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Let i(n, k) be the proportion of permutations π ∈ Sn having an invariant set of size k. In this note we adapt arguments

of the second author to prove that i(n, k) ≍ k−δ(1 + log k)−3/2 uniformly for 1 6 k 6 n/2, where δ = 1− 1+log log 2
log 2

. As

an application we show that the proportion of π ∈ Sn contained in a transitive subgroup not containing An is at least

n−δ+o(1) if n is even.

1 Introduction and notation

Let k, n be integers with 1 6 k 6 n/2 and select a permutation π ∈ Sn, that is to say a permutation of {1, . . . , n},

at random. What is i(n, k), the probability that π fixes some set of size k? Equivalently, what is the probability

that the cycle decomposition of π contains disjoint cycles with lengths summing to k?

Somewhat surprisingly, i(n, k) has only recently been at all well understood in the published literature. The

lower bound limn→∞ i(n, k) ≫ log k/k is contained in a paper of Diaconis, Fulman and Guralnick [5], while the

upper bound i(n, k) ≪ k−1/100 may be found in work of  Luczak and Pyber [9]. (These authors did not make

any special effort to optimise the constant 1/100, but their method does not lead to a sharp bound.) Here and

throughout X ≪ Y means X 6 CY for some constant C > 0. The notation X ≍ Y will be used to mean X ≪ Y

and X ≫ Y . In the limit as n → ∞ with k fixed, a much better bound was very recently obtained by Pemantle,

Peres, and Rivin [10, Theorem 1.7]. They prove that limn→∞ i(n, k) = k−δ+o(1), where

δ = 1 −
1 + log log 2

log 2
≈ 0.08607.
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They also note a connection between the problem of estimating i(n, k) and a certain number-theoretic problem,

an analogy that will be also be key to our work. The same connection has also been observed by Diaconis and

Soundararajan [11, page 14].

Let us explain the connection with number theory. There is a well known analogy (see, for example, [1])

between the cycle decomposition of a random permutation and the prime factorisation of a random integer.

Specifically, if π is a random permutation with cycles of lengths a1 6 a2 6 . . . , and if n is a random integer

with prime factors p1 < p2 < . . . then one expects both sequences log a1, log a2, . . . and log log p1, log log p2, . . .

to behave roughly like Poisson processes with intensity 1. (Of course, this does not make sense if taken too

literally, since the ai are all integers, and the pi are all primes, plus we have not specified exactly what

we mean by either a “random permutation” or a “random integer”.) The condition that ai1 + · · · + aim = k

(that is, that a particular set of cycle lengths sum to k) is, because the ai are all integers, equivalent to

k 6 ai1 + · · · + aim < k + 1. Pursuing the analogy between cycles and primes, we may equate this with the

condition k 6 log pi1 + · · · + log pim 6 k + 1, or in other words ek 6 pi1 · · · pim 6 ek+1. This then suggests that

we might compare i(n, k) with ĩ(n, k), the probability that a random very large integer (selected uniformly from

[en, en+1), say) has a divisor in the range [ek, ek+1).

This last problem has a long history, originating as a problem of Besicovitch [3] in 1934, and was solved (up

to a constant factor) by the second author [6, 7]. In those papers it was shown that ĩ(n, k) ≍ k−δ(1 + log k)−3/2

uniformly for k 6 n/2, where δ is the constant mentioned above. In this paper we use the same method to prove

the same rate of decay for i(n, k).

Theorem 1.1. i(n, k) ≍ k−δ(1 + log k)−3/2 uniformly for 1 6 k 6 n/2.

Since i(n, n− k) = i(n, k), Theorem 1.1 establishes the order of i(n, k) for all n, k.

Theorem 1.1 has implications for a conjecture of Cameron related to random generation of the symmetric

group. Cameron conjectured that the proportion of π ∈ Sn contained in a transitive subgroup not containing An

tends to zero: this was proved by  Luczak and Pyber [9] using their bound i(n, k) ≪ k−1/100. Cameron further

guessed that this proportion might decay as fast as n−1/2+o(1) (see [9, Section 5]). However Theorem 1.1 has

the following corollary.

Corollary 1.2. The proportion of π ∈ Sn contained in a transitive subgroup not containing An is ≫

n−δ(log n)−3/2, provided that n is even and greater than 2.

Proof . By Theorem 1.1 the proportion of π ∈ Sn fixing a set B1 of size n/2 is ≍ n−δ(log n)−3/2. Such a

permutation π must also fix the set B2 = {1, . . . , n} \B1, and thus preserve the partition {B1, B2} of {1, . . . , n}.

Since |B1| = |B2|, the set of all τ preserving this partition is a transitive subgroup not containing An.

We believe that a matching upper bound O(n−δ(log n)−3/2) holds in Corollary 1.2, and that for odd n there

is an upper bound of the form O(n−δ′) for some δ′ > δ. We intend to return to this problem in a subsequent

paper.
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Whether or not a permutation π has a fixed set of size k depends only on the vector c =

(c1(π), c2(π), . . . , ck(π)) listing the number of cycles of length 1, 2, . . . , k, respectively, in π. Crucial to our

argument is the well known fact (see, e.g., [1]) that for fixed k, c has limiting distribution (as n → ∞) equal to

Xk = (X1, X2, . . . , Xk), where the Xi are independent and Xi has Poisson distribution with parameter 1/i (for

short, Xi
d
= Pois(1/i)). A simple corollary is that the limit i(∞, k) = limn→∞ i(n, k) exists for every k. Define,

for any finite list c = (c1, c2, . . . , ck) of non-negative integers, the quantity

L (c) = {m1 + 2m2 + · · · + kmk : 0 6 mj 6 cj for j = 1, 2, . . . , k
}
. (1)

We immediately obtain that

i(∞, k) = P(k ∈ L (Xk)). (2)

This makes it easy to compute i(∞, k) for small values of k. For example we have the extremely well known

result (derangements) that

i(∞, 1) = P(X1 > 1) = 1 −
1

e
≈ 0.6321,

and the less well known fact that

i(∞, 2) = 1 − P(X1 = X2 = 0) − P(X1 = 1, X2 = 0) = 1 − 2e−3/2 ≈ 0.5537.

When k is allowed to grow with n, the vector c is still close to being distributed as Xk, the total variation

distance between the two distributions decaying rapidly as n/k → ∞ [2]. This fact is, however, not strong enough

for our application. We must establish an approximate analog of (2), showing that i(n, k) has about the same

order as P(k ∈ L (Xk)), uniformly in k 6 n/2.

Instead of directly estimating the probability of a single number lying in L (Xk), however, we apply a local-

to-global principle used in [6, 7] to reduce the problem to studying the size of L (Xk). We expect a positive

proportion of the elements of L (Xk) to lie in the range [ 1
10k, 10k] (say). The reason for this is that we expect

to find ∼ 1 index j for which Xj > 0 in any interval [ei, ei+1]. In particular, it is fairly likely that there is some

such j with j > k/10, in which case at least half of the sums m1 + 2m2 + · · · + kmk will be > k/10 (those with

mj > 0), yet at the same time it is reasonably likely that all elements of L (Xk) are < 10k. Assuming this

heuristic is reasonable, we might expect that

i(n, k) ≍ P(k ∈ L (Xk)) ≍
1

k
E|L (Xk)|. (3)

In Section 3, we will show that (3) does indeed hold. The main result of that section is the following.

Proposition 1.3. i(n, k) ≍ 1
kE|L (Xk)| uniformly for 1 6 k 6 n/2.
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Our main theorem follows immediately from this and the next proposition, whose proof occupies Sections

4 (lower bound) and 5 (upper bound). Note that in these propositions we operate with the sequence Xk =

(X1, X2, . . . , Xk) of genuinely independent random variables, which is independent of n.

Proposition 1.4. E|L (Xk)| ≍ k1−δ(1 + log k)−3/2.

To briefly explain the origin of the exponent δ, we first observe the simple inequalities

|L (Xk)| 6 min
(
2X1+···+Xk , 1 + X1 + 2X2 + · · · + kXk

)
. (4)

Assume this is close to being sharp with reasonably high probability, and condition on Y = X1 + · · · + Xk, the

number of cycles of length at most k in a random permutation. Following our earlier heuristic, the second term

on the right side of (4) is ≍ k most of the time, and so there is a change of behaviour around Y = log k
log 2 + O(1).

Since Y is Poisson with parameter log k + O(1), a short calculation reveals that Emin(2Y , k) ≍ k1−δ(log k)−1/2.

We err in the logarithmic term due to the fact that (4) is only sharp with probability about 1/ log k, a fact that

is related to order statistics [7, Sec. 4].

Let us finally mention two open questions.

Question 1. Is there some constant C such that i(∞, k) ∼ Ck−δ(log k)−3/2?

It would be surprising if this were not the case.

Question 2. Is i(∞, k) monotonically decreasing in k?

Data collected by Britnell and Wildon [4] shows that this is so at least as far as i(∞, 30), and of course a

positive answer is plausible just from the fact that i(∞, k) → 0.

2 A permutation sieve

As mentioned in the introduction, the asymptotic distribution (as n → ∞ with k fixed) of the cycle lengths

(c1(π), . . . , ck(π)) of a random π ∈ Sn is that of Xk = (X1, . . . , Xk), where the Xi are independent with

Xi
d
= Pois(1/i). In the nonasymptotic regime, where n may be as small as 2k, this property is lost. We do,

however, have the following substitute which will suffice for this paper.

Proposition 2.1. Let 1 6 m < n and c1, . . . , cm be non-negative integers satisfying

c1 + 2c2 + · · · + mcm 6 n−m− 1.

Suppose that π ∈ Sn is chosen uniformly at random. Then

1

(2m + 2)
∏m

i=1 ci!i
ci

6 P(c1(π) = c1, . . . , cm(π) = cm) 6
1

(m + 1)
∏m

i=1 ci!i
ci
.
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We will prove this shortly, but first let us fix some notation. As every permutation π ∈ Sn factors uniquely

as a product of disjoint cycles, in keeping with the analogy with integers we say that any product of these cycles,

including the empty product, is a factor or divisor of π. The sets induced by these factors are precisely the

invariant sets of π. We make the following further definitions:

• Ck,n is the set of cycles of length k in Sn;

• |σ| is the length of any factor σ (of some permutation in Sn);

• τ |π means that τ is an invariant set or divisor of π.

The following lemma is a slight generalization of the well known formula of Cauchy.

Lemma 2.2. Let 1 6 m 6 n, and let c1, . . . , cm be non-negative integers with t = c1 + 2c2 + · · · + mcm 6 n.

Then the number of ways of choosing c1 + · · · + cm disjoint cycles consisting of ci cycles in Ci,n for 1 6 i 6 m is

n!

(n− t)!

m∏

j=1

1

cj !jcj
.

Proof . First count the number of ways of choosing the subsets that make up the cycles, and then multiply by

the number of ways to arrange the elements of these subsets into cycles. The result is

(
n

1 · · · 1
︸ ︷︷ ︸

c1

2 · · · 2
︸ ︷︷ ︸

c2

· · ·m · · ·m
︸ ︷︷ ︸

cm

)
1

c1! · · · cm!
×

m∏

j=1

(j − 1)!cj ,

which simplifies to the claimed expression.

Our next lemma is an analogue for permutations of a basic lemma from sieve theory.

Lemma 2.3. Suppose that m,n are integers with 1 6 m 6 n. Let π ∈ Sn be chosen uniformly at random. Then

1

2m
6 P(π has no cycle of length < m) 6

1

m
.

Remarks. Both upper and lower bounds are best possible, since trivially the probability in question is exactly

1/n when n/2 < m 6 n (if a permutation has no cycle of length < m, with m in this range, then it must be an

n-cycle). In fact, it is not difficult to prove an asymptotic formula ∼ ω(n/m)/m (n → ∞, m → ∞, m 6 n) for

the probability in question, where ω is Buchstab’s function and ω(u) → e−γ as u → ∞ [8, Theorem 2.2].
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Proof . (See the proof of [8, Theorem 2.2]). We phrase the proof combinatorially rather than probabilistically;

thus let c(n,m) be the number of permutations of Sn that have no cycles of length < m. We proceed by induction

on n, the result being trivial when n = 1. Let
∑∗

denote a sum over permutations with no cycle of length < m.

Using the fact that the sum of lengths of cycles in a permutation in Sn is n, we get

nc(n,m) =
∑

π∈Sn

∗
n =

∑

π∈Sn

∗ ∑

σ|π
σ a cycle

|σ| =
∑

k>m

k
∑

σ∈Ck,n

∑

π∈Sn

σ|π

∗
1

=
∑

m6k6n−m

k
∑

σ∈Ck,n

c(n− k,m) +
∑

σ∈Cn,n

n

= n! +
∑

m6k6n−m

n!

(n− k)!
c(n− k,m).

If n
2 < m 6 n, then c(n,m) = n!

n and the result follows. Otherwise, by the induction hypothesis,

nc(n,m) 6 n! +
∑

m6k6n−m

n!

m
= n!

(

1 +
n− 2m + 1

m

)

6
n! · n

m

and

nc(n,m) > n! +
∑

m6k6n−m

n!

2m
= n!

(

1 +
n− 2m + 1

2m

)

>
n! · n

2m
.

It is now a simple matter to establish Proposition 2.1.

Proof of Proposition 2.1. Let t = c1 + 2c2 + · · · + mcm. For each choice of the c1 + · · · + cm disjoint cycles

consisting of cj cycles from Cj,n (1 6 j 6 m), there are c(n− t,m + 1) permutations π ∈ Sn containing these

cycles as factors and no other cycles of length at most m, where c(n− t,m + 1) is the number of permutations

on n− t letters with no cycle of length < m + 1, as in the proof of Lemma 2.3. Applying Lemmas 2.2 and 2.3

completes the proof.

3 The local-to-global principle

As in the introduction, let X1, X2, . . . be independent random variables with distribution Xj
d
= Pois(1/j). We

record here that

E|L (Xk)| =
∑

c1,...,ck>0

|L (c)|P(X1 = c1) · · ·P(Xk = ck) = e−hk

∑

c1,...,ck>0

|L (c)|
∏k

i=1 ci!i
ci
, (5)

where hk = 1 + 1
2 + · · · + 1

k . We also record the inequalities

log(k + 1) 6 hk 6 1 + log k, (k > 1) (6)

which may be proved, for example, by summing the obvious inequalities 1
n+1 6

∫ n+1

n
dt/t 6 1

n .
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Lemma 3.1. Let k ∈ N, c1, . . . , ck > 0, I ⊂ [k] and c′i = ci for i 6∈ I, c′i = 0 for i ∈ I. then

|L (c)| 6 |L (c′)|
∏

i∈I

(ci + 1).

Proof . Clearly, L (c) is the union of
∏

i∈I(ci + 1) translates of L (c′).

Lemma 3.2. Suppose that ℓ′ 6 ℓ. Then

1

ℓ
E|L (Xℓ)| 6

1

ℓ′
E|L (Xℓ′)|.

Proof . By Lemma 3.1, |L (Xℓ)| 6 (1 + Xℓ′+1) · · · (1 + Xℓ)|L (Xℓ′)|. Thus by independence,

E|L (Xℓ)| 6

( ℓ∏

i=ℓ′+1

E(1 + Xi)

)

E|L (Xℓ′)| =
ℓ + 1

ℓ′ + 1
E|L (Xℓ′)| 6

ℓ

ℓ′
E|L (Xℓ′)|.

We also need to compute the mixed moments of |L (Xk)| with powers of some Xj . Recall that the

mth moment EXm, if X
d
= Pois(1), is the mth Bell number Bm. The sequence of Bell numbers starts

1, 2, 5, 15, 52, 203, . . . .

Lemma 3.3. Suppose that j1, . . . , jh 6 k are distinct integers and that a1, . . . , ah are positive integers. Then

E|L (Xk)|Xa1

j1
· · ·Xah

jh
6

Ca1,...,ah

j1 . . . jh
E|L (Xk)|.

We may take Ca1,...,ah
=

∏h
i=1(Bai

+ Bai+1). In particular we may take C1 = 3.

Proof . Define X′
k by putting X ′

j1
= · · · = X ′

jh
= 0 and X ′

j = Xj for all other j. By Lemma 3.1, we have

|L (Xk)| 6 |L (X′
k)|(1 + Xj1) · · · (1 + Xjh).

Thus by independence

E|L (Xk)|Xa1

j1
· · ·Xah

jh
6 E|L (X′

k)|

h∏

i=1

(EXai

ji
+ EX

ai+1

ji
). (7)

For X
d
= Pois(λ) we have EXm = φm(λ), where φm(λ) is the m-th Touchard (or Bell) polynomial, a polynomial

with positive coefficients and zero constant coefficient. If λ 6 1, it follows that EXm 6 λBm for m > 1. The

result follows immediately from this, (7), and the observation that E|L (X′
k)| 6 E|L (Xk)|.
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We turn now to the proof of Proposition 1.3. In what follows write S(Xℓ) = X1 + 2X2 + · · · + ℓXℓ =

max L (Xℓ). We will treat the lower bound and upper bound in Proposition 1.3 separately, the former being

somewhat more straightforward than the latter.

Proof of Proposition 1.3 (Lower bound). If k < 40 then i(n, k) ≍ i(∞, k) ≍ 1 ≍ 1
kE|L (Xk)|, so we may assume

k > 40. Let r = ⌊k/20⌋ (so r > 2), and consider the permutations π = ασ1σ2β ∈ Sn, where σ1 and σ2 are cycles,

|α| 6 4r < |σ1| < |σ2| < 16r, all cycles in α have length 6 r, all cycles in β have length at least 16r, and ασ1σ2

has a fixed set of size k. Because of the size restrictions on α, σ1, σ2, if α is of type c = (c1, . . . , cr), with ci

cycles of length i for 1 6 i 6 r, then the last condition is equivalent to k − |σ1| − |σ2| ∈ L (c). In particular

|σ1| + |σ2| 6 k, and hence n− |α| − |σ1| − |σ2| >
4
5k > 16r. Fix c and ℓ1, ℓ2 with 4r < ℓ1 < ℓ2 < 16r such that

k − ℓ1 − ℓ2 ∈ L (c). By Proposition 2.1, the probability that a random π ∈ Sn has ci cycles of length i (1 6 i 6 r),

one cycle each of length ℓ1, ℓ2 and no other cycles of length < 16r is at least

1

32rℓ1ℓ2
∏r

i=1 ci!i
ci

>
1

213r3
∏r

i=1 ci!i
ci
.

For any ℓ1 satisfying 4r + 1 6 ℓ1 6 8r − 1, there are |L (c)| admissible values of ℓ2 > ℓ1 for which k − ℓ1 − ℓ2 ∈

L (c), since max L (c) 6 4r 6 k/5. We conclude that

i(n, k) >
4r − 1

213r3

∑

c1,··· ,cr>0
S(c)64r

|L (c)|
∏r

i=1 ci!i
ci
.

As in (5), the sum above equals ehrE|L (Xr)|1S(Xr)64r. Hence, by (6), we see that

i(n, k) >
1

211r
E|L (Xr)|1S(Xr)64r.

To estimate this, we use the inequality

1S(Xr)64r > 1 −
S(Xr)

4r
.

By Lemma 3.3 we have

E|L (Xr)|S(Xr) =

r∑

j=1

E|L (Xr)|jXj 6 3rE|L (Xr)|.

It follows that

i(n, k) >
1

213r
E|L (Xr)|.

Finally, the lower bound in Proposition 1.3 is a consequence of this and Lemma 3.2∗.

∗Strictly for the purposes of proving our main theorem, this appeal to Lemma 3.2 is unnecessary. However, that lemma is
straightforward and it is more aesthetically pleasing to have E|L (Xk)| in the lower bound for i(n, k) rather than E|L (Xr)|.
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Proof of Proposition 1.3 (Upper bound). Temporarily impose a total ordering on the set of all cycles
⋃n

k=1 Ck,n,

first ordering them by length, then imposing an arbitrary ordering of the cycles of a given length. Let π ∈ Sn

have an invariant set of size k. Let k1 = k and k2 = n− k. Then π = π1π2, where πj is a product of cycles

which, all together, have total length kj , for j = 1, 2. For some j ∈ {1, 2}, the largest cycle in π, with respect

to our total ordering, lies in π3−j . Let σ be the largest cycle in πj , and note that |σ| 6 min(k1, k2) = k. Write

π = ασβ, where α is the product of all cycles dividing π which are smaller than σ and β is the product of all

cycles which are larger than σ. In particular |β| > |σ| since β contains the largest cycle in π as a factor, and

thus |σ| 6 |β| = n− |σ| − |α|.

By definition of σ and α, ασ has a divisor of size kj . Suppose |σ| = ℓ and c = (c1, c2, . . . , cℓ) represents

how many cycles α has of length 1, 2, . . . , ℓ, respectively. Then kj − ℓ ∈ L (c). For ℓ and c satisfying this last

condition, the number of possible pairs α, σ is at most (by Lemma 2.2)

n!

(n− |α| − |σ|)!

∏

i<ℓ

1

ci!ici
×

1

(cℓ + 1)!ℓcℓ+1
6

n!

ℓ(n− |α| − |σ|)!

∏

i6ℓ

1

ci!ici
.

Given α and σ, since |σ| 6 n− |α| − |σ|, Lemma 2.3 implies that the number of choices for β is at most

(n− |α| − |σ|)!/|σ|. Thus

i(n, k) 6

2∑

j=1

k∑

ℓ=1

1

ℓ2

∑

c1,...,cℓ>0
kj−ℓ∈L (c)

∏

i6ℓ

1

ci!ici
=

2∑

j=1

∑

c1,...,ck>0

∏

i6k

1

ci!ici

∑

m(c)6ℓ6k
kj−ℓ∈L (c)

1

ℓ2
,

where m(c) = max{i : ci > 0} ∪ {1}. With c fixed, note that ℓ > max(m(c), kj − S(c)). Also, the number of ℓ

such that kj − ℓ ∈ L (c) is at most |L (c)|. Thus, the innermost sum on the right side above is at most

|L (c)|

max(m(c), kj − S(c))2
.

Like (5), using (6) we thus see that

i(n, k) 6 2ekE
|L (Xk)|

max(m(Xk), k − S(Xk))2
. (8)

To bound this we use the inequality

1

max(m, k − S)2
6

4

k2

(

1 +
S2

m2

)

,

which can be checked in the cases S > k/2 and S 6 k/2 separately. It follows from this and (8) that

i(n, k) 6 8e
1

k
E|L (Xk)| + 8e

1

k
E
|L (Xk)|S(Xk)2

m(Xk)2
. (9)
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The first of these two terms is what we want, but the second requires a keener analysis. By conditioning on

m = m(Xk) we have

E
|L (Xk)|S(Xk)2

m(Xk)2
=

k∑

m=1

1

m2

∑

c1,...,cm>0
cm>1

|L (c)|S(c)2P(Xm = c)P(Xm+1 = · · · = Xkj
= 0)

=

kj∑

m=1

1

m2
EYmS(Xm)21Xm>1 exp

(

−

k∑

j=m+1

1

j

)

6
e

k

k∑

m=1

1

m
EYmS(Xm)2Xm.

Here we have written Ym = |L (Xm)| for brevity, and in the last step we used the crude inequality 1Xm>1 6 Xm.

Expanding S(Xm)2 = (X1 + 2X2 + · · · + mXm)2 and using (9), we arrive at

i(n, k) ≪
1

k
E|L (Xk)| +

1

k2

k∑

m=1

1

m

m∑

i,i′=1

ii′EYmXiXi′Xm. (10)

The innermost sum is estimated using Lemma 3.3, splitting into various cases depending on the set of distinct

values among i, i′,m.

Case 1 i, i′,m all distinct. Then ii′EYmXiXi′Xm 6
C1,1,1

m EYm = 27
mEYm.

Case 2 i = i′ 6= m. Then ii′EYmXiXi′Xm 6
C1,2i
m EYm 6 C1,2EYm = 21EYm.

Case 3 i = i′ = m. Then ii′EYmXiXi′Xm 6 C3mEYm = 20mEYm.

Case 4 i 6= i′ = m or i′ 6= i = m. In both cases ii′EYmXiXi′Xm 6 21EYm.

Summing over all cases, it follows that

m∑

i,i′=1

ii′EYmXiXi′Xm ≪ mEYm.

Since clearly EYm 6 EYk for every m 6 k the result follows from this and (10).

4 The lower bound in Proposition 1.4

In this section we prove the lower bound in Proposition 1.4, and hence the lower bound in our main theorem.

We begin by noting that from (5) and (6) follows

E|L (Xk)| >
1

ek

∑

c1,...,ck>0

|L (c)|
∏k

i=1 ci!i
ci
. (11)
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If we fix r = c1 + · · · + ck, which we may think of as the number of cycles in a random permutation, then

∑

c1+···+ck=r

|L (c)|
∏k

i=1 ci!i
ci

=
1

r!

k∑

a1,...,ar=1

|L ∗(a)|

a1 · · · ar
, (12)

where

L
∗(a) =

{∑

i∈I

ai : I ⊂ [r]
}

. (13)

The equality is most easily seen by starting from the right side and setting ci = |{j : aj = i}| for each i: then

L (c) = L ∗(a),
∏k

i=1 i
ci = a1 · · · ak, and each c = (c1, . . . , ck) comes from r!

c1!···ck!
different choices of a1, . . . , ak.

One may think of a1, . . . , ar as the (unordered) cycle lengths in a random permutation, in this case conditioned

so that there are r total cycles.

Now let J =
⌊
log k
log 2

⌋

and suppose that b1, . . . , bJ are arbitrary non-negative integers with sum r. Consider

the part of the sum in which

bi =

2i−1∑

j=2i−1

cj (i = 1, 2, . . . , J), cj = 0 (j > 2J − 1).

Equivalently, suppose there are exactly bi of the aj in each interval [2i−1, 2i − 1]. Writing D(b) =
∏J

i=1{2i−1, . . . , 2i − 1}bi , we have

1

r!

2J−1∑

a1,...,ar=1

|L ∗(a)|

a1 · · · ar
=

∑

b1,...,bJ

1

b1! · · · bJ !

∑

d∈D(b)

|L ∗(d)|

d1 · · · dr
. (14)

To see this, fix b1, . . . , bJ and observe that there are r!
b1!···bJ !

ways to choose which bi of the variables a1, . . . , ar

lie in [2i−1, 2i − 1] for 1 6 i 6 J .

Combining (11), (12) and (14) gives

E|L (Xk)| ≫
1

k

∑

r

∑

b1+···+bJ=r

1

b1! · · · bJ !

∑

d∈D(b)

|L ∗(d)|

d1 · · · dr
.

Thus in particular one has

E|L (Xk)| ≫
1

k

∑

b1+···+bJ=J

1

b1! · · · bJ !

∑

d∈D(b)

|L ∗(d)|

d1 · · · dJ
. (15)

(This may seem wasteful at first sight, but in fact a more careful – though unnecessary – analysis would reveal

that the main contribution is from r = J + O(1), so this is not in fact the case.) In the light of this, the motivation

for proving the following lemma is clear.
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Lemma 4.1. For any b = (b1, . . . , bJ ) with b1 + · · · + bJ = J we have

∑

d∈D(b)

|L ∗(d)|

d1 · · · dJ
≫

(2 log 2)J
∑J

i=1 2b1+···+bi−i
.

Proof . Given ℓ ∈ N, let R(d, ℓ) be the number of I ⊂ [J ] with ℓ =
∑

i∈I di (One should think of the number

of cycles with lengths summing to precisely ℓ in a random permutation.) Then
∑

ℓ R(d, ℓ) = 2J . Also, define

λi =
∑2i−1

j=2i−1 1/j for 1 6 i 6 J (thus λi ≈ log 2). By Cauchy-Schwarz,

22J
J∏

j=1

λ
2bj
j =

(
∑

d∈D(b)

1

d1 · · · dJ

∑

ℓ

R(d, ℓ)

)2

=

(
∑

d∈D(b)

1

d1 · · · dJ

∑

ℓ∈L ∗(d)

R(d, ℓ)

)2

6

(
∑

d∈D(b),ℓ

R(d, ℓ)2

d1 · · · dJ

)(
∑

d∈D(b)

|L ∗(d)|

d1 · · · dJ

)

.

(16)

Our next aim is to establish an upper bound for the first sum on the right side. We have

∑

d∈D(b),ℓ

R(d, ℓ)2

d1 · · · dJ
=

∑

I1,I2⊂[J]

S(I1, I2), (17)

where

S(I1, I2) =
∑

d∈D(b)∑
i∈I1

di=
∑

i∈I2
di.

1

d1 · · · dJ

If I1 = I2, then evidently S(I1, I2) = λb1
1 · · ·λbJ

J . If I1 and I2 are distinct, let j = max(I1△I2) be the largest

coordinate at which I1 and I2 differ. With all of the quantities di fixed except for dj , we see that dj is uniquely

determined by the relation
∑

i∈I1
di =

∑

i∈I2
di. If we define e(j) ∈ [J ] uniquely by

b1 + · · · + be(j)−1 + 1 6 j 6 b1 + · · · + be(j),

then dj > 2e(j)−1, regardless of the choice of d1, . . . , dj−1, dj+1, . . . , dJ and thus

S(I1, I2) 6

J∏

i=1
i6=j

(
∑

di

1

di
) ·

1

2e(j)−1
=

λb1
1 · · ·λbJ

J λ−1
e(j)

2e(j)−1
≪

λb1
1 · · ·λbJ

J

2e(j)
.
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(Here, the sums over di are over the appropriate dyadic intervals required so that d ∈ D(b).) Here we used the

fact that λi ≍ 1; in fact one may note that λi > λi+1 for all i (since 1
n > 1

2n + 1
2n+1 ) and that limi→∞ λi = log 2,

so in fact λi > log 2 for all i.

Since the number of pairs of subsets I1, I2 ⊂ [J ] with max(I1△I2) = j is exactly 2J+j−1, we get from this

and (17) that

J∏

j=1

λ
−bj
j

∑

d∈D(b),ℓ

R(d, ℓ)2

d1 · · · dJ
≪ 2J + 2J

J∑

j=1

2j−e(j) = 2J + 2J
J∑

i=1

2−i
∑

j:e(j)=i

2j

≪ 2J + 2J
J∑

i=1

2b1+···+bi−i

≪ 2J
J∑

i=1

2b1+···+bi−i.

Comparing with (16), and using again that λi > log 2, completes the proof.

Combining Lemma 4.1 and (15), we obtain

E|L (Xk)| ≫
(2 log 2)J

k

∑

b1+···+bJ=J

1

b1! · · · bJ !
∑J

i=1 2b1+···+bi−i
. (18)

Somewhat surprisingly, the right hand side here can be evaluated explicitly using the “cycle lemma”, as in [7]. The

key trick is to add an additional averaging over the J cyclic permutations of b1, . . . , bJ to the inner summation.

Lemma 4.2. Let x1, . . . , xJ be positive reals such that x1 · · ·xJ = 1. Then the average of
(∑J

i=1 x1 · · ·xi

)−1

over cyclic permutations of x1, . . . , xJ is exactly 1/J .

Proof . Reading indices modulo J we have

J∑

t=1

1
∑J

i=1 xt+1 · · ·xt+i

=

J∑

t=1

x1 · · ·xt
∑J

i=1 x1 · · ·xt+i

= 1.

Applying the cycle lemma with xi = 2bi−1 gives (noting that cyclic permutation of the variables is a 1-1

map on the set of (b1, . . . , bJ ) with b1 + · · · + bJ = J) that

∑

b1+···+bJ=J

1

b1! · · · bJ !
∑J

i=1 2b1+···+bi−i
=

1

J

∑

b1+···+bJ=J

1

b1! · · · bJ !
=

1

J
·
JJ

J !
,

the second equality being a consequence of the multinomial theorem.

Substituting into (18), and recalling that J = log k
log 2 + O(1), the lower bound in Proposition 1.4 now follows

from Stirling’s formula.
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5 The upper bound in Proposition 1.4

In this section we turn to the upper bound in Proposition 1.4, that is to say the bound

E|L (Xk)| ≪ kα(log k)−3/2.

As with the lower bound, we condition on the number of cycles of length at most k in a random permutation.

Recall from (13) the definition of L ∗(a):

L
∗(a) =

{∑

i∈I

ai : I ⊂ [r]
}

.

From (5), (6) and (12) we have

E|L (Xk)| 6
1

k

∑

r

1

r!

k∑

a1,...,ar=1

|L ∗(a)|

a1 · · · ar
. (19)

The most common way for |L ∗(a)| to be small is when there are many of the ai which are small. To capture

this, let ã1, ã2, . . . be the increasing rearrangement of the sequence a, so that ã1 6 ã2 6 · · · . For any j satisfying

0 6 j 6 r, we have

L
∗(a) ⊂

{

m +
∑

i∈I

ãi : 0 6 m 6

j
∑

i=1

ãi, I ⊂ {j + 1, . . . , r}

}

,

from which it follows immediately that

|L ∗(a)| 6 G(a),

where

G(a) = min
06j6r

2r−j (ã1 + · · · + ãj + 1) . (20)

It is reasonable to expect that

k∑

a1,...,ar=1

G(a)

a1 · · · ar
∼

∫ k

1

· · ·

∫ k

1

G(t)

t1 · · · tr
dt = (log k)r

∫ 1

0

· · ·

∫ 1

0

G(eξ1 log k, . . . , eξr log k)dξ, (21)

where we have enlarged the domain of G to include r-tuples of positive real numbers. However, G is not an

especially regular function and so (21) is perhaps too much to hope for. The function G is, however, increasing

in every coordinate and we may exploit this to prove an approximate version of (21).

Lemma 5.1. For any r > 1, we have

k∑

a1,...,ar=1

|L ∗(a)|

a1 · · · ar
≪ (2hk)rr!

∫

Ωr

min
06j6r

2−j(kξ1 + · · · + kξj + 1)dξ,
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where Ωr = {(ξ1, . . . , ξr) : 0 6 ξ1 6 ξ2 6 . . . 6 ξr 6 1}.

Proof . Motivated by the fact that 1/a =
∫ exp(ha)

exp(ha−1)
dt/t, define the product sets

R(a) =

r∏

i=1

[exp (hai−1) , exp (hai
)] .

By (20), we have

k∑

a1,...,ar=1

|L ∗(a)|

a1 · · · ar
6

k∑

a1,...,ar=1

G(a)

a1 · · · ar
=

k∑

a1,...,ar=1

G(a)

∫

R(a)

dt

t1 · · · tr
.

Consider some t ∈ R(a). Writing t̃1 6 t̃2 6 . . . 6 t̃r for the non-decreasing rearrangement of t, we have

exp (hãi−1) 6 t̃i 6 exp (hãi
) for 1 6 i 6 r.

From (6) we see that t̃i > ãi for all i. Hence

G(a) 6 min
06j6r

2r−j(t̃1 + · · · + t̃j + 1) = G(t) for all t ∈ R(a).

This yields

k∑

a1,...,ar=1

G(a)

∫

R(a)

dt

t1 · · · tr
6

k∑

a1,...,ar=1

∫

R(a)

G(t)

t1 · · · tr
dt =

∫ exp(hk)

1

· · ·

∫ exp(hk)

1

G(t)

t1 · · · tr
dt.

The integrand on the right is symmetric in t1, . . . , tr. Making the change of variables ti = eξihk yields

k∑

a1,...,ar=1

|L ∗(a)|

a1 · · · ar
6 (2hk)rr!

∫

Ωr

min
06j6r

2−j
(
eξ1hk + · · · + eξjhk + 1

)
dξ.

The lemma follows from the upper bound in (6), namely hk 6 1 + log k.

With Lemma 5.1 established, we may conclude the proof of the upper bound in Proposition 1.4 by quoting

[7, Lemma 3.6]. Indeed, in the notation of that paper

∫

Ωr

min
06j6r

2−j
(
kξ1 + · · · + kξj + 1

)
dξ = Ur(log2 k),

and thus by (19) and Lemma 5.1 we have

E|L (Xk)| ≪
1

k

∑

r

(2hk)rUr(log2 k). (22)
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Now [7, Lemma 3.6] provides the bound

Ur(log2 k) ≪
1 + | log2 k − r|2

(r + 1)!(2r−log2 k + 1)
,

uniformly for 0 6 r 6 10 log2 k . Set

r∗ = ⌊log2 k⌋.

In what follows, we will use the observation that an/(n + 1)! is increasing for n 6 a− 2 and decreasing thereafter.

If r = r∗ + m with m 6 9 log2 k, m ∈ Z>0, then we have

(2hk)rUr(log2 k) ≪
( 4
3hk)r

(r + 1)!
·

(
3

2

)r

·
1 + m2

2m

≪
( 4
3hk)r∗

(r∗ + 1)!
·

(
3

2

)r∗

·
1 + m2

( 4
3 )m

≪ k1+
1+log log 2

log 2 (log k)−3/2 ·
1 + m2

( 4
3 )m

.

In the first step we used the observation (and the fact that 4
3 < 1

log 2 ), and in the second step we used Stirling’s

formula and (6). Summed over m, this is of course rapidly convergent and shows that the contribution to (22)

from this range of r is acceptable.

Next suppose that r = r∗ −m, m ∈ N. Then we have

(2hk)rUr(log2 k) ≪
( 3
2hk)r

(r + 1)!
·

(
4

3

)r

· (1 + m2)

≪
( 3
2hk)r∗

(r∗ + 1)!
·

(
4

3

)r

· (1 + m2)

≪ k1+
1+log log 2

log 2 (log k)−3/2 ·
1 + m2

( 4
3 )m

.

Here, we used the observation (and the fact that 3
2 > 1

log 2 ) and a second application of Stirling’s formula.

Summed over m, this is once again rapidly convergent and the contribution to (22) from this range of r is

acceptable.

There remains the range r > 10 log2 k. Here, we use the trivial bound Ur(log2 k) 6 1/r! and thus

∑

r>10 log2 k

(2hk)rUr(log2 k) ≪
∑

r>10 log2 k

(2hk)r

r!
≪ k−10,

which is obviously minuscule in comparison to the other terms.

Remarks. It is obvious from this analysis and the lower bound in our main theorem that a proportion

> 1 − ε of all permutations fixing some set of size k have log2 k + O(log(1/ε)) cycles of length at most k. It

is most probably also true that for a proportion > 1 − ε of all permutations fixing some set of size k we have
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log ãj > j log 2 −Oε(1) for j 6 log2 k −Oε(1), where the ãj are the (ordered) cycle lengths of the permutation.

To establish this would require opening up some of the arguments used to bound the quantities Uk in [7]. We

plan to return to this and other issues in a future paper.
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