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Abstract. We prove that real numbers can be well-approximated by the nor-
malized Fourier coefficients of newforms.

1. Introduction

Diophantine approximation results with special sequences shed light on the struc-
ture of these sequences. For a variety of results about approximating real numbers
by rational numbers with multiplicative restrictions on the denominator, the reader
is referred to [3], [4], [10] and the references therein. In this note our objective is
to study Diophantine approximation for an important class of multiplicative arith-
metical functions arising from modular forms, especially newforms. Recently, the
authors studied Diophantine approximation problems for a wide class of additive
and multiplicative functions which have regular behavior on primes [2]. Specifically,
for any given δ > 0 and λ > 0, let Fδ,λ be the set of all additive functions f : N → R
satisfying the following properties:

(a) We have ∑
p prime
f(p)>0

f(p) = ∞.

(b) There exists a constant C(f) > 0 depending on f such that

|f(pv)| ≤ C(f)

pδ
,

for any prime number p and v ≥ 1.
(c) There exists t0(f) > 0 depending on f such that for any 0 < t ≤ t0(f) there

is a prime number p satisfying

t− t1+λ ≤ f(p) ≤ t.
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We obtained strong simultaneous Diophantine approximation results concerning
values of f ∈ Fδ,λ along various sequences. In particular, our results in [2] can be

applied to the additive functions log(φ(n)
n

) and log(σ(n)
n

) where φ is Euler’s function
and σ is the sum of divisors function. As a consequence, we solved a problem of
Erdös [8] about the size of |φ(n+1)−φ(n)| and |σ(n+1)−σ(n)| for infinitely many n
and also generalized Diophantine approximation results of Erdös and Schinzel [18],
[9] and Wolke [21] to the class Fδ,λ. The results from [2] make use of strong results
from modern sieve theory.

In this note we investigate Diophantine approximation with normalized coeffi-
cients of modular forms using an approach completely different than that of [2].
More specifically, we consider a newform (or Hecke eigenform)

f(z) =
∞∑

n=1

af (n)e2πinz

with integer coefficients for the congruence subgroup Γ0(N), of even integer weight
k, and try to approximate a given real number β using the normalized Fourier
coefficients

a(n) =
af (n)

n
k−1
2

.

It is well known that these coefficients are multiplicative, and, by Deligne’s work
[6], we also know that for any prime p, there exists a unique angle 0 ≤ θp ≤ π such
that

a(p) = 2 cos θp.

Although the behavior of a(n) is irregular, the size of a(n) is very regular on average
by the Rankin-Selberg estimate∑

n≤x

|a(n)|2 = Afx + O(x
3
5 ),

where Af is a constant depending only on f . The distribution of the angles θp is
predicted by the unproven Sato-Tate conjecture. By showing that there are many
primes with |a(p)| a bit larger than 1, strong Ω-type results for a(n) in the case
of the full modular group SL2(Z) have been obtained by Joris [12], Rankin [16],
Balasubramanian and Murty [5], Murty [13], and Adhikari [1]. Returning to our
Diophantine approximation problem, we prove the following result.

Theorem 1. Let

f(z) =
∞∑

n=1

af (n)e2πinz

be a newform with integer coefficients for Γ0(N), of even integer weight k. Assume
that ∑

p

a(p)2
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is divergent, where the summation is over all primes. Then for any real number β,
there exists a positive constant Cf,β depending only on f and β, such that

|a(n)− β| ≤ Cf,β

log n

holds for infinitely many positive integers n.

We show, for two families of newforms, that
∑

p a(p)2 diverges, and deduce the
following corollaries.

Corollary 1. Let E be an elliptic curve over Q with conductor N and let

fE(z) =
∞∑

n=1

aE(n)e2πinz

be the weight 2 newform for Γ0(N) associated to E. Then for any real number β,
there exists a positive constant CE,β depending only on E and β, such that∣∣∣∣aE(n)√

n
− β

∣∣∣∣ ≤ CE,β

log n

holds for infinitely many positive integers n.

Corollary 2. Let

f(z) =
∞∑

n=1

af (n)e2πinz

be a newform with integer coefficients for the full modular group SL2(Z), of even
integer weight k. Then for any real number β, there exists a positive constant Cf,β

depending only on f and β, such that

|a(n)− β| ≤ Cf,β

log n

holds for infinitely many positive integers n.

A special case of Corollary 2 is of particular interest because of its historical role.

Corollary 3. Let τ(n) be the Ramanujan Tau function, defined as the nth Fourier
coefficient of

∆(z) = q

∞∏
m=1

(1− qm)24, q = e2πiz.

For any real β, there is a constant Cβ so that the inequality∣∣∣∣ τ(n)

n11/2
− β

∣∣∣∣ ≤ Cβ

log n

has infinitely many solutions.
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Corollary 3 follows since ∆(z) is a newform of weight k = 12.

Although the distribution of the angles θp over primes p is poorly understood
and we are nowhere close to being able to prove a property such as (c), for a fixed
prime p the behavior of a(pr) for r ≥ 1 is very regular. Specifically,

(1.1) a(pr) =
sin(r + 1)θp

sin θp

and this relation will play a key role in our argument.

2. Proof of Theorem 1

Let

f(z) =
∞∑

n=1

af (n)e2πinz, Im z > 0,

be a newform of even weight k, with integer coefficients for Γ0(N). For simplicity,

let us denote a(n) =
af (n)

n
k−1
2

for any positive integer n. By the work of Deligne [6] on

Weil conjectures, we know that for any prime number p,

a(p) = αp + αp

for some αp ∈ C with |αp| = 1. Using the recursion

af (p
r+1) = af (p)af (p

r)− pk−1af (p
r−1)

it easily follows by induction on r that

a(pr) =
αr+1

p − αp
r+1

αp − αp

=
sin(r + 1)θp

sin θp

,

where αp = eiθp = cos θp + i sin θp with 0 ≤ θp ≤ π. We need information on the set

of primes p satisfying the condition that θp

2π
is irrational. For such p, the numbers

sin(r+1)θp are dense in [−1, 1] and we will exploit this fact in constructing numbers
n with a(n) close to β.

Lemma 1. If p ≥ 5 and af (p) 6= 0, then θp

2π
is irrational.

Proof. Let p be a prime such that af (p) 6= 0 and θp

2π
is rational, so that we may

write θp

2π
= Ap

Bp
, where Bp ≥ 1 and (Ap, Bp) = 1. Since αp = e

2πi
Ap
Bp is a primitive

Bpth root of unity, we have |Q(αp) : Q| = φ(Bp). On the other hand, αp is a zero
of the quartic polynomial

P (z) = (z − αp)(z − αp)(z + αp)(z + αp)

= (z2 − a(p)z + 1)(z2 + a(p)z + 1) = z4 + (2− a2(p))z2 + 1.
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Since P (z) has rational coefficients, |Q(αp) : Q| ≤ 4. Hence ϕ(Bp) ≤ 4, and

therefore Bp ∈ {1, 2, 3, 4, 5, 6, 8, 12}. We deduce that, if θp

2π
is rational, then

af (p)

p
k−1
2

= a(p) = 2 cos
(
2π

Ap

Bp

)
∈

{
0,±1,±2,±

√
2,±

√
3,±

(√
5− 1

2

)}
.

Since af (p) is a nonzero integer and k is even, we conclude that p ∈ {2, 3}. �

Let Zf (x) = |{p ≤ x : af (p) = 0}|. We remark that, if f has complex multi-
plication, then by the works of Deuring [7] and Ribet [17], Zf (x) is asymptotic to
1
2
π(x), and if f does not have complex multiplication, then Serre [20] proved that

Zf (x) �ε x(log x)−3/2+ε for any ε > 0; see also Murty and Murty [14].

Lemma 2. The product ∏
θp
2π
6∈Q

1

| sin θp|

diverges.

Proof. For any p with θp 6∈ {0, π},

1

| sin θp|
=

1√
1− cos2 θp

=

(
1

1− a(p)2/4

)1/2

≥ exp

(
a(p)2

8

)
.

Writing ∑
p≤x

a(p)2 =
∑
p≤x

a(p)=0

a(p)2 +
∑
p≤x

a(p) 6=0
θp
2π
∈Q

a(p)2 +
∑
p≤x

θp
2π

/∈Q

a(p)2

and observing that the first sum on the right side is zero, the second sum is finite
by Lemma 1, and using our assumption that

∑
p a(p)2 is divergent, we obtain that

the sum
∑

θp
2π

/∈Q a(p)2 is divergent. Hence,
∏

θp
2π

/∈Q | sin θp|−1 also diverges. �

The following is a standard result in Diophantine approximation, see Theorem
10.1 in Chapter 10 of [11].

Lemma 3. For any irrational α and real λ, there are infinitely many positive
integers m such that ‖mα + λ‖ ≤ 3/m. Here ‖x‖ denotes the distance from x to
the nearest integer.

Proof of Theorem 1. If p is a prime such that θp

2π
is irrational, then e.g. by Lemma

3 the numbers

a(pr) =
sin(r + 1)θp

sin θp



6 EMRE ALKAN, KEVIN FORD AND ALEXANDRU ZAHARESCU

are dense in the interval [− 1
| sin θp| ,

1
| sin θp| ]. By Lemma 2, given a real number β,

there are distinct primes p1, p2, . . . , pu and powers r1, . . . , ru with

a(pr1
1 )a(pr2

2 ) · · · a(pru
u ) > |β|.

Let q be a prime, distinct from p1, · · · , pu, and for which θq

2π
is irrational. For any

m ≥ 1, define nm = pr1
1 · · · pru

u qm−1, and note that a(nm) = a(pr1
1 ) · · · a(pru

u )a(qm−1).
If we let

A =
a(pr1

1 ) · · · a(pru
u )

sin θq

,

then a(nm) = A sin(mθq) for any m ≥ 1. By our choice of pr1
1 , . . . , pru

u and q, we
know that |A| > |β|, so there is an angle 0 ≤ δ < 2π such that β = A sin δ. Hence,
to approximate β by a(nm), it is enough to approximate δ by mθq modulo 2π. By
Lemma 3, there are infinitely many m for which∥∥∥∥m θq

2π
− δ

2π

∥∥∥∥ ≤ 3

m
.

In order to finish the proof, note that

|a(nm)− β| = |A| | sin(mθq)− sin δ| ≤ 6π|A|
m

.

On the other hand, using the relation nm = pr1
1 · · · pru

u qm−1 we see that m ≥ c log nm

for some constant c > 0 depending on p1, . . . , pu, r1, . . . , ru and q. Since these
numbers are fixed, only depending on β and the newform f , combining the above
results we obtain

|a(nm)− β| �f,β
1

log nm

,

for infinitely many positive integers nm.

3. Proof of Corollaries 1 and 2

To prove Corollary 1, it suffices to show that∑
p

aE(p)2

p

is divergent. Note that if this sum were convergent, then the set {p : aE(p) 6= 0}
would have density zero in the set of primes and therefore almost all primes would
be supersingular primes for E. This is a contradiction, since in the case when E
has complex multiplication, the results of Deuring [7] and Ribet [17] show that

ZE(x) = |{p ≤ x : aE(p) = 0}|

is asymptotic to 1
2
π(x) and if E does not have complex multiplication, then Serre

[20] proved that ZE(x) = o(π(x)).
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Next, we prove Corollary 2. By the works of Joris [12] and Rankin [16] following
the classical Rankin-Selberg theory [15], [19] we know that∑

p≤x

a(p)2 log p

is asymptotic to x as x →∞. It follows easily that∑
p≤x

a(p)2

is asymptotic to x
log x

and therefore ∑
p

a(p)2

is divergent.
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[8] P. Erdős, Some remarks on Euler’s φ function, Acta Arith. 4 (1958), 10–19.
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