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Abstract

We investigate the distribution of n — M (n) where
M(n) =max{|la—b| : 1<a,b<n—1landab=1 (modn)}.

Exponential sums provide a natural tool to obtaining upper bounds
on this quantity. Here we use results about the distribution of integers
with a divisor in a given interval to obtain lower bounds on n — M (n).
We also present some heuristic arguments showing that these lower
bounds are probably tight, and thus our technique can be a more
appropriate tool to study n — M(n) than a more traditional way using
exponential sums.

Mathematics Subject Classification 2000: 11A07, 11N25

1 Introduction

Let Z,, denote the residues modulo an integer n > 2. Throughout this paper
we assume these residues to consist of the elements {0, 1,2,...,n — 1}. Also,
Z, denotes the subset of Z, consisting of all of the integers between 1 and
n — 1 that are relatively prime to n. Some years ago the second author [9]

considered the arithmetical function M (n) defined by
M(n) =max{|la—b| : a,b€Z; and ab=1 (mod n)}
and proved the following by elementary methods.

Proposition 1.

n—Mn)> [2vVn-1],

with equality of and only if n € S where
S={m?*+tm+1: mLleZ,m>0and0</l<2ym~+1}

and hence Iy
lim inf 71—7(71)
n—00 \/ﬁ

=2



A variety of results about the distribution of pairs (a,b) of solutions to
the congruence ab =1 (mod n) and more general congruences can be found
in [1, 3, 5, 10, 11, 12, 13, 14]. In particular, Theorem 4 of [10] implies that

n— M(n) < n3/4+"(1).
This upper bound is probably far from optimal, and we believe that
n— M(n) < nt/?+od), (2)

See Section 4 for a more precise statement of our conjecture.
Here, using some results on the distribution of integers with a divisor in
a given interval (see [4, 7]), we obtain a result in the opposite direction. In
particular we see that
i n—M(n
lim sup n = M(n) = 00. (3)

n—00 Vn

Thus, if (2) is correct, it is tight and one cannot remove o(1) from the ex-
ponent. We also consider the extreme behavior of M (p) for primes p, and,
using some results on the distribution of shifted primes with a divisor in a
given interval (see [4, 8]), prove analogous bounds to (1) and (3).

As a curiosity we note that 2™ — M (2™) < 2™/2+3/2 for all positive integers
m. Indeed, if m is even then this is immediate by Proposition 1, if m is odd
then it follows from (20m+1)/2 — 1)(2m — 2m+V/2 _ 1) =1 (mod 2™).

We recall that U(z) < V(z) denotes the inequality |U(z)| < ¢V (z) for a
fixed constant ¢ > 0, U(xz) = o(V(x)) denotes that lim, ,. U(x)/V(z) = 0,
and U(z) < V(z) denotes the inequality C1V (z) < U(z) < CyV (z) for some
positive constants C', Cy. Also, log z always denotes the natural logarithm
of z > 0.

2 Divisors in intervals

For an infinite sequence of positive integers A = (a,),-, with a; < ay < ---,
define
H(z,y,z; A) = #{n <z : Id|a, with y < d < z}.

When A = N, the set of natural numbers, the first author has determined
in [4] the order of magnitude of H(z,y, z;N) for all z,y, 2. Also in [4] are



given upper bounds for H(z,y, z; B,) of the expected order of magnitude,
where P, = {p+b : p prime} is a set of so-called shifted primes. For the
problem of bounding M (n) and M(p), we need analogous results where n
and p are restricted to an arithmetic progression. Specifically, define

Te ={nk—1 : n €N}, U, ={pk —1 : p prime}.
As usual, we use (k) to denote the Euler function of a positive integer k.

Proposition 2. Uniformly for 100 < y < 2%, 1.1y < 2 < y*, 1 <k <
log x, we have

k
H(z,y,zTr) < z——u’(log(1/u))~>/?, (4)
o(k)
k
H(z,y,zU) < z——u’(log(1/u))~%?, (5)
o(k)
where z = y'** and
1+ loglog 2
§=1- T8 B2 _086071. ...
log 2

Proof. These estimates follow from the proofs in [4] with only slight modifi-
cations to the proofs of Lemmas 6.1 and 14.1 there. To successfully estimate
H(z,y,z;A) from above in these lemmas, one needs upper bounds of the
expected order for the quantity

W =#{x1 <n<xzy : lay, a,/lis not divisible by any prime ¢ < m}

uniformly for

T T
To < T,

<zyg—21 <21, I <2, m>10g20x.

log®z — log'® 2,
In the case A = T, a standard application of the “small” sieve (see, for

example, [6]) gives ,
To — X1

w .

< Llogm (k)
This is a factor k/¢(k) larger than the corresponding bound in the case
A = N. Similarly, when A = U, applying the “large” sieve as in Lemma 14.1
of [4] yields an upper bound for W which is a factor k/p(k) larger than the
bound given there. The results of §4 of [4] then finish the proof. O
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Remarks. In both cases A = 7, and A = U, we have ignored the fact
that W =0 if (£, k) > 1. It is possible to use this fact to remove the factors
k/p(k) from (4) and (5), but this requires a more complicated modification
of the proofs in [4]. Since we are averaging over k below, we do not gain
anything by this improvement.

3 Main Results

3.1 Lower Bounds

Theorem 3. Let f(x) be any positive function tending monotonically to zero
as x — 00. The inequality

n — M(n) > n*?(logn)*?(loglogn)** f(n)
holds:
e for all positive integers n < x, except for possibly o(x) of them,
e for all prime n =p < x except for possibly o(x/logx) of them.

Proof. Let x be large and set

y = (logz)*/*(loglog z)*/* f (/2).

It suffices to show n — M(n) < yn'/? for o(z) of the integers n between
x/2 and z. Without loss of generality, suppose f(z) > 1/loglogx for all
x > 10. We define J; to be the set of positive integers n € (x/2, ] such
that n — M(n) < yn'/?, and for which there are a,b € Z*, ab =1 (mod n),
M(n)=b—a and a(n — b) = nk — 1.

By the arithmetic-geometric mean inequality, for every n € Jx,

n—éw(n):n_;)+a2\/a(n—b)=\/kn_1- (6)

Thus J, = @ for k > y2+ 1. Suppose 1 < k <y’ +1,n € Ty, ab=1
(mod n) and a(n — b) = kn — 1. Then

Vkz/2 —1 <max(a,n —b) < y/z.



By inequality (4) of Proposition 2,

z(log(3y°/k))° K
(logz)?(loglog x)3/2 (k)

By the elementary estimate >~ _ (n/¢(n))? = O(u) and the Cauchy-Schwarz
inequality, -

#T < H(z, Vkz/2 - 1,y/z; Ty) <

2

Z #T < adl = o(x).

1<k<y?+1 (log z)?(loglog z)3/?

This proves the first part of the theorem.
The second part, concerning p — M (p), is proved by the same argument,
using inequality (5) of Proposition 2. O

3.2 Upper Bound for Primes

We now prove an analogue of (1) for the set of primes.

Theorem 4. For infinitely many primes p, we have

VP
- M <92 .
p (p) < \/:5+logp

Proof. Let ¢ = 1/(4logx). We show that for sufficiently large z, there is a
prime in the interval ((1—e¢)z, 2| such that p—1 has a divisor d in the interval
(1 =2¢e)v/z, (1 —¢€)/x]. If we write p—1 = df, then M(p) > p— f —d. But,
if x is so large that ¢ < 0.01, then
Fra="11a< <

- d ~ (1-2¢)y/x

which implies the desired result.
It now suffices to show that

> [F(z;d,1) — I((1 —€)x;d, 1)] > 0, (7)
(1-2¢)y/3<d<(1—€)v/a

+ (1 —e)vz < (24 3¢)/p,

where

dz;q,a)= Y logp.

p<z
p=a (mod q)
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To obtain this result, we apply the main theorem of [2]. A particular case of
this theorem gives, for any set Z of positive integers in the interval [1, 1/Z],

D

q€T

z z(log log 2)2 1
+(gg)2

v ; a1 - .
o) log2® "~ logz 2 (@)

w(ZQ) ‘ <

We apply this with Z = ((1 — 2¢)/x, (1 — €)\/x] and with z = z and z =
(1 —e)z. We see that the left side of (7) i

z(loglog x) ) ) 1 ( x )
0 — — .
(sa: T ( log® z Z; (d) log'® z

1 1 #T
2@ T

inequality (7) follows and this completes the proof of the theorem.

Since

4 Conjectures and Heuristic Arguments

Conjecture 5. Let g(x) be any positive function tending monotonically to
o0 as x — 00. The inequality

n — M(n) < n'?(logn)*?(loglogn)**g(n)
holds:
e for all positive integers n < x, except for possibly o(x) of them,
e for all prime n =p < x except for possibly o(x/logx) of them.
Conjecture 6. For all n, n — M(n) < n'/?(logn)%/2+1/2+e(1),

If true, Conjecture 5, together with Theorem 3, would imply that for
most n,
n — M(n) ~ n*?(logn)*?(loglogn)*.

It may be the case that

n— M(n)
n'/2(logn)?/2(loglogn)3/4

G(n) =
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has a probability distribution function. That is

F(z) = lim l#{n <z : G(n) <Lz}

T—00 I

exists for every real z > 0. The same may be true (with a different F') if we
restrict to prime n.

We now give a heuristic argument for Conjectures 5 and 6. First, using
the methods in [4], one can prove under the hypotheses of Proposition 2 that

H(x,y,2;Tr) — H(x/2,y, 2 Tr) > zu’(log(1/u)) /2.
Let /2 < n < z and put
y = (log(/2))"*(loglog(z/2))**g(z/2).

Then, uniformly in %?/1000 < k < y*/100, in the notation of the proof of
Theorem 3, we obtain

#Te > H(z,Vka,1yvz) — H(x/2,VEkz, 1yv/z) >

x
(log )% (loglog x)3/2

Thus, the “probability” that a “random” integer lies in a particular J is
at least ¥ = co(logz)°(loglogz)~3/? for some positive constant cy. Since
ged(jn — 1,hn — 1) is very small for j,h < k, these “random events” are

essentially independent. Thus, the probability that n does not lie in any set
T for y?/1000 < k < y2/100 should be

0 ((1 - 19)!/2/200) =0 (6—092/200) = o(1).

Finally, if
2 1000 log x
— —log(1 —9)’
which occurs if y > (logz)?/?t1/2%¢ then (1 — 9)¥’/200 < £=5. It thus seems
highly unlikely that any n fails to lie in some Jj.

There are several natural open questions related to this work. For exam-
ple, what are the analogues of our results for polynomials over finite fields?
One needs to extend the results of [4, 7, 8] to polynomials and shifted ir-
reducible polynomials having a divisor whose degree is in a given interval.
This is an interesting question on its own.

One can also study the distribution of |a—b| for more general congruences
f(a,b) =0 (mod n) with polynomials f(X,Y) € Z[X,Y]. However it seems
that our approach does not apply and exponential sums provide the only
feasible alternative.
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