see, e.g., Lemme 3.3 of [8] or Lemma 3.2 below). For this problem, Ramanujan’s examples (1.1) are
essentially optimal, providing the true order and constant in the asymptotic for w(x) = maxn6x ω(d(n)).

Theorem 2. We have

w(x) =
√

log x
log2 x

(√
8 +O

(
log3 x

log2 x

))
,

Previously, Erdős and Ivić [2] had shown

w(x)�
(

log x log3 x

log2 x

)1/2

,

and later Smati [8] found the true order w(x)�
√

log x
log2 x

.

2 The lower bound in Theorem 1
Notation and basic prime number estimates. Throughout, we make use of the asymptotic

(2.1) pj = j(log j + log2 j +O(1)),

which is a simple consequence of the prime number theorem with error term π(x) = x
log x +O( x

log2 x
). Here

π(x) is the number of primes which are 6 x. We also denote by Ω(n) the number of prime power divisors
of n.

Proof of the lower bound in Theorem 1. Let x be large and define ε = 10 log3 x
log2 x

. Let

(2.2) t =
⌊(

8 log 2
c
− ε
) √

log x
log2 x

⌋
, ai =

⌊
1

2i/t − 1

⌋
(1 6 i 6 t),

and let
n = (p1 · · · pa1)p1−1(pa1+1 · · · pa1+a2)p2−1 · · · (pa1+···+at−1+1 · · · pa1+···+at)

pt−1.

The Taylor expansion of exp( log 2
t ) shows that a1 = b(21/t − 1)−1c = t/ log 2 +O(1). By (2.2), for every

positive integer j, there are yj := b log(1+1/j)
log 2 tc indices i with ai > j. Also, a1 + · · ·+ at � t log t. Using

(2.1), we have log pa1+···+ai 6 log t+ 2 log2 t+O(1), hence

log n 6
t∑
i=1

ai(pi − 1) log pa1+···+ai 6
(
log2 t+ 3(log2 t) log t+O(log t)

) t∑
i=1

iai.
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From yj = O(t/j) and the definition of c we obtain

t∑
i=1

iai =
∑
j6a1

yj(yj + 1)
2

=
1
2

∞∑
j=1

(
log(1 + 1/j)

log 2

)2

t2 +O(t log t)

=
c2

16(log 2)2
t2 +O(t log t).

(2.3)

From the definition of t, log t = 1
2 log2 x− log3 x+O(1) and log2 t = log3 x+O(1). Thus,

log n 6
(

1 +
2 log3 x+O(1)

log2 x

)(
1− cε

8 log 2

)2

log x.

Hence, if x is large enough, then n 6 x. From the definition of n above, we have d(n) = pa1
1 · · · p

at
t .

Therefore,

logm2(x) > log d(d(n)) =
t∑
i=1

log(ai + 1) =
∑
j>1

(yj − yj+1) log(j + 1) =
∑
j>1

yj log(1 + 1/j)

=
∑
j6a1

(
log2(1 + 1/j)

log 2
t+O(1/j)

)

=
c2

8 log 2
t+O(log t)

=
√

log x
log2 x

(
c+O

(
log3 x

log2 x

))
.

(2.4)

�

3 Proof of the upper bound in Theorem 1
Lemma 3.1. Let mN = min{m : d(m) = N} and write mN = pα1

1 · · · pαr
r . We have

(i) α1 > · · · > αr,
(ii) N ′|N implies mN ′ 6 mN ,

(iii) for each integer k > 1, if pj > p
1/2k

r+1 , then Ω(αj + 1) 6 k.

Remark 1. Using (2.1) and taking k = 1, we see from (iii) that if r is large, then αj + 1 is prime for√
r < j 6 r. Also, by (iii), Ω(αj + 1)� log2 r for all j.

Proof. (i) This is trivial and was observed by Ramanujan [7, (32)].
(ii) If N ′|N , we can find α′j 6 αj for each j such that N ′ = (α′1 + 1) · · · (α′r + 1), and clearly mN ′ 6

p
α′1
1 · · · p

α′r
r 6 mN .

(iii) If pj > p
1/2k

r+1 and Ω(αj + 1) > k, then there are integers a, b with αj + 1 = ab, a > 2 and b > 2k.
Letting

m∗ = pb−1
j pa−1

r+1

∏
i 6=j

pαi
i ,

we see that d(m∗) = d(mN ) = N , but

m∗

mN
= p

b−1−αj

j pa−1
r+1 = (p−bj pr+1)a−1 < 1,

a contradiction. �
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Lemma 3.2. For every ε > 0, and for ω(n) = s > 2 we have

d(n)�ε

(
(2 + ε) log n

s log s

)s
.

Proof. Write the prime factorization of n as n = qa1
1 · · · qas

s , where q1 < · · · < qs. Using the arithmetic
mean - geometric mean inequality and that qi > pi, we have

d(n) 6
s∏
i=1

(2ai) 6 2s
s∏
i=1

(ai log qi)
s∏
i=1

(log pi)−1 6

(
2 log n
s

)s (log s)π(s)−s

log 2
,

the last inequality coming from excluding factors corresponding to 3 6 pi < s. Finally, the prime number
theorem implies (log s)π(s) 6 (log s)O(s/ log s) �ε (1 + ε/2)s. �

Remark. Lemma 3.2 is fairly sharp. For example, from the inequality s = ω(n) 6 (1 + o(1)) logn
log2 n

, and
the observation that m1(x) is monotonically increasing, we immediately obtain Wigert’s upper bound for
log d(n).

The following is the key lemma, which explains the constant c.

Lemma 3.3. Let a1, . . . , at be positive integers.
(a) we have

t∑
i=1

log(ai + 1) 6
c

2

(
t∑
i=1

iai

)1/2

.

Moreover, the constant c/2 is best possible.
(b) If ai > A for all i, where A is a positive integer, then

t∑
i=1

log(ai + 1) 6

(
1 + log2(A+ 1)

A

t∑
i=1

iai

)1/2

.

Proof. (a) Without loss of generality, suppose a1 > · · · > at. Let yj = #{i : ai > j}. Then
t∑
i=1

iai =
∑
j>1

yj(yj + 1)
2

>
1
2

∑
j>1

y2
j .

By partial summation and the Cauchy-Schwarz inequality,
t∑
i=1

log(ai + 1) =
∑
j>1

(yj − yj+1) log(j + 1) =
∑
j>1

yj log(1 + 1/j)

6

(∑
j>1

y2
j

)1/2(
c2

8

)1/2

.

(3.1)

Moreover, the inequality in (3.1) is an equality if and only if for some real Y , yj = Y log(1 + 1/j) for every
j. As the yj are integers, this cannot happen. However, we can come very close to equality in (3.1) by taking
t large and choosing the ai by (2.2), so that yj = b log(1+1/j)

log 2 tc. By (2.3) and (2.4), we have in this case

t∑
i=1

log(ai + 1) =
c2

8 log 2
t+O(log t),

t∑
i=1

iai =
c2

16(log 2)2
t2 +O(t log t),

whence
t∑
i=1

log(ai + 1) =
c

2

(
1 +O

(
log t
t

))( t∑
i=1

iai

)1/2

.
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(b) Observe that y1 = y2 = · · · = yA. Arguing similarly to (3.1), we obtain
t∑
i=1

log(ai + 1) =
log(A+ 1)

A
(y1 + · · ·+ yA) +

∑
j>A

yj log(1 + 1/j)

6

(∑
j>1

y2
j

)1/2
A( log(A+ 1)

A

)2

+
∑
j>A

log2(1 + 1/j)

1/2

.

Observing that log(1 + 1/j) < 1/j and
∑

j>A 1/j2 < 1/A, we obtain (b). �

The next lemma is trivial.

Lemma 3.4. For any positive integer m, m >
∑

p|m p.

Proof of Theorem 1, upper bound. Let n be large, let N = d(n) and factor N = N ′N ′′, where

N ′ = ub11 · · ·u
bw
w , N ′′ = qa1

1 · · · q
as
s ,

where u1 < · · · < uw, q1 < · · · < qs are primes, bi > (log2 n)6 for every i and ai 6 (log2 n)6 for every i.
Write mN ′ = pβ1

1 · · · p
βh
h . By Lemma 3.1 (ii), mN ′ 6 mN 6 n, so that h � log n. By Lemma 3.1 (iii),

Ω(βi + 1) � log2 h � log3 n for every i. Since d(mN ′) = (β1 + 1) · · · (βh + 1) = N ′, for each j 6 h

there are� bj
log3 n

values of i for which uj |(βi + 1). Thus, by Lemma 3.4,

log n > logmN ′ > (log 2)
h∑
i=1

βi >
log 2

2

h∑
i=1

(βi + 1)

>
log 2

2

h∑
i=1

∑
p|(βi+1)

p�
w∑
j=1

uj
bj

log3 n
>

1
log3 n

w∑
j=1

jbj .

Combining this estimate with Lemma 3.3 (b) with A = (log2 n)6 gives

(3.2) log d(N ′) =
w∑
j=1

log(bj + 1)� log3 n

(log2 n)3

 w∑
j=1

jbj

1/2

� (log n)1/2(log3 n)3/2

(log2 n)3
.

Next, we bound d(N ′′).
Case 1) If s 6 (logn)1/2

(log2 n)3
, Lemma 3.2 implies that log d(N ′′)� (logn)1/2

(log2 n)2
.

Case 2) Now suppose that s > (logn)1/2

(log2 n)3
. Write mN ′′ = pα1

1 · · · pαr
r . By Lemma 3.1 (iii),

(3.3) r 6 Ω(N ′′) =
s∑
j=1

aj =
r∑
i=1

Ω(αi + 1) 6 r +
∑
k>2

π(p1/2k

r+1 ) = r +O((r/ log r)1/2).

In particular, r + O((r/ log r)1/2) > a1 + · · · + as > s, so r � s > (logn)1/2

(log2 n)3
. Thus, for large enough n,

a1 + · · · + as 6 r +
√
r. Also by Lemma 3.1 (iii), αj + 1 is prime for j >

√
r. Let ε = 20 log3 n

log2 n
. By the

lower bound on s, and using ai 6 (log2 n)6,

(3.4)
∑

j>s−s1−ε

aj > s
1−ε > 2

(
s(log2 n)6

)1/2
> 2

(
Ω(N ′′)

)1/2
> 2
√
r,

hence, using (3.3), ∑
j6s−s1−ε

aj 6 Ω(N ′′)− 2
√
r 6 r −

√
r.
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Using Lemma 3.1 (i), αi + 1 = q1 for r− a1 < i 6 r, and similarly for each j 6 s− s1−ε, αi + 1 = qj for
r − (a1 + · · ·+ aj) < i 6 r − (a1 + · · ·+ aj−1). We obtain

logmN ′′ >
∑
√
r<i6r

αi log pi >
∑

j6s−s1−ε

(qj − 1)
r−(a1+···+aj−1)∑

m=r−(a1+···+aj)+1

log pm

>
∑

j6s−s1−ε

(pj − 1)aj log(r − (a1 + · · ·+ aj)).

By (3.4), uniformly for j 6 s− s1−ε we have

r − (a1 + · · ·+ aj) = r − Ω(N ′′) + aj+1 + · · ·+ as > s− j −
√
r >

1
2
s1−ε.

Using (2.1), pj > j log j + 1 for large j. Hence, by Lemma 3.1 (ii),

log n > logmN ′′ >
∑

s1−ε6j6s−s1−ε

(j log j)aj(log s+O(log3 n))

> (1 +O(ε))
(log2 n)2

4

∑
s1−ε6j6s−s1−ε

jaj .

By the definition of ε, sε � (log2 n)9. Also, trivially
∑s

j=1 jaj > 1 + 2 + · · · + s > 1
2s

2. Recalling that
aj 6 (log2 n)6 for every j, we have∑

s1−ε6j6s−s1−ε

jaj =
s∑
j=1

jaj +O
(
s2−ε(log2 n)6

)
=

s∑
j=1

jaj +O(s2(log2 n)−3)

= (1 +O(1/ log2 n))
s∑
j=1

jaj .

Combining the last two inequalities gives

log n >
(

1 +O

(
log3 n

log2 n

))
(log2 n)2

4

s∑
j=1

jaj .

Applying Lemma 3.3 (a), we conclude that

(3.5) log d(N ′′) =
s∑
j=1

log(aj + 1) 6
c

2

( s∑
j=1

jaj

)1/2
6 c

√
log n

log2 n

(
1 +O

(
log3 n

log2 n

))
.

Recall that we have a smaller upper bound for log d(N ′′) in case 1). Finally, using d(d(n)) = d(N ′)d(N ′′)
and combining (3.2) and (3.5), we obtain the desired upper bound for d(d(n)). �

4 Proof of Theorem 2
Proof of Theorem 2. For the lower bound, let x be large and put n =

∏s
i=1 p

pi−1
i , where s is the largest

integer such that n 6 x. Recall that pj is the j-th smallest prime. Then d(n) =
∏s
i=1 pi, thus ω(d(n)) = s.

By (2.1),

log n =
s∑
i=1

(pi − 1) log pi =
s∑
i=1

i log2 i+O(i log i log2 i) =
1
2
s2 log2 s+O(s2 log s log2 s).
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Solving for s gives s =
√

8 logn
log2 n

+ O(
√

logn log3 n

log2
2 n

). We now prove a lower bound on n. Since ps+1 ∼
s log s ∼

√
2 log n�

√
log x by (2.1), we have

x > n > xp−ps+1

s+1 = x exp
(
−O

(√
log x log2 x

))
.

That is, log n = log x+O(
√

log x log2 x). Therefore, s =
√

8 log x
log2 x

+O(
√

log x log3 x

log2
2 x

).

Now let n be a large, positive integer factored as n = n1n2, n1 =
∏r
i=1 q

ai
i , n2 =

∏r′

i=1(q′i)
a′i , where

qi, q
′
i are primes, qi > P and q′i 6 P for each i, where P =

√
logn

log2 n
. We have

(4.1) ω(d(n)) 6 ω(d(n1)) + ω(d(n2)).

Since ω(n2) 6 π(P ) �
√

logn
(log2 n)2

, Lemma 3.2 implies log d(n2) �
√

log n/ log2 n. Applying the elemen-

tary inequality ω(u)� log u
log2 u

gives

(4.2) ω(d(n2))�
√

log n
(log2 n)2

.

Next,

log n1 > (logP )
r∑
i=1

ai =
(

log2 n

2
− log3 n

) r∑
i=1

ai.

Letting s = ω(d(n1)) = ω(
∏

(ai + 1)), Lemma 3.4 implies that
r∑
i=1

ai >
r∑
i=1

∑
p|(ai+1)

(p− 1) >
s∑
i=1

(pi − 1) >
s∑
i=1

(i log i+O(1)) =
1
2
s2 log s+O(s2).

Here we used the one-sided inequality pi > i log i+O(1) deduced from (2.1). Thus,

log n > log n1 >

(
1
4

+O

(
log3 n

log2 n

))
(log2 n)s2 log s+O(s2 log2 n).

Consider two cases: (i) s 6
√

logn
log2 n

, (ii) s >
√

logn
log2 n

. In case (ii), we have logn
log2

2 n
> (1

8 +O( log3 n
log2 n

))s2, and we
obtain in both cases

ω(d(n1)) = s 6

√
8 log n

log2 n
+O

(√
log n log3 n

log2
2 n

)
,

Combining this inequality with (4.1) and (4.2), we obtain the desired upper bound for ω(d(n)). �
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[5] A. Ivić, On the maximal order of certain arithmetic functions. Algebra, logic & discrete mathematics (Niš, 1995). Filomat
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