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Abstract

We determine the exact order of growth of N(x, y), the number of in-

tegers n 6 x divisible by a shifted prime p − 1 > y, uniformly for all

x > 2y > 4.

1 Introduction

Let N(x, y) be the number of integers n 6 x divisible by some number p − 1,

where p > y is prime. The problem of bounding N(x, y) originated in 1980 with

Erdős and Wagstaff [2], who proved the upper bound

(1) N(x, y) ≪ x

(log y)c
, some constant c > 0,

uniformly for x > y > 10, and applied this estimate to the study of denominators

of Bernoulli numbers.

In [7], the following improved estimates were shown. Here log2 x = log log x,

log3 x = log log log x and δ = 1− 1+log log 2
log 2

= 0.08607 . . ..

Theorem A ([7]). (i) If 3 6 y 6 x, then

N(x, y) ≪ x

(log y)δ(log2 y)
1/2

,
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and for every ε > 0 there is an η > 0 so that for 3 6 y 6 x exp{−(log x)1−η},

N(x, y) ≫ x

(log y)δ+ε
.

(ii) If y = x/ exp{(log x)α}, and 1
log 4

6 α 6 1− log3 x
log2 x

, then

N(x, y) =
x(log2 x)

O(1)

(log x)δ+α−1−(logα)/ log 2
.

(iii) If y = x/ exp{(log x)α}, and 0 6 α 6
1

log 4
, then

N(x, y) =
x log(x/y)(log2(x/y))

O(1)

log x
.

The authors remark (Remark 2.12 of [7]) that they can very easily establish

the following with their methods: For any ε > 0, if y > x/ exp{(log x)1/2−ε}
and x/y → ∞, then

N(x, y) ∼ x log(x/y)

log x
.

The authors also claim in [Remarks 2.11][7] that they can sharpen (iii) to N(x, y) ≍
x log(x/y)

log x
by taking more care of the “singular series” factor coming from a sieve

estimate. As we shall see below, this is a delicate matter.

In this paper, we determine the correct order of magnitude for N(x, y) uni-

formly for all x, y and show an asymptotic for N(x, y) in most of the range (iii)

of Theorem A. As in [7], define α implicitly by y = x/ exp{(log x)α}, so that

0 6 α 6 1 in the range 1 6 y 6 x/e. Near the threshold value α = 1
log 4

, define

θ by

α =
1

log 4
+

θ
√

log2 x
.

Theorem 1. We have (i) For 3 6 y 6 x1−c, where c > 0 is an arbitrary fixed

constant,

N(x, y) ≍c
x

(log y)δ(log2 y)
1/2

.

(ii) When 1
log 4

6 α 6 1− log 2
log2 x

(the upper bound is equivalent to y > x1/2),

then

N(x, y) ≍ x

max(1, θ)(log x)δ+α−1−(logα)/ log 2
.

(iii) If x/y → ∞ and θ → −∞ (in particular, 0 < α < 1
log 4

), then

N(x, y) ∼ x log(x/y)

log x
.
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Uniformly in the slightly larger range x/ exp{(log x)1/ log 4} 6 y 6 x/2, x > 10,

we have

N(x, y) ≍ x log(x/y)

log x
.

Remarks. In part (ii) of Theorem 1, if 1
log 4

< α < 1 is fixed, then θ ≍
√

log2 x.

Our proof of Theorem 1 parts (ii) and (iii) refines the method offered in [7].

To prove the lower bound for part (i), we do not follow the method from [7]

(which is based on the theory of the Carmichael λ-function), but rather use a

technique which is similar to that used in part (ii). The reason that this works is

described in the next section.

Notation ω(n) and Ω(n) denote the number of prime factors of n and the

number of prime power factors of n, respectively. Ω(n, t) is the number of prime

power divisors pa of n with p 6 t. Ω∗(n, t) is the number of prime power divisors

pa of n with 2 < p 6 t. P+(n) and P−(n) denote the largest and smallest prime

factors of n, respectively.

2 Heuristic discussion

The quantity N(x, y) counts integers with a particular type of divisor, thus results

about the distribution of divisors of integers, say from [6, Ch. 2] or [3], may be

relevant to the problem. To bound the density of integers possessing a divisor

in an interval (y, z], the right “measuring stick” for the problem is sum of the

densities of the integers which are divisible by each candidate divisor, namely

the quantity η :=
∑

y<d6z 1/d ∼ log(z/y). When η is very small, the “events”

d|n for the various d are essentially independent and the likelihood of an integer

having such a divisor is about η; this independence persists below a threshold

value of about η = (log y)1−log 4. As η grows, however, these events become

more and more dependent and when η ≈ 1, the likelihood that an integer has a

divisor in (y, z] has dropped to about (log y)−δ(log2 y)
−3/2; moreover, the most

likely integers to have such a divisor are those with
log2 y
log 2

+ O(1) prime divisors

6 y, and also these prime factors must be “nicely” distributed (if not, then the

divisors of n are highly clustered and there is a much lower probability of having

a divisor in (y, x]). When η = (log y)−β , with 0 6 β 6 log 4 − 1, most integers

with a divisor in (y, z] have Ω(n, y) = 1+β
log 2

log2 y + O(1); a heuristic explaining

this may be found in §1.5 of [3].

For N(x, y) the analogous “measuring stick” is the quantity ν =
∑

y<p6x
1

p−1
.

When x1/2 < y < x/ exp{(log x)1/ log 4}, (log(x/y))1−log 4 ≪ ν ≪ 1 and this
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roughly corresponds to the “short but not too short interval” case for unrestricted

divisors, with ν replacing η and x/y replacing z (because x/y is roughly the

size of the smaller factor of n in this case, and that is the deciding quantity).

One might guess that the density is then given by Theorem 1 of [3], but this

is not quite the case. Because the interval (y, z] in the unrestricted case is gen-

uinely very short, integers with typical distribution of their prime factors have

very non-uniform divisor distribution (lots of tight clusters), and this makes it

highly unlikely to have a divisor in (y, z]. Thus, most integers with a divisor in

(y, z] have an atypical prime factor distribution. In the case of shifted prime fac-

tor divisors, the interval (y, x] is very long, and this issue does not affect whether

(y, x] has a shifted prime divisor and the actual likelihood is therefore a bit larger

(by roughly a factor of log2 y). This also makes it much easier to obtain sharper

bounds for N(x, y), as delicate divisor distribution issues do not need to be dealt

with.

The techniques of this paper may be easily adapted to obtain sharp estimates

for the number of integers n 6 x divisible by an integer k > y which comes

from an arbitrary set S which is “thin”, in the sense that that sum of reciprocals

of elements of S diverges very slowly like that of primes, and for which the set

has nice distribution in arithmetic progressions (in order to apply sieve methods

and obtain, e.g. analogs of the Timofeev bounds from the next section).

3 Tools from the anatomy of integers

Beginning with the work of Hardy-Ramanujan (1917), and continuing with work

of Erdős and others in the 1930s and beyond, it is now well-known that the prime

factors of integers, viewed on a log log-scale, behave like a Poisson process. In

particular, the number of prime factors which are 6 z behaves roughly like a

Poisson random variable with parameter ∼ log2 z as z → ∞.

Lemma 3.1. For any fixed δ > 0, we have uniformly for x > 4, 0 6 k 6

(2− δ) log2 x that
∑

n6x
Ω(n)=k

1

n
≍δ

(log2 x)
k

k!

Proof. This is a corollary of a classical result of Selberg (see [9, Theorem II.6.5])

about the distribution of Ω(n).

The next two lemmas are due to Halász [4], with an extension of Hall and

Tenenbaum [6, Theorem 08].
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Lemma 3.2. Fix δ > 0. Uniformly for x > z > 3 and 0 6 m 6 (2 − δ) log2 z,

we have

#{n 6 x : Ω(n, z) = m} ≪δ
x(log2 z)

m

m! log z
,

∑

n6x
Ω(n,z)=m

1

n
≪δ

log x

log z

(log2 z)
m

m!
.

Uniformly for x > z > 3 and 0 6 m 6 (3− δ) log2 z,

#{n 6 x : Ω∗(n, z) = m} ≪δ
x(log2 z)

m

m! log z
,

∑

n6x
Ω∗(n,z)=m

1

n
≪δ

log x

log z

(log2 z)
m

m!
.

Lemma 3.3. Fix δ > 0. Uniformly for x > z > 3 and with m in the range

δ log2 z 6 m 6 (2− δ) log2 z, we have

#
{

n 6 x : Ω(n, z) ∈ {m,m+ 1}
}

≫δ
x(log2 z)

m

m! log z
.

The next two lemmas, due to Timofeev [10], state that the prime factors of

shifted primes have roughly the same distribution as prime factors of integers

taken as a whole.

Lemma 3.4. Fix δ > 0. There is a constant c1(δ) so that uniformly for x > z >

c1(δ) and 0 6 m 6 (2− δ) log2 z, we have

#{p 6 x : Ω(p− 1, z) = m} ≪δ
x(log2 z)

m

m!(log x)(log z)
,

#{p 6 x : Ω∗(p− 1, z) = m} ≪δ
x(log2 z)

m

m!(log x)(log z)
.

Proof. This is a special case of Theorem 2 of [10].

Lemma 3.5. Fix δ > 0. There is a constant c2(δ) so that uniformly for x > z >

c2(δ) and δ log2 z 6 m 6 (2− δ) log2 z,

#{p 6 x : Ω(p− 1, z) ∈ {m,m+ 1,m+ 2}} ≫δ
x(log2 z)

m

m!(log x)(log z)
.

Proof. This is essentially a special case of part of Theorem 3 of [10], except that

in the cited theorem it is stated that we must have z → ∞ as x → ∞. This

condition does not make sense in light of the uniformity claimed in the theorem,

and in fact this stronger hypothesis on z (which comes into play when dealing
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with a set E of primes, which in our application is taken to be the set of primes

in [2, z]) is never used in the proof. Indeed, in the place where it is claimed to

be needed, prior to [10, (18)], no hypothesis is needed at all on the set E, since

E(x/t) 6 E(x) for any set E and (18) follows immediately.

Lemma 3.6. Uniformly for e2 6 z 6 x, k 6 1.8 log2 z, 0 6 ξ 6
1

5 log x
,

0 6 c 6 10, we have

∑

P+(n)6x
Ω(n,z)=k

1

n1−ξ

(

n

φ(n)

)c

≪ log x

log z

(log2 z)
k

k!
.

Proof. We follow the proof of Theorem 08 of [6] with small modifications. Note

that ξ 6 0.1. Thus, since 20.9 > 1.86, for any complex v with |v| 6 1.8 we have

∑

P+(n)6x

vΩ(n,z)

n1−ξ

(

n

φ(n)

)c

=
∏

p6z

(

1 +
v

p1−ξ

(

p

p− 1

)c

+O

(

1

p1.8

))

×
∏

z<p6x

(

1 +
1

p1−ξ

(

p

p− 1

)c

+O

(

1

p1.8

))

.

Now
(

p
p−1

)c

= 1 + O(1/p) and pξ = 1 + O(ξ log p) since ξ 6
1

5 log x
6

1
5 log p

.

So

∑

P+(n)6x

vΩ(n,z)

n1−ξ

(

n

φ(n)

)c

=
∏

p6z

(

1 +
v

p
+O

(

ξ log p

p

))

×
∏

z<p6x

(

1 +
1

p
+O

(

ξ log p

p

))

≪ (log z)ℜv log x

log z
.

Let r = k/ log2 z and v = reiθ where 0 6 θ 6 2π. Then, as in [6],

∑

P+(n)6x
Ω(n)=k

1

n1−ξ

(

n

φ(n)

)c

=
1

2πrk

∫ 2π

0

e−ikθ
∑

P+(n)6x

(reiθ)Ω(n,z)

n1−ξ

(

n

φ(n)

)c

dθ

≪ log x

log z

(log2 z)
k

kk

∫ 2π

0

ek cos θ dθ

≪ log x

log z

(log2 z)
k

k!
.

Our next tool is a hybrid of the classical theorem of Hardy-Ramanujan and

the Brun-Titchmarsh inequality.
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Lemma 3.7 ([1], Theorem 1.1). Uniformly for x > 1, k > 0, q ∈ N and (a, q) =

1 with 1 6 q < x we have

∑

n6x
n≡a (mod q)

ω(n)6k

1 ≪ x

φ(q) log(10x/q)

k−1
∑

j=0

(log2(10x/q))
j

j!
.

Finally, we need crude estimates for partial sums of the Poisson distribution.

Lemma 3.8. Let v > 0 and v−1/2 6 λ 6
1
2
. Then

e−vQ(1−λ)

λ
√
v

≪
∑

(1−λ)v−1/λ6k6(1−λ)v

e−v v
k

k!
6

∑

k6(1−λ)v

e−v v
k

k!
≪ e−vQ(1−λ)

λ
√
v

and

e−vQ(1+λ)

λ
√
v

≪
∑

(1+λ)v6k6(1+λ)v+1/λ

e−v v
k

k!
6

∑

k>(1+λ)v

e−v v
k

k!
≪ e−vQ(1+λ)

λ
√
v

,

where Q(y) = y log y − y + 1.

Proof. These may be found, e.g. in Norton [8, §4].

Useful corollaries of these bounds include bounds on the “tails” of the distri-

bution of Ω(n, z) and Ω∗(n, z).

Lemma 3.9. Fix δ > 0 and suppose z is sufficiently large in terms of δ.

(i) Uniformly for x > z and 1 6 λ 6 1− δ, we have

#{m 6 x : Ω(m, z) > (1 + λ) log2 z} ≪δ
x

(log z)Q(1+λ) max(1, λ
√

log2 z)
.

(ii) Uniformly for x > z and 1 6 w 6 2− δ, we have

#{m 6 x : Ω∗(m, z) > (1 + λ) log2 z} ≪δ
x

(log z)Q(1+λ) max(1, λ
√

log2 z)
.

Proof. Without loss of generality, suppose δ < 1/10. First, the number of inte-

gers m 6 x satisfying Ω(m, z) > (1 + λ) log2 z is bounded above by

∑

(1+λ) log2 z6j6(2−δ/2) log2 z

#{m 6 x : Ω(m, z) = j}+
∑

m6x

(2−δ/2)Ω(m,z)−(2−δ/2) log2 z,

the second sum being an upper bound for the number of m 6 x with Ω(m, z) >

(2 − δ/2) log2 z. The terms in the first sum are estimated with the first part of
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Lemma 3.2 together with Lemma 3.8. The second sum is dealt with using stan-

dard estimates for sums of multiplicative functions, e.g. [6, Theorem 01], and

one obtains

∑

m6x

(2− δ/2)Ω(m,z)−(2−δ/2) log2 z ≪ x(log z)−Q(2−δ/2),

which is smaller than the other term, since Q(u) is an increasing function for

u > 1.

Part (ii) is proved similarly, using the second part of Lemma 3.2, and by

breaking up the sum at j = (3− δ/2) log2 z.

4 Tools from sieve methods

Lemma 4.1. We have #{n 6 x : P+(n) 6 y} ≪ xe−0.5(log x)/ log y uniformly for

x > y > 2.

Proof. Standard. See e.g., [9, Theorem III.5.1].

Lemma 4.2. We have #{n 6 x : P−(n) > z} ≍ x
log z

uniformly for x > 2z > 4.

The upper bound holds uniformly for x > z > 2.

Proof. Standard. Use the asymptotic formula [9, Theorem II.6.3 and (22)] when

x is large and x/z is large, the prime number theorem for x/z bounded, and

Bertrand’s postulate for small x.

Lemma 4.3. Suppose that ρ a non-negative integer valued multiplicative func-

tion with ρ(p) 6 min(κ, p − 1) for every prime p, and that for any prime p, Ωp

is some set of ρ(p) residue classes modulo p. Then

#{1 6 n 6 x : ∀p, n mod p 6∈ Ωp} ≪κ x
∏

p6x

(

1− ρ(p)

p

)

.

Proof. This is a standard application of Montgomery’s Large Sieve, see e.g. [9,

Corollay I.4.6.1], together with an estimate for the denominator in the sieve

bound, e.g. [5, Lemma 4.1]. It does not seem to appear explicitly in the liter-

ature anywhere, to the authors knowledge.

Lemma 4.4. Let z > 2, x > 2z, and suppose B and C are distinct, even, positive

integers. Then

#{h 6 x : P−(h) > z, Bh+1 prime} ≪ x

(log z)(log x)

B

φ(B)
≪ x log2(2B)

(log z)(log x)
.
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and the number of positive integers h 6 x with P−(h) > z, Bh + 1 prime and

Ch+ 1 prime is

≪ x

(log z)(log2 x)

∏

p|BC(B−C)

p

p− 1

∏

p|(B,C)

p

p− 1

≪ x(log2 BC)2

(log z)(log2 x)
.

Proof. Completely routine exercise using Lemma 4.3. If z = 2 or log z ≫ log x,

these follow from classical literature, e.g. [5, Theorem 2.2].

5 Proof of Theorem 1: upper bounds

The upper bound in part (i) is proven in [7, Theorem 1.2].

The upper bound in part (iii) is very easy. Mertens’ theorem implies that

N(x, y) 6
∑

y<p6x

x

p− 1
= x(log2 x− log2 y +O(1/ log y)).

If x/y → ∞, the right side is ∼ x log(x/y)
log x

. In the larger range y 6 x/2, the right

side is O(x log(x/y)
log x

).

Finally, we prove part (ii). Let z = x/y, γ = 1
α log 4

and w = ⌊γ log2 z⌋.

The hypotheses on α imply that w 6 log2 z. Consider first integers n 6 x with

Ω∗(n, z) > 2w. By Lemma 3.9, the number of such n is

≪ x

(log z)Q(2γ)
√

log2 z
=

x

(log x)δ+α−1−logα/ log 2
√

log2 z
.

Next, consider integers of the form n = (p− 1)m with m 6 z, Ω∗(p− 1, z) = i

and Ω∗(m) = j, where i+ j 6 2w. With i and j fixed, we may use Lemma 3.4,

provided that i 6 1.99 log2 z, together with Lemma 3.2, to bound the number of

such n by

≪
∑

m6z
Ω∗(m)=j

x(log2 z)
i

i!m(log x)(log z)
≪ x(log2 z)

i+j

i!j!(log x)(log z)
.

Summing over all possible i and j, and using Lemma 3.8, the total number of

integers counted is

≪ x

(log x)(log z)

∑

i+j62w

(log2 z)
i+j

i!j!

≪ x

(log x)(log z)

∑

h62w

(2 log2 z)
h

h!

≪ x

(log x)δ+α−1−logα/ log 2 max(1, θ)
.
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If i > 1.99 log2 z, then j 6 0.01 log2 z. Then n has the form n = (p− 1)m with

Ω∗(m, z) 6 0.01 log2 z. The number of such integers n is bounded above by

∑

m6z
Ω∗(m,z)60.01 log2 z

π(x/m) ≪ x

log x

∑

m6z
Ω∗(m,z)60.01 log2 z

1

m

≪ x

log x
(log z)0.01+0.01 log 100

≪ x

(log x)0.9
,

using Lemma 3.2, which is much smaller than the bound for the other cases. This

completes the proof of the upper bound in part (ii).

6 Proof of Theorem 1 (iii) lower bound when θ →
−∞

Here we prove the lower bound claim in part (iii) of the theorem, except in the

case where θ is positive and bounded. We begin with a lemma, which is similar

to Lemma 3.9.

Lemma 6.1. Uniformly for z sufficiently large and 0 6 λ 6 0.7, we have

∑

P+(m)6z
Ω(m)>(1+λ) log2 z

1

φ(m)
≪ (log z)1−Q(1+λ)

max(1, λ
√

log2 z)
.

Proof. Let w = (1+ λ) log2 z. We use Lemma 3.6 to take care of the summands

with w 6 Ω(m) 6 1.8 log2 z and a simple “Rankin trick” for the rest, as in the

proof of Lemma 3.6. We obtain

∑

P+(m)6z
Ω(m)>w

1

φ(m)
≪

∑

w6j61.8 log2 z

(log2 z)
j

j!
+

∑

P+(m)6z

1.8Ω(m)−1.8 log2 z

φ(m)
.

Use Lemma 3.8 for the first sum. The second sum equals

(log z)−1.8 log 1.8
∏

p6z

(

1 +
1.8

p− 1
+

1.82

p(p− 1)
+ · · ·

)

≪ (log z)1−Q(1.8),

which is smaller than the bound claimed.

Let z = x/y. First assume that α 6 1/3. Let r(n) be the number of ways

to write n = (p − 1)m where y < p 6 x is prime and m is any integer. Note

that m 6 z is very small. By the upper bound calculation, M1 :=
∑

n6x r(n) ∼
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x log z
log x

if z → ∞ (and M1 ≫ x log z
log x

in the larger range y 6 x/2). The quantity

M ′
2 =

∑

n6x r(n)
2 − r(n) counts solutions of (p1 − 1)m1 = (p2 − 1)m2 with

p1 6= p2. Put a = (m1,m2), m1 = ab, m2 = ac, g = (p1 − 1, p2 − 1), so that

p1− 1 = gc and p2− 1 = gb. Note that abc 6 z2 ≪ x1/10. By Lemma 4.4, given

a, b, c the number of choices for g is O(x(log2 x)
2

abc log2 x
). Hence

M ′
2 ≪

x(log2 x)
2

log2 x

∑

a,b,c6z

1

abc
≪ x(log2 x)

2

(log x)2−3α
= o(M1).

By simple inclusion-exclusion, N(x, y) > M1 −M ′
2 ∼ x log z

log x
if z → ∞, and in

the larger range y 6 x/2 we have N(x, y) > M1 −M ′
2 ≫ x log z

log x
.

Now assume that α > 1/3. It follows easily from θ → −∞ that z → ∞
as well. Let r(n) be the number of ways to write n = (p − 1)m, with p prime,

p > y, and max(Ω(m),Ω(p− 1, z)) 6 w, where w =
⌊

log2 z − (θ/2)
√

log2 z
⌋

.

The hypotheses on α imply that log2 z 6 w 6 1.7 log2 z. We have

(2)

M1 =
∑

m6z

(

π(x/m)−#{p 6 x/m : Ω(p−1, z) > w}
)

−O

(

∑

m6z
Ω(m)>w

π(x/m)

)

.

Applying Lemma 6.1, we quickly find that the big-O term in (2) is

≪ x

log x

∑

m6z
Ω(m)>w

1

m
≪ x(log z)1−Q(w/ log2 z)

(−θ) log x
= o

(

x log z

log x

)

.

Next, consider a prime p 6 x/m with Ω(p − 1, z) > w. The number of primes

with P+(p − 1) 6 z is, by Lemma 4.1, O(x/(m log10 x)). If P+(p − 1) > z,

let k be the largest factor of p − 1 which is composed only of primes 6 z, so

that k 6 x/mz and Ω(k) > w. By Lemma 4.4, the number of such primes p is,

for a given k, O( x
mφ(k) log x log z

). Thus the total number of such primes is, using

Lemma 6.1, bounded above by

≪ x

m log x(log z)

∑

P+(k)6z
Ω(k)>w

1

φ(k)
≪ x(log z)−Q(w/ log2 z)

(−θ)m log x
= o

(

x

m log x

)

.

We also have that

∑

m6z

π(x/m) ∼ x

log x

∑

m6z

1

m
∼ x log z

log x
,

and therefore conclude from (2) that

(3) M1 ∼
x log z

log x
(θ → −∞).
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Arguing as in [7], M ′
2 :=

∑

n6x r(n)
2 − r(n) counts the number of solutions

of (p1−1)m1 = (p2−1)m2 with Ω(pi−1, z) 6 w, Ω(mi) 6 w for i = 1, 2, and

p1 6= p2. We may assume p1 < p2. Again put a = (m1,m2), m1 = ab, m2 = ac,

g = (p1 − 1, p2 − 1), so that p1 − 1 = gc and p2 − 1 = gb. Let g = dh, where

P+(d) 6 z < P−(h). Observe that d 6 zΩ(d) 6 zw 6 x1/10. Given a, b, c, d, we

bound the number of h with hcd + 1 and hbd + 1 both prime using Lemma 4.4,

and get

M ′
2 ≪

x(log2 z)
2

(log2 x) log z

∑

a,b,c,d6z
Ω(abcd)62w

1

abcd
.

We bound the quadruple sum over a, b, c, d with another application of the Rankin

trick. Since

∑

a,b,c,d6z
Ω(abcd)62w

1

abcd
6

∑

a,b,c,d6z

22w−Ω(abcd)

abcd
6 22w

∑

P+(abcd)6z

2−Ω(abcd)

abcd

= 22w
∏

p6z

(

1− 1

2p

)−4

≪ 22w(log z)2

≪ (log z)2+log 4 exp{(log 4)(−θ/2)
√

log2 z},

we get

M ′
2 ≪

x log z

log x

(log z)log 4

log x
(log2 z)

2 exp{(log 4)(−θ/2)
√

log2 z}

=
x log z

log x
(log2 z)

2 exp
{

−θ(log 4)
(

−
√

log2 x+ 1
2

√

log2 z
)}

= o(M1)

as θ → −∞. The theorem now follows upon comparing with (3).

7 Proof of Theorem 1 lower bounds (i), (ii), and (iii)

when −θ is bounded

This portion of the argument utilizes the second part of the sieve bound in Lemma

4.4. Complicating the analysis are the product factors in the conclusion of the

lemma, which have the shape
∏

j
Cj

φ(Cj)
for certain numbers Cj . We need to esti-

mate accurately averages of these type of products over particular sets of integers,

which have the shape

S(z, Y ;w; ξ) :=
∑

a,b,c6z
P+(d)6Y
Ω(abcd)6w

b>c

1

abcd1−ξ

(

d

φ(d)

)2
b

φ(b)
· c

φ(c)
· b− c

φ(b− c)
.
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The only messy part to take care of is the fraction b−c
φ(b−c)

.

Lemma 7.1. Suppose that z > e3, 2 6 Y 6 z, 1 6 w 6 1.5 log2 z and

0 6 ξ 6
1

10 log Y
. (i) If Y 6 exp{(log z)0.99}, then

S(z, Y ;w; ξ) ≪ (log z)5.

(ii) If Y > exp{(log z)0.99}, then

S(z, Y ;w; ξ) ≪ (4 log2 z)
w

w!
.

Proof. Part (i) is immediate from the elementary bounds n/φ(n) ≪ log2 P
+(n),

∑

n6z 1/n ≪ log z and

∑

P+(d)6Y

1

d1−ξ
≪
∏

p6Y

(

1 +
pξ

p

)

6 exp

{

∑

p6Y

1 +O(ξ log p)

p

}

≪ log Y,

since ξ 6
1

10 log Y
6

1
10 log p

for all p 6 Y .

For part (ii), first apply Cauchy’s inequality, and get that S(z, Y ;w; ξ) 6

S
1/2
1 S

1/2
2 , where

S1 =
∑

a,b,c,d

1

abcd1−2ξ

(

d

φ(d)

)4(
b

φ(b)

)2(
c

φ(c)

)2

,

S2 =
∑

a,b,c,d

1

abcd

(

b− c

φ(b− c)

)2

,

and in each sum we have the same conditions on a, b, c, d as in the definition

of S(z, Y ;w; ξ). We may quickly deal with S1 using Lemma 3.6 repeatedly. We

obtain

(4) S1 ≪
∑

r+s+t+u6w

(log2 z)
r+s+t(log2 Y )u

r!s!t!u!
6
∑

j6w

(4 log2 z)
j

j!
≪ (4 log2 z)

w

w!
,

where we used the lower bound on Y which implies that u 6 w 6 1.5 log2 z 6

1.8 log2 Y and Y > e2.

For S2, write ( f
φ(f)

)2 =
∑

l|f g(l), where g is multiplicative, supported on

squarefree numbers and g(p) = 2p−1
(p−1)2

for primes p. Let l0 = ⌊log5 z⌋. Recalling

that (b, c) = 1, we then have

S2 =
∑

l

g(l)
∑

a,b,c,d
b>c,l|(b−c)

1

abcd

=
∑

l6l0

g(l)
∑

r+s+t+u6w

∑

a6z
Ω(a)=r

1

a

∑

P+(d)6Y
Ω(d)=s

1

d

∑

c6z
Ω(c)=u
(c,l)=1

1

c

∑

c<b6z
Ω(b)=t

b≡c (mod l)

1

b
+ E,
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where the “error term” E satisfies

E 6
∑

l>l0

g(l)
∑

a,b,c6z,P+(d)6z
b>c,l|(b−c)

1

abcd

≪
∑

l>l0

3ω(l)

l
(log z)2

∑

c6z

1

c

∑

c<b6z
b≡c (mod l)

1

b

≪
∑

l>l0

3ω(l)

l

(log z)4

l
≪ (log z)4

l0.990

≪ 1.

By Lemma 3.7 and partial summation (since Ω(c) = u implies that ω(c) 6 u),

∑

c<b6z
Ω(b)=t

b≡c (mod l)

1

b
≪
∫ z

c+l

1

φ(l)s log(10s/l)

t−1
∑

j=0

(log2(10s/l))
j

j!
ds

≪ 1

φ(l)

t
∑

j=0

(log2 y)
j

j!
.

Applying Lemma 3.2 to the sums over a, b and d in S2, we obtain that

S2 ≪
∑

l6l0

g(l)

φ(l)

∑

r+s+t+u6w

t
∑

j=0

(log2 y)
r+s+u+j

r!s!u!j!

≪
∑

r+s+u+j6w

(log2 y)
r+s+u+j

r!s!u!j!
(w − r − s− u− j + 1)

=
∑

v6w

(w − v + 1)
(4 log2 y)

v

v!
.

Since w − v + 1 ≪ 2w−v, we quickly arrive at

(5) S2 ≪
(4 log2 z)

w

w!
+ 1 ≪ (4 log2 z)

w

w!
.

Combining (4) and (5) gives the lemma.

Now we prove the lower bound in Theorem 1. Write z = min(y, x/y), γ =

min(1, 1
α log 4

) and put w = 2⌊γ log2 z⌋. Notice that γ = 1
α log 4

unless θ 6 0 and

we are in case (iii).

We may assume without loss of generality that (a) y 6 x1/11 or that (b)

y > x10/11, for if x1/11 < y < x10/11, we have N(x, y) > N(x, x10/11) and the

result follows from the lower bound for the case y = x10/11. Consequently, in

either case we have z 6 x1/11. We may also assume that x and y are sufficiently

large so that z > e3.
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Let r(n) denote the number of ways to factor n as n = (p− 1)m, where p is

prime, y < p < y1.1, Ω((p − 1)m, z) 6 w, and furthermore we have in case (a)

that m = kh with k 6 y1/10 and P−(h) > y1.1.

By Cauchy’s inequality,

(6)

N(x, y) > #{n 6 x : r(n) > 0} >
M2

1

M2

, M1 :=
∑

n6x

r(n), M2 :=
∑

n6x

r(n)2.

First we bound M1 from below. Start with case (a). Given p and k, we have

(p − 1)k 6 y1.2 6 x0.2, so by Lemma 4.2, the number of possible choices for h

is ≫ x
pk log y

. Hence

M1 ≫
x

log y

∑

y<p6y1.1

k6y1/10

Ω(k(p−1))6w

1

kp
.

We note that α = 1 − O(1/ log2 x) and w = log2 y
log 2

+ O(1). Consider numbers

with Ω(k) = m1, Ω(p − 1) = m2 and m1 + m2 ∈ {w − 2, w − 1, w}. With

m1 6 0.9w − 2 fixed, Lemma 3.5 implies that

∑

y<p6y1.1

w−2−m16Ω(p−1)6w−m1

1

p
≫ (log2 y)

w−2−m1

(w − 2−m1)! log y
.

By Lemma 3.1,
∑

k6y1/10

Ω(k)=m1

1

k
≫ (log2 y)

m1

m1!

uniformly in m1. Putting these bounds together and summing on m1, we obtain

M1 ≫
x(log2 y)

w−2

log2 y

∑

16m160.9w−2

1

m1!(w − 2−m1)!

≫ x(log2 y)
w−22w−2

(log2 y)(w − 2)!
≫ x

(log y)δ
√

log2 y
.

(7)

In case (b), we similarly use Lemmas 3.1 and 3.5 to bound separately the

number of n with Ω(m) = j and Ω(p−1, z) ∈ {k−2, k−1, k} with j+k 6 w.

This gives

M1 >
1

3

∑

j+k6w
0.1w6k60.9w

∑

m6z
Ω(m)=j

#{p 6 x/m : Ω(p− 1, z) ∈ {k − 2, k − 1, k}}

≫
∑

j+k6w
0.1w6k60.9w

x(log2 z)
j+k−2

(log x)(log z)j!(k − 2)!
.
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Next, gather together the summands with j+k = l for fixed l > w/2. We obtain

M1 ≫
x

(log x)(log z)

∑

w/26l6w−2

(log2 z)
l

l!

∑

k6l
0.1w6k60.9w

(

l

k − 2

)

≫ x

(log x)(log z)

∑

w/26l6w−2

(2 log2 z)
l

l!

≫ x

log x(log z)

e(2 log2 z)(1−Q(γ))

max(1, θ)

=
x

max(1, θ)(log x)(log z)1+2γ log γ−2γ
.

(8)

We next bound from above the quantity M ′
2 = M2 − M1. In case (a), M ′

2

counts the number of solutions of

(p1 − 1)k1h = (p2 − 1)k2h 6 x,

with pj prime, y < pj < y1.1, kj < y1/10, Ω(kj) + Ω(pj − 1) 6 w (j = 1, 2),

P−(h) > y1.1 and p1 6= p2. We may assume that p1 < p2. Given p1, p2, k1, and

k2, there are

O

(

x

(p1 − 1)k1 log y

)

choices for h by Lemma 4.2. Write a = (k1, k2), put k1 = ab, k2 = ac, g =

(p1 − 1, p2 − 1) so that p1 − 1 = cg, p2 − 1 = bg. Note that g > y9/10 and b > c.

Let t = P+(g), g = td. Then (p1 − 1)k1 = abcdt. Suppose that T 6 t < 2T ,

where T is a power of 2. By Lemma 4.4, if a, b, c, d, T are fixed, the number of t

such that t, cdt+ 1 and bdt+ 1 are all prime is bounded above by

≪ T

log3 T

(

d

φ(d)

)2
b

φ(b)
· c

φ(c)
· b− c

φ(b− c)
.

If T > y0.1, set ξ = 0, and otherwise let ξ = 1
10 log(2T )

. In the latter case d > y0.8

and thus in either case we have

1

d
6

1

y0.8ξ
· 1

d1−ξ
.

Hence,

M ′
2 ≪

x

log y

∑

T=2j6y1.1

1

y0.8ξ log3 T
S(y1.1; 2T ;w; ξ).

If T < exp{(log y)0.99}, then y0.8ξ > (log y)100, hence by Lemma 7.1, these

summands contribute O(x/ log80 y) to the above right side. For each T satisfying

T > exp{(log y)0.99}, we see from Lemma 7.1 that

S(y1.1; 2T ;w; ξ)

y0.8ξ log3 T
≪ x log2−δ y

√

log2 y

1

(log3 T )e0.08 log y/ log(2T )
.
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Summing over T which are powers of two, we get

(9) M ′
2 ≪

x

(log y)δ
√

log2 y
.

In case (b), M ′
2 equals twice the number of solutions of the equation

(p1 − 1)m1 = (p2 − 1)m2 6 x,

with pi > y, p1 < p2, mi 6 z = x/y, and Ω((pi − 1)mi, z) 6 w for i = 1, 2. As

in case (i), we write a = (m1,m2), m1 = ab, m2 = ac, and note that b > c. Also

write (p1−1, p2−1) = dh, where P+(d) 6 z < P−(h). Then p1−1 = cdh and

p2− 1 = bdh. There are two cases to consider: d 6
√
x and d >

√
x. If d 6

√
x,

we have abcd 6 x1/2z2 6 x15/22. Using Lemma 4.4 to bound the number of

possible h for a given quadruple (a, b, c, d), and then applying Lemma 7.1 and

Stirling’s formula, we find that the number of solutions in this case is bounded

by

≪ x

(log z)(log2 x)
S(z; z;w; 0)

≪ x

(log z)(log2 x)

(4 log2 z)
w

w!

≪ x

(log x)2(log z)1+2γ log γ−2γ−2γ log 2
√

log2 z
.

(10)

Now assume d >
√
x and let t = P+(d), d = d′t. We further subdivide into two

subcases. If abcd′h 6 x3/4, then by Lemma 4.4, for each quintuple (a, b, c, d′, h)

the number of possible t 6 x
abcd′h

with t, tbd′h+ 1 and tcd′h+ 1 all prime (with

b > c) is

≪ x

abcd′h log3 x

(

d′

φ(d′)

)2
b

φ(b)
· c

φ(c)
· b− c

φ(b− c)
.

Summing over all possible a, b, c, d′, h we see that the above is

≪ x

(log2 x)(log z)
S(z; z;w; 0)

and we get the same upper bound as in (10) for the number of solutions. When

abcd′h > x3/4, we note that t > P+(d′) and thus abcd′h 6 x/P+(d′). By

Lemma 4.4, for each quintuple (a, b, c, d′, h) the number of possible t is

≪ x

abcd′h log3 P+(d′)

(

d′

φ(d′)

)2
b

φ(b)
· c

φ(c)
· b− c

φ(b− c)
.

Suppose that V < P+(d′) 6 V 2, where V is of the form V = x1/2l for some

positive integer l. Put ξ = 1
10 log(V 2)

. Since t < x1/4, d′ > x1/4 and it follows that

1

d′
6

1

xξ/4(d′)1−ξ
.
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By Mertens’ estimate,
∑

h6x
P−(h)>z

1

h
≪ log x

log z
.

Summing over all possible a, b, c, d′, we find that the total number of solutions

counted in this subcase is at most

≪ x log x

log z

∑

V=x1/2l6z2

1

xξ/4 log3 V
S(z;V 2;w; ξ).

When V 6 exp{(log z)0.99}, xξ/4 > (log x)100 and the number of solutions

is O(x/ log80 x) by Lemma 7.1. Otherwise, using Lemma 7.1, the number is

bounded above by

≪ x log x

log z

∑

V=x1/2l6z2

1

xξ/4 log3 V

(4 log2 z)
w

w!

≪ x

(log x)2(log z)1+2γ log γ−2γ−2γ log 2
√

log2 z

∑

l>1

23l

exp{2l−7}

≪ x

(log x)2(log z)1+2γ log γ−2γ−2γ log 2
√

log2 z
.

Recalling the bound (10) for the number of solutions with d 6
√
x, we find that

M ′
2 ≪

x

(log x)2(log z)1+2γ log γ−2γ−2γ log 2
√

log2 z

6
x

(log x)(log z)1+2γ log γ−2γ
√

log2 z
.

(11)

since γ 6
1

α log 4
.

Inserting (7) and (9) into (6) gives the desired bound for part (i). Inserting (8)

and (11) into (6) gives the desired bound for part (ii), and also handles the case

when −θ is bounded in part (iii).
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