SIMPLE PROOF OF GALLAGHER'S SINGULAR SERIES SUM ESTIMATE

KEVIN FORD

P. X. Gallagher (Mathematika 23 (1976), 4–9) proved an estimate for the average of the singular series associated with r-tuples of linear forms, namely

(1)
$$\sum_{\substack{0 \le h_1, \dots, h_r \le h \\ h_1, \dots, h_r \text{ distinct}}} \prod_p \left(1 - \frac{\nu_p(\mathbf{h})}{p}\right) \left(1 - \frac{1}{p}\right)^{-r} \sim h^r$$

for each fixed r, where $\nu_p(\mathbf{h})$ is the number of residue classes modulo p occupied by the numbers h_1, \ldots, h_r . We give a simpler proof of this result below, with a worse error estimate than Gallagher obtained. The constants in all O-terms may depend on r.

Put $y = \frac{1}{2} \log h$. We first note that $\nu_p(\mathbf{h}) = r$ if $p \nmid H$, where $H = \prod_{i < j} |h_i - h_j|$. The number of prime factors of H is $O(\log H/\log \log H) = O(\log h/\log \log h)$. For any h_1, \ldots, h_r , we therefore have

$$\prod_{p>y} \left(1 - \frac{\nu_p(\mathbf{h})}{p}\right) \left(1 - \frac{1}{p}\right)^{-r} = \prod_{p|H, p>y} \left(1 + O\left(\frac{1}{p}\right)\right) \prod_{p \nmid H, p>y} \left(1 + O\left(\frac{1}{p^2}\right)\right)$$
$$= 1 + O\left(\frac{\log h}{y \log \log h}\right) = 1 + O\left(\frac{1}{\log \log h}\right).$$

Thus, the left side of (1) is equal to AB, where

$$A = \left(1 + O\left(\frac{1}{\log\log h}\right)\right) \prod_{p \le y} \left(1 - \frac{1}{p}\right)^{-r}, \quad B = \sum_{\substack{0 \le h_1, \dots, h_r \le h \\ h_1, \dots, h_r \text{ distinct}}} \prod_{p \le y} \left(1 - \frac{\nu_p(\mathbf{h})}{p}\right).$$

We have $B = O(h^{r-1}) + B'$, where B' is the corresponding sum without the condition that h_1, \ldots, h_r are distinct. Let $P = \prod_{p \leq y} p$ and note that $P = e^{y+o(y)} = h^{1/2+o(1)}$. The product in B is 1/P times the number of $n, 0 \leq n < P$, satisfying $(\prod_i (n+h_i), P) = 1$. Threefore,

$$B' = \sum_{0 \le h_1, \dots, h_r \le h} \frac{1}{P} \sum_{n=0}^{P-1} \prod_{i=1}^r \sum_{d_i \mid (n+h_i, P)} \mu(d_i)$$

= $\frac{1}{P} \sum_{n=0}^{P-1} \sum_{d_1, \dots, d_r \mid P} \mu(d_1) \cdots \mu(d_r) \prod_{i=1}^r \left(\frac{h}{d_i} + O(1)\right)$
= $h^r \sum_{d_1, \dots, d_r \mid P} \frac{\mu(d_1) \cdots \mu(d_r)}{d_1 \cdots d_r} + O\left(h^{r-1} \sum_{d_1, \dots, d_{r-1} \mid P} \frac{1}{d_1 \cdots d_r}\right)$
= $h^r \prod_{p \le y} \left(1 - \frac{1}{p}\right)^r + O(h^{r-1+o(1)}).$

Combined with the expression for A, this proves (1).

Date: October 13, 2007.