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Abstract. We prove a strong simultaneous Diophantine approximation theo-
rem for values of additive and multiplicative functions provided that the func-
tions have certain regularity on the primes.

1. Introduction

There is a rich literature on problems of approximating real numbers by ratio-
nal numbers with multiplicative restrictions on the denominator of the rational
number, e.g. [1], [2], [10] and the references therein. We are concerned here with
approximating real numbers by values of additive and multiplicative functions.
One of the classical results in this area is the 1928 theorem of Schoenberg [16],
which states that φ(n)/n has a continuous distribution function, that is,

F (z) = lim
x→∞

1

x
|{n ≤ x : φ(n)/n ≤ z}|

exists for every real z, and F (z) is continuous. Here φ is Euler’s totient function. In
particular, φ(n)/n is dense in [0, 1], or equivalently, the additive function log φ(n)/n
is dense in (−∞, 0] (in general, f(n) is additive if and only if ef(n) is multiplicative).
Erdős and Wintner [9] later determined precisely which real additive functions have
continuous distribution functions. These include log φ(n)/n and its close cousin
log σ(n)/n, where σ(n) is the sum of the divisors of n. A stronger approximation
theorem was proved by Wolke [17]. Let Γ denote the infimum of numbers γ so that
for large x, there is a prime in (x − xγ, x]. Wolke proved that for any real β ≥ 1

and any c < 1 − Γ, there are infinitely many integers n with |σ(n)
n
− β| < n−c. It

is conjectured that Γ = 0, however we only know that Γ ≤ 0.525 [3].
In the 1950’s, several papers appeared concerning the distribution of values

of φ(n) and the sum of divisors function σ(n) at consecutive integers. A major
unsolved problem is whether, for fixed k 6= 0, the equations φ(x + k) = φ(x) or
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σ(x+k) = σ(x) have infinitely many solutions. For the latest work on the problem
for φ, see [11]. Schinzel [15] proved that for any h ≥ 1, ε > 0 and positive real
numbers α1, · · · , αh, the system of simultaneous inequalities

(1.1)

∣∣∣∣ φ(n+ i)

φ(n+ i− 1)
− αi

∣∣∣∣ < ε (1 ≤ i ≤ h)

has infinitely many solutions. Six years later Schinzel teamed with Erdős [8] to
show that (1.1) holds for a positive proportion of integers n, and to generalize this
result to a wide class of additive and multiplicative functions.

It is interesting to ask how fast ε = ε(n) can tend to zero as a function of n in
(1.1). In particular, Erdős [7] posed the problem to show that for some c < 1, the
inequalities

|φ(n+ 1)− φ(n)| < nc and |σ(n+ 1)− σ(n)| < nc

each have infinitely many solutions.
Our first results solve Erdős’ problem and generalize the aforementioned the-

orems of Schinzel and Wolke. In particular, we may replace ε on the right side
of (1.1) with n−ch for some positive ch. As in [8], we state our results for a wide
class of additive functions. For any δ > 0 and λ > 0 we denote by Fδ,λ the set of
additive functions f : N→ R with the following properties:

(a) We have ∑
p prime
f(p)>0

f(p) =∞.

(b) There exists a constant C(f) > 0 depending on f such that

|f(pv)| ≤ C(f)

pδ
,

for any prime number p and v ≥ 1.
(c) There exists t0(f) > 0 depending on f such that for any 0 < t ≤ t0(f) there

is a prime number p satisfying

t− t1+λ ≤ f(p) ≤ t.

We remark that (a) and (b) imply that δ ≤ 1. Also, (b) and (c) together imply
that δλ < 1. To see this, let ε > 0 and S = |{p : f(p) > ε}|. By (b),

S ≤ |{p : C(f)/pδ > ε}| = o(ε−1/δ) (ε→ 0+).

On the other hand (cf. (2.2) below), the interval [ε, t0(f)] contains � ε−λ disjoint
intervals of the form (t− t1+λ, t]. Hence S � ε−λ. Finally, if (c) holds with λ > 1
then (a) follows.

Theorem 1. Fix an integer k ≥ 1 and real numbers 0 < δ ≤ 1, 0 < λ < 1/δ.
Let f1, . . . , fk be functions in Fδ,λ, and let A = 1 if all fi are identical, and A = 2
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otherwise. Suppose a1, . . . , ak are positive integers, b1, . . . , bk are nonzero integers
and

(1.2) aibj 6= ajbi (1 ≤ i < j ≤ k).

If αi > fi(bi) for 1 ≤ i ≤ k and

(1.3) 0 < c <

{
δλ if k = 1 and a1 ∈ {1, 2}

δλ
Ak+λβk

otherwise ,

then there are infinitely many positive integers m satisfying

(1.4) |fi(aim+ bi)− αi| <
1

mc
(1 ≤ i ≤ k).

Here βk is an admissible value of a “sieve limit for a sieve of dimension k”, which
will be described below (Theorem DHR). In particular, β1 = 2, β2 < 4.2665 and
βk = O(k).

Theorem 2. Fix an integer k ≥ 1 and real numbers 0 < δ ≤ 1, 0 < λ < 1/δ. Let
f0, . . . , fk be functions in Fδ,λ, with A = 1 if f1, . . . , fk are identical and A = 2
otherwise. Suppose a0, a1, . . . , ak are positive integers, b1, . . . , bk are integers and
(1.2) is satisfied. If ζ1, . . . , ζk are arbitrary real numbers, and

0 < c <

{
δλ

1+4λ
if k = 1

δλ
Ak+λβk+1

if k ≥ 2,

then there are infinitely many positive integers m satisfying

|fi(aim+ bi)− fi−1(ai−1m+ bi−1)− ζi| <
1

mc
(1 ≤ i ≤ k).

Remarks. Theorem 1 implies immediately the conclusion of Theorem 2 in the
range

0 < c <
δλ

A(k + 1) + λβk+1

by choosing α0, . . . , ak large and satisfying αi−αi−1 = ζi for each i. Larger values
of c are possible by making a more judicious choice of α0.

If we assume the Elliott-Halberstam conjecture on the distribution of primes in
arithmetic progressions, then the conclusion of Theorem 2 for k = 1 holds for

0 < c <
δλ

1 + 2λ
.

Corollaries. We may apply Theorems 1 and 2 to the functions f(n) = log(n/φ(n))
and f(n) = log(σ(n)/n). Each of these satisfies f(p) = 1

p
+ O( 1

p2 ). It follows

that f ∈ F1,λ for any λ < 1 − Γ. Applying Theorem 1 with k = 1, a1 = 1
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and f1(n) = log(σ(n)/n) recovers Wolke’s result. Applying Theorem 2 with
fi(n) = log(n/φ(n)) shows that one may take ε = n−ch in (1.1) provided that

ch <
1− Γ

h+ (1− Γ)βh+1

.

We also have an answer to Erdős’ question, by applying Theorem 2 with k = 1,
ζ1 = 0, a0 = a1 = b1 = 1 and b0 = 0. For any c < 1−Γ

5−4Γ
, the inequalities

|φ(n+ 1)− φ(n)| < n1−c, |σ(n+ 1)− σ(n)| < n1−c

each have an infinite number of solutions. In addition, for any nonzero a, c < 1−Γ
5−4Γ

and for any real ζ, the inequality

|n/φ(n+ a)− σ(n)/n− ζ| < n−c

has infinitely many solutions.
The methods used to prove Theorems 1 and 2 also yield similar results for the

simultaneous approximation of fi(gi(n)) where gi(n) are polynomials, provided
that (a) and (c) above are suitably strengthened. Rather than aim for fullest
generality, we illustrate what is possible with two special cases.

Theorem 3. Suppose h(n) = φ(n) or h(n) = σ(n). Let Γ′ be the infimum of
numbers g so that if x is large, there is a prime p ≡ 1 (mod 4) with x−xg < p ≤ x.
For any real ζ and any

c <
1− Γ′

1 + (1− Γ′)β2

,

the inequality

|h(n2 + 1)− h(n2 + 2)− ζ| < n2−c

has infinitely many solutions.

A sketch of the proof of Theorem 3 will appear in section 4, together with a
discussion of how to deal with more general fi and gi. Likely the methods in [3]
can be used to prove Γ′ ≤ 0.525, but the best result available in the literature is
Γ′ ≤ 0.53 (by considering the polynomial Q(x, y) = x2 + y2 in [13]).

In [14], a similar Diophantine approximation problem is considered for consecu-
tive values of the kernel function k(n) =

∏
p|n p. Our methods do not apply, since

f(p) = 0 for f(n) = log(n/k(n)). Luca and Shparlinski [14] show that for any
vector (α1, . . . , αk) of positive real numbers, there are infinitely many n for which∣∣∣∣k(n+ i− 1)

k(n+ i)
− αi

∣∣∣∣ < 1

n1/41k3 (1 ≤ i ≤ k − 1).

In a sequel paper, we will consider Diophantine approximation problems for
coefficients of modular forms. A example of one of our results is that for any real
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β, there is a constant Cβ so that for infinitely many n,∣∣∣∣ τ(n)

n11/2
− β

∣∣∣∣ ≤ Cβ
log n

,

where τ(n) is Ramanujan’s function, the nth coefficient of q
∏∞

m=1(1− qm)24.

2. Preliminaries for Theorems 1, 2 and 3

Lemma 1. Let 0 < δ ≤ 1, 0 < λ < 1/δ, f1, · · · , fk ∈ Fδ,λ, 0 < ξ < λ/A, and
K ≥ 1. For sufficiently small positive v0, there are disjoint sets P1, . . . ,Pk of
primes greater than K with the following properties. (i) Let vj+1 = vj − v1+ξ

j for
j ≥ 0. For each j ≥ 0 and 1 ≤ i ≤ k, Pi contains exactly one prime p with
fi(p) ∈ (vj+1, vj]. (ii) Let P0 be the set of primes larger than K which do not lie
in any set Pi. Then

(2.1)
∑
p∈P0

fi(p)>0

fi(p) =∞ (1 ≤ i ≤ k).

Proof. It is straightforward to show that for any v0,

(2.2) vj ∼ ξ−1/ξj−1/ξ (j →∞).

One method of proof is to compare vj to y(j), where y satisfies the differential
equation y′ = −y1+ξ. We will take v0 satisfying

v0 < min
1≤i≤k

t0(fi),(2.3)

v0 < min
1≤i≤k

min{fi(p) : p ≤ K and fi(p) > 0}.(2.4)

If f1, . . . , fk are identical, we also assume that

(2.5) vξ−λ0 ≥ 2k.

Since ξ < λ, v0 satisfies (2.3), (2.4), and (2.5) if v0 is small enough. If f1, . . . , fk
are not identical, then ξ < 1

2
λ. By (2.2), if v0 is small enough then

(2.6) vξ−λj ≥ 2k2(j + 1) (j ≥ 0).

Next, we construct the sets Pi. First assume f1, · · · , fk are identical. By (2.5),
for each j ≥ 0 the interval (vj+1, vj] contains at least 2k disjoint intervals of the
form (v − v1+λ, v]. By (c) and (2.3), each such interval contains a value of f1(p)
for some prime p. Label these 2k primes pi,j, p

′
i,j for 1 ≤ i ≤ k.

Assume that f1, · · · , fk are not all identical. Fix j ≥ 0 and assume that we have
chosen distinct primes pi,h, p

′
i,h such that fi(pi,h), fi(p

′
i,h) ∈ (vh+1, vh] for 1 ≤ i ≤ k,

0 ≤ h ≤ j− 1. By (2.6), (vj+1, vj] contains at least 2k2(j+ 1) intervals of the form
(v − v1+λ, v]. At most 2k(k − 1)j of these intervals contain a number of the form
fi′(pi,h) or fi′(p

′
i,h) for 1 ≤ i ≤ k, 1 ≤ i′ ≤ k, i 6= i′, 0 ≤ h ≤ j − 1. Let T denote

the set of remaining intervals, so that |T | > 2k2. Take two intervals I1, I
′
1 ∈ T .
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By (2.3) and (c), there are primes p1,j, p
′
1,j with f1(p1,j) ∈ I1 and f1(p′1,j) ∈ I ′1.

Take 4 intervals in T\{I1, I
′
1}. By (2.3) and (c), there are two of these intervals

I2 and I ′2 and primes p2,j, p
′
2,j different from p1,j and p′1,j so that f2(p2,j) ∈ I2 and

f2(p′2,j) ∈ I ′2. Continuing this process, since |T | ≥ 2 + 4 + · · ·+ 2k, we can find 2k
distinct intervals I1, I

′
1, . . . , Ik, I

′
k ∈ T and 2k distinct primes p1,j, p

′
1,j, . . . , pk,j, p

′
k,j,

different from the previously chosen primes pi,h, p
′
i,h (1 ≤ i ≤ k, h < j) with

fi(pi,k) ∈ Ii and fi(p
′
i,k) ∈ I ′i for 1 ≤ i ≤ k.

In either case, for 1 ≤ i ≤ k let

Pi = {pi,0, pi,1, . . .}.

By (2.4), all primes pi,j, p
′
i,j are larger than k. Hence, the sets P1, · · · ,Pk satisfy

condition (i) of the lemma. If
∑

j≥0 vj converges (that is, ξ < 1), then for each i,∑
p∈Pi

fi(p) <∞,

and hence by (a), (2.1) holds. Next assume
∑

j≥0 vj diverges. For each i and every

j ≥ 0, p′i,j ∈ P0 and fi(p
′
i,j) ∈ (vj+1, vj]. Hence (2.1) holds in this case as well. �

Lemma 2. Let 0 < δ ≤ 1, 0 < λ < 1/δ, f1, · · · , fk ∈ Fδ,λ, and 0 < ξ < λ/A. Also
assume that K ≥ 1 and that γ1, . . . , γk are positive real numbers. For sufficiently
small v0 and for

(2.7) 0 < η < min
(
v0, 6

−1/ξ, γ1, . . . , γk
)
,

there are sequences {ni,j}, 1 ≤ i ≤ k, j = 0, 1, 2, . . . , such that

(i) ni,j|ni,j+1 for each 1 ≤ i ≤ k and j ≥ 0;
(ii) For each j, the numbers n1,j, n2,j, . . . , nk,j are pairwise relatively prime

and divisible by no prime ≤ K;
(iii) |fi(ni,j)− γi| ≤ 3jη(1+ξ)j for 1 ≤ i ≤ k, j ≥ 0;
(iv) we have

(2.8) ni,j ≤
(2C(fi))

j
δni,0

(η/2)
(1+ξ)j

δξ

(1 ≤ i ≤ k, j ≥ 0).

Assume (2.7) is satisfied, and let P0,P1, . . . ,Pk, v1, . . . be as in Lemma 1. By
(2.1) and (b), there are prime numbers q1, q2, . . . , qr in P0 such that

γ1 − η <
r∑
s=1

f1(qs) < γ1 −
η

2
.

We take

n1,0 =
r∏
s=1

qs
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so that γ1 − η < f1(n1,0) < γ1 − η
2
. In this way we may successively construct ni,0

for 2 ≤ i ≤ k. Assume that we have already constructed n1,0, n2,0, . . . , ni−1,0 with
prime divisors in P0. If Bi is the set of all prime divisors of n1,0, n2,0, . . . , ni−1,0,
then by (2.1), ∑

p∈P0\Bi

fi(p) =∞.

Therefore, by (b) we may choose ni,0 with all prime divisors in P0 \ Bi and with
γi − η < fi(ni,0) < γi − η

2
.

Next we construct n1,j for j ≥ 1. Put τ1,0 = γ1−f1(n1,0) ∈ (η
2
, η) and recursively

define n1,j+1 = n1,jp1,j+1 for j ≥ 0 where p1,1, p1,2, . . . are prime numbers to be
chosen from P1. Clearly we have f1(n1,j+1) = f1(n1,j)+f1(p1,j+1) and in particular
f1(n1,1) = f1(n1,0) + f1(p1,1). Consider the interval

I1,0 =
(
τ1,0 − τ 1+ξ

1,0 − 2(τ1,0 − τ 1+ξ
1,0 )1+ξ, τ1,0 − τ 1+ξ

1,0

]
.

Since

τ1,0 − τ 1+ξ
1,0 − (τ1,0 − τ 1+ξ

1,0 )1+ξ −
(
τ1,0 − τ 1+ξ

1,0 − (τ1,0 − τ 1+ξ
1,0 )1+ξ

)1+ξ

> τ1,0 − τ 1+ξ
1,0 − 2(τ1,0 − τ 1+ξ

1,0 )1+ξ,

I1,0 contains an interval of form (vj+1, vj] with vj+1 = vj − v1+ξ
j . Therefore, we can

find p1,1 in P1 satisfying

τ1,0 − 3τ 1+ξ
1,0 < τ1,0 − τ 1+ξ

1,0 − 2(τ1,0 − τ 1+ξ
1,0 )1+ξ < f1(p1,1) ≤ τ1,0 − τ 1+ξ

1,0 .

Let τ1,1 = γ1 − f1(n1,1) = γ1 − f1(n1,0)− f1(p1,1) = τ1,0 − f1(p1,1) so that

τ 1+ξ
1,0 ≤ τ1,1 < 3τ 1+ξ

1,0 .

Inductively we can find prime numbers p1,1, p1,2, . . . in P1 such that τ1,j = γ1 −
f1(n1,j) and

τ 1+ξ
1,j−1 ≤ τ1,j < 3τ 1+ξ

1,j−1

for j ≥ 1. Since τ1,0 < η < 6−1/ξ, the intervals [τ1,j−3τ 1+ξ
1,j , τ1,j− τ 1+ξ

1,j ] are disjoint.
Consequently, the prime numbers p1,1, p1,2, . . . that are chosen at each step from
P1 are distinct. By iterating the inequalities we also have

τ
(1+ξ)j

1,0 ≤ τ1,j ≤ 3jτ
(1+ξ)j

1,0

for any j ≥ 0. Moreover,

τ1,j−1 − 3τ 1+ξ
1,j−1 < f1(p1,j) ≤

C(f1)

pδ1,j
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and it follows that

p1,j ≤

(
C(f1)

τ1,j−1 − 3τ 1+ξ
1,j−1

) 1
δ

≤
(

2C(f1)

τ1,j−1

) 1
δ

for any j ≥ 1. It follows that for any j ≥ 1,

n1,j ≤

 (2C(f1))
j
δ(∏j−1

s=0 τ1,s

) 1
δ

n1,0 .

Using the fact that

j−1∏
s=0

τ1,s ≥ τ
∑j−1
s=0(1+ξ)s

1,0 ≥ τ
(1+ξ)j

∑∞
s=1

1
(1+ξ)s

1,0 ≥
(η

2

) (1+ξ)j

ξ
,

we obtain

(2.9) n1,j ≤

(2C(f1))
j
δ(

η
2

) (1+ξ)j

ξδ

n1,0

for any j ≥ 0.
We construct ni,j for 2 ≤ i ≤ k, j ≥ 1 in a similar manner. More precisely,

ni,j = ni,j−1pi,j and the pi,j’s are distinct primes in Pi for each j ≥ 1. Conditions
(i) and (ii) are immediate. Condition (iii) follows from

0 < γi − fi(ni,j) ≤ 3jτ
(1+ξ)j

i,0 ≤ 3jη(1+ξ)j

and (2.8) follows from (2.9).

3. Proof of Theorems 1 and 2

Suppose 0 < ξ′ < ξ < λ/A and v0 is sufficiently small. Put L = (2k!b1 · · · bk)2,
let K be the largest prime factor of L and define γj = αj − fj(bj) for 1 ≤ j ≤ k. η
satisfies (2.7) and also

(3.1) (η/2)ξ
′
> ηξ.

Let ni,j (1 ≤ i ≤ k, j ≥ 0) be the sequences of integers guaranteed by Lemma 2.
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If k = 1 and a1 ∈ {1, 2} in Theorem 1, then A = 1, each ni,j is odd and for large
enough j,

|f1(b1(n1,j − 1) + b1)− α1| = |f1(b1n1,j)− α1|

≤ η(1+ξ)j3j

= 3j
(η

2

)(1+ξ)jξ′/ξ
[
η

(
2

η

)ξ′/ξ](1+ξ)j

≤
(η

2

)(1+ξ)jξ′/ξ

(2C)−jξ
′
n−ξ

′δ
1,0

≤ n−ξ
′δ

i,j

by (3.1). Theorem 1 follows by taking ξ, ξ′ so that c < ξ′δ. The above argument
fails when a1 > 2 because we cannot guarantee that infinitely many numbers
n1,j are congruent to 1 modulo a1, although this can be done in some cases, e.g.
f1(n) = log(n/φ(n)).

When k ≥ 2 or when k = 1 and a1 > 2 in Theorem 1, take j large and consider
the system of congruences

m ≡ 0 (mod L)

a1m+ b1 ≡ 0 (mod n1,j)

a2m+ b2 ≡ 0 (mod n2,j)

. . .

akm+ bk ≡ 0 (mod nk,j).

By the Chinese remainder theorem, this system is equivalent to a single congru-
ence m ≡ hj (mod Nj), where

Nj = L
k∏
i=1

ni,j

and 0 ≤ hj < Nj. We show that there is a solution m to the above system of
congruences such that all the prime factors of

M =
k∏
i=1

aim+ bi
bi ni,j

are large. This is accomplished with a lower bound sieve. We use the following
theorem of Diamond, Halberstam and Richert ([5], [6]).

Theorem DHR. Let A be a finite set of positive integers, P a set of primes
and let S(A,P) be the number of integers in A not divisible by any prime in P.
Let P (z) be the product of the primes in P which are ≤ z. For real κ ≥ 1, there
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is a continuous, increasing function fκ so that if X ≥ y ≥ z ≥ 2 and ω is a
multiplicative function satisfying 0 ≤ ω(p) < p for p ∈ P, ω(p) = 0 for p 6∈ P and

(3.2)
∏

v≤p<w

(
1− ω(p)

p

)−1

≤
(

logw

log v

)κ(
1 +

A

log v

)
(2 ≤ v ≤ w),

then

S(A,P) ≥ X
∏
p∈P
p≤z

(
1− ω(p)

p

)(
fκ

(
log y

log z

)
+Oκ,A

(
log log y

(log y)1/(2κ+2)

))

−
∑
d|P (z)
d<y

(1 + 4ν(d))|rd|,

where ν(d) is the number of prime factors of d and

rd = #{n ∈ A : d|n} − ω(d)

d
X.

Here the constant implied by the O−symbol depends on κ and A only. Moreover,
fκ(u) > 0 for u > βκ, where βκ is a certain constant (see e.g. Appendix III of [5]).
In particular, β1 = 2, β2 < 4.2665 and βk = O(k).

To apply the theorem, we take κ = k, P the set of all primes ≤ z, and

A = {P (s) : 1 ≤ s ≤ Nµ
j }

where

P (s) =
k∏
i=1

ai(sNj + hj) + bi
bi ni,j

and µ is a positive constant. Take X = Nµ
j and

ω(d) = #{0 ≤ s ≤ d− 1 : P (s) ≡ 0 (mod d)}.
Then ω(p) = 0 for p|L, and by (1.2), ω(p) ≤ k for other p. Thus, by Mertens’
estimates, (3.2) holds with κ = k and A some constant depending only on k. Let
ε > 0 and y = X1−2ε. Since

4ν(d)|rd| ≤ 4ν(d)ω(d) ≤ (4k)ν(d) �ε d
ε,

we find that ∑
d|P (z)
d<y

(1 + 4ν(d))|rd| � X1−ε.

Take z = y
1−ε
βk = N c0

j , c0 = µ(1−2ε)(1−ε)
βk

. We find that for large j

S(A,P)�k,µ,ε

Nµ
j

(logNj)k
,
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Thus, there is an integer m ≤ N1+µ
j + hj such that m ≡ 0 (mod L), aim+ bi ≡ 0

(mod ni,j) for 1 ≤ i ≤ k and all prime factors of

M =
k∏
i=1

aim+ bi
bi ni,j

are > z. There are at most
⌊

1+µ
c0

+ 1
⌋

prime factors of aim+ bi which are > z. By

(b), for 1 ≤ i ≤ k we have

|fi(aim+ bi)− αi| ≤ |f(bini,j)− αi|+ |f(aim+bi
bini,j

)| ≤ 3jη(1+ξ)j + c1N
−δc0
j ,

where c1 = (1+µ
c0

+ 1) max1≤i≤k C(fi). Moreover, by (2.8) and (3.1), for large j we
have

Nj = L
k∏
i=1

ni,j ≤ L(2 max
1≤i≤k

C(fi))
kj/δ(η/2)−

k(1+ξ)j

δξ

k∏
i=1

ni,0

≤ 3−kj/(δξ
′)η
− k(1+ξ)j

δξ′ .

We conclude that for large j,

|fi(aim+ bi)− αi| ≤ N
−δξ′/k
j + c1N

−δc0
j

� m−
δξ′

k(1+µ) +m
− δµ(1−3ε)
βk(1+µ) .

Taking µ = ξ′βk
k(1−3ε)

gives

|fi(aim+ bi)− αi| � m−c2 (1 ≤ i ≤ k),

where

c2 =
δξ′

k + ξ′βk(1− 3ε)−1
.

Theorem 1 follows by taking ε sufficiently small and ξ′ sufficiently close to λ/A, so
that c2 > c.

Proof of Theorem 2. Without loss of generality, we may assume that bi > 0 for
all i. Let L = (2k!a0b0 · · · akbk)2. By (a), there is a number n0 with (n0, L) = 1
and

f0(b0n0) >
k∑
i=1

|ζi|+ max
1≤i≤k

|fi(bi)|.

Let α0 = f0(n0b0), αi = ζi + αi−1 and γi = αi − fi(bi) for 1 ≤ i ≤ k.. Then γi > 0
for 1 ≤ i ≤ k. Let 0 < ξ < ξ′ < λ/A, v0 be sufficiently small such that

v0 < min
p|n0,f0(p)>0

f0(p),
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and suppose η satisfies (2.7) and (3.1). Let K be the largest prime factor of Ln0,
and let ni,j be as in Lemma 2. Consider the system

m ≡ 0 (mod L)

a0m+ b0 ≡ 0 (mod n0)

a1m+ b1 ≡ 0 (mod n1,j)

· · ·
akm+ bk ≡ 0 (mod nk,j)

which is equivalent to a single congruencem ≡ hj (mod Nj), whereNj = Ln0n1,j · · ·nk,j
and 0 ≤ hj < Nj. Write m = hj + sNj.

If k ≥ 2, we apply Theorem DHR with

A = {P (s) : 1 ≤ s ≤ Nµ
j }

where

P (s) =
a0(sNj + hj) + b0

b0n0

k∏
i=1

ai(sNj + hj) + bi
bi ni,j

,

and P is the set of primes ≤ z. Take X = Nµ
j , y = X1−2ε and z = y

1−ε
βk+1 . The

remaining argument is nearly identical to that in the proof of Theorem 1. The
only differences are that Nj is a factor n0 larger than before, κ = k + 1, we take

µ = ξ′βk+1

k(1−3ε)
, and

|f0(a0m+ b0)− α0| =
∣∣∣∣f0

(
a0m+ b0

b0n0

)∣∣∣∣� z−δ.

We find that

|fi(aim+ bi)− αi| � m−c2 (0 ≤ i ≤ k)

where

c2 =
δξ′

k + ξ′βk+1(1− 3ε)−1
.

Taking ε sufficiently small and ξ′ sufficiently close to λ/A completes the proof.
If k = 1, we set up the sieve procedure differently. Let

q =
a1Ln0

b1

, r =
a1hj + b1

b1n1,j

.

We will restrict our attention to numbers m so that a1m+b1
b1n1,j

= qs + r is prime.

Apply Theorem DHR with

A =

{
a0(hj + Ln0n1,js) + b0

b0n0

: Nµ
j < s ≤ 2Nµ

j , qs+ r is prime

}
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and P is the set of primes ≤ z. Take X = 1
φ(q)

(li(2qNµ
j + r) − li(qNµ

j + r)),

y = X1/2−ε and z = y(1−ε)/β1 = y(1−ε)/2 for some small fixed ε > 0. Here

li(x) =

∫ x

2

dt

log t
.

Each set {w ∈ A : d|w} is either empty, and we take ω(d) = 0, or counts primes in
a single progression modulo qd which are between qNµ

j + r and 2qNµ
j + r, in which

case we take ω(d) = φ(q)/φ(qd). Then (3.2) holds with κ = 1 and some absolute
constant A. The Bombieri-Vinogradov theorem (e.g. Ch. 28 of [4]) implies that

(3.3)
∑
d≤y

(1 + 4ω(d))|rd| �
X

log5 X
.

Therefore, by Theorem DHR, if j is large then there is a number s, Nµ
j < s ≤ 2Nµ

j

with qs + r prime and all prime factors of
a0(hj+Ln0n1,js)+b0

b0n0
are > z. For m =

hj + Ln0n1,js, we therefore have by (b),

|f0(a0m+ b0)− α0| =
∣∣∣∣f0

(
a0(m0 + Ln0n1,js) + b0

n0b0

)∣∣∣∣
� z−δ � N

−δµ(1/2−ε)(1−ε)/2
j logNj

and
|f1(a1m+ b1)− α1| = |f1(b1n1,j(qs+ r))− α1| � N−δξ

′

j +N−µδj .

Hence

|f1(a1m+ b1)− f0(a0m+ b0)− ζ1| � m−
δξ′
1+µ +m−

δµ(1/2−ε)(1−ε)
2(1+µ) logm.

Taking µ = 2ξ′

(1/2−ε)(1−ε) , ξ
′ close enough to λ and ε small enough completes the

proof. Finally, if we assume the Elliott-Halberstam conjecture, (3.3) holds with
y = X1−ε and we have, for any c < δλ

1+2λ
, that the inequality

|f1(a1m+ b1)− f0(a0m+ b0)− ζ1| � m−c

holds for infinitely many m.

4. Dealing with polynomial arguments

Let f(n) = log(n/φ(n)) or f(n) = log(σ(n)/n). We have f(p) = 1/p+O(1/p2),
so (b) holds with δ = 1. Let 0 < ξ < λ < 1− Γ′. We have

(a’)
∑

p≡1 (mod 4)

f(p) =∞,

(c’) If t0 is small enough, then for any 0 < t ≤ t0, there is a prime p ≡ 1 (mod 4)
so that t− t1+λ ≤ f(p) ≤ t.

We follow the proof of Theorem 2 (in the case k ≥ 2). Let n0 be the product
of primes ≡ 1, 3 (mod 8) and such that f(n0) > |ζ| + 1, put α0 = f(2n0) and
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α1 = ζ + α0. Armed with (a’) and (c’), an analog of Lemma 1 holds with k = 1
and P1 consisting only of primes ≡ 1 (mod 4), and an analog of Lemma 2 holds
with the additional restriction that n1,j is the product of only primes ≡ 1 (mod 4).
By our construction of n0 and n1,j, the system of congruences

m ≡ 0 (mod 2)

m2 + 2 ≡ 0 (mod n0)

m2 + 1 ≡ 0 (mod n1,j)

has at least one solution m ≡ hj (mod Nj) with Nj = 2n0n1,j and 0 ≤ hj < Nj.
Apply Theorem DHR with

A =

{
m2 + 2

2n0

· m
2 + 1

n1,j

: m = hj +Njs, 1 ≤ s ≤ Nµ
j

}
P the set of primes ≤ z, X = Nµ

j , κ = 2 (since m2+1 and m2+2 are irreducible and

coprime, ω(p) = 2 on average), y = X1−2ε, z = y
1−ε
β2 . There is an m ≤ N1+µ

j +Nj

so that the above system of congruences holds, and all prime factors of m2+2
2n0
· m2+1
n1,j

are > z. The rest of the argument is the same as in the proof of Theorem 2.

For the general problem of simultaneously approximating fi(gi(n)) for 1 ≤ i ≤ k,
each gi needs to satisfy a version of (a’) and (c’) where the primes are restricted to
those for which gi(n) ≡ 0 (mod p) has a solution. Also, each gi should have an ir-
reducible factor g∗i not dividing any other gj. This way, the quantities fi(g

∗
i (n)) will

be sufficiently independent to allow the method to work. Analogous to Theorem
1, with appropriate restrictions on αi, the system

|fi(gi(n))− αi| < n−c (1 ≤ i ≤ k)

will have infinitely many solutions for some c > 0. Here c will depend on δ, A, k
and the number of irreducible factors of each gi and each (gi, gj), i 6= j. Similarly,
for any ζ1, . . . , ζk the system

|fi(gi(n))− fi−1(gi−1(n))− ζi| < n−c (1 ≤ i ≤ k)

will have infinitely many solutions for some c > 0.
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[7] P. Erdős, Some remarks on Euler’s φ function, Acta Arith. 4 (1958), 10–19.
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