
SIMPLE PROOF OF GALLAGHER’S SINGULAR SERIES SUM ESTIMATE

KEVIN FORD

P. X. Gallagher (Mathematika 23 (1976), 4–9) proved an estimate for the average of the singular
series associated with r-tuples of linear forms, namely
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for each fixed r, where νp(h) is the number of residue classes modulo p occupied by the numbers
h1, . . . , hr. We give a simpler proof of this result below, with a worse error estimate than Gallagher
obtained. The constants in all O-terms may depend on r.

Put y = 1
2 log h. We first note that νp(h) = r if p ∤ H, where H =

∏

i<j |hi − hj |. The number

of prime factors of H is O(logH/ log logH) = O(log h/ log log h). For any h1, . . . , hr, we therefore
have
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Thus, the left side of (1) is equal to AB, where
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We have B = O(hr−1)+B′, where B′ is the corresponding sum without the condition that h1, . . . , hr
are distinct. Let P =
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p≤y p and note that P = ey+o(y) = h1/2+o(1). The product in B is 1/P

times the number of n, 0 ≤ n < P , satisfying (
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Combined with the expression for A, this proves (1).
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