SIMPLE PROOF OF GALLAGHER'S SINGULAR SERIES SUM ESTIMATE

KEVIN FORD

P. X. Gallagher (Mathematika 23 (1976), 4-9) proved an estimate for the average of the singular series associated with r-tuples of linear forms, namely

$$
\begin{equation*}
\sum_{\substack{0 \leq h_{1}, \ldots, h_{r} \leq h \\ h_{1}, \ldots, h_{r} \text { distinct }}} \prod_{p}\left(1-\frac{\nu_{p}(\mathbf{h})}{p}\right)\left(1-\frac{1}{p}\right)^{-r} \sim h^{r} \tag{1}
\end{equation*}
$$

for each fixed r, where $\nu_{p}(\mathbf{h})$ is the number of residue classes modulo p occupied by the numbers h_{1}, \ldots, h_{r}. We give a simpler proof of this result below, with a worse error estimate than Gallagher obtained. The constants in all O-terms may depend on r.

Put $y=\frac{1}{2} \log h$. We first note that $\nu_{p}(\mathbf{h})=r$ if $p \nmid H$, where $H=\prod_{i<j}\left|h_{i}-h_{j}\right|$. The number of prime factors of H is $O(\log H / \log \log H)=O(\log h / \log \log h)$. For any h_{1}, \ldots, h_{r}, we therefore have

$$
\begin{aligned}
\prod_{p>y}\left(1-\frac{\nu_{p}(\mathbf{h})}{p}\right)\left(1-\frac{1}{p}\right)^{-r} & =\prod_{p \mid H, p>y}\left(1+O\left(\frac{1}{p}\right)\right) \prod_{p \nmid H, p>y}\left(1+O\left(\frac{1}{p^{2}}\right)\right) \\
& =1+O\left(\frac{\log h}{y \log \log h}\right)=1+O\left(\frac{1}{\log \log h}\right)
\end{aligned}
$$

Thus, the left side of (1) is equal to $A B$, where

$$
A=\left(1+O\left(\frac{1}{\log \log h}\right)\right) \prod_{p \leq y}\left(1-\frac{1}{p}\right)^{-r}, \quad B=\sum_{\substack{0 \leq h_{1}, \ldots, h_{r} \leq h \\ h_{1}, \ldots, h_{r} \text { distinct }}} \prod_{p \leq y}\left(1-\frac{\nu_{p}(\mathbf{h})}{p}\right)
$$

We have $B=O\left(h^{r-1}\right)+B^{\prime}$, where B^{\prime} is the corresponding sum without the condition that h_{1}, \ldots, h_{r} are distinct. Let $P=\prod_{p \leq y} p$ and note that $P=e^{y+o(y)}=h^{1 / 2+o(1)}$. The product in B is $1 / P$ times the number of $n, 0 \leq n<P$, satisfying $\left(\prod_{i}\left(n+h_{i}\right), P\right)=1$. Threrefore,

$$
\begin{aligned}
B^{\prime} & =\sum_{0 \leq h_{1}, \ldots, h_{r} \leq h} \frac{1}{P} \sum_{n=0}^{P-1} \prod_{i=1}^{r} \sum_{d_{i} \mid\left(n+h_{i}, P\right)} \mu\left(d_{i}\right) \\
& =\frac{1}{P} \sum_{n=0}^{P-1} \sum_{d_{1}, \ldots, d_{r} \mid P} \mu\left(d_{1}\right) \cdots \mu\left(d_{r}\right) \prod_{i=1}^{r}\left(\frac{h}{d_{i}}+O(1)\right) \\
& =h^{r} \sum_{d_{1}, \ldots, d_{r} \mid P} \frac{\mu\left(d_{1}\right) \cdots \mu\left(d_{r}\right)}{d_{1} \cdots d_{r}}+O\left(h^{r-1} \sum_{d_{1}, \ldots, d_{r-1} \mid P} \frac{1}{d_{1} \cdots d_{r}}\right) \\
& =h^{r} \prod_{p \leq y}\left(1-\frac{1}{p}\right)^{r}+O\left(h^{r-1+o(1)}\right) .
\end{aligned}
$$

Combined with the expression for A, this proves (1).

