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Abstract

We study the distribution of a family {γ(P)} of generalized Euler constants arising from integers sieved by finite sets
of primes P . For P = Pr, the set of the first r primes, γ(Pr) → exp(−γ) as r →∞. Calculations suggest that γ(Pr)
is monotonic in r, but we prove it is not. Also, we show a connection between the distribution of γ(Pr) − exp(−γ)
and the Riemann hypothesis.

1. Introduction

Euler’s constant γ = 0.5772156649 . . . (also known as the Euler-Mascheroni constant) reflects a subtle multiplica-
tive connection between Lebesgue measure and the counting measure of the positive integers and appears in many
contexts in mathematics (see e.g. the recent monograph [4]). Here we study a class of analogues involving sieved sets
of integers and investigate some possible monotonicities.

As a first example, consider the sum of reciprocals of odd integers up to a point x: we have∑
n≤x

n odd

1
n

=
∑
n≤x

1
n
− 1

2

∑
n≤x/2

1
n

=
1
2

log x+
γ + log 2

2
+ o(1),

and we take

γ1 := lim
x→∞

{ ∑
n≤x

n odd

1
n
− 1

2
log x

}
=
γ + log 2

2
.

More generally, if P represents a finite set of primes, let

1P(n) :=

{
1, if (n,

∏
p∈P p) = 1,

0, else,
and δP := lim

x→∞

1
x

∑
n≤x

1P(n).

A simple argument shows that δP =
∏

p∈P(1− 1/p) and that the generalized Euler constant

γ(P) := lim
x→∞

{ ∑
n≤x

1P(n)
n

− δP log x
}

exists. We shall investigate the distribution of values of γ(P) for various prime sets P .

We begin by indicating two further representations of γ(P). First, a small Abelian argument shows that it is the
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constant term in the Laurent series about 1 of the Dirichlet series
∞∑
1

1P(n)n−s = ζ(s)
∏
p∈P

(
1− p−s

)
,

where ζ denotes the Riemann zeta function. That is,

(1·1) γ(P) = lim
s→1

{
ζ(s)

∏
p∈P

(
1− p−s

)
− δP
s− 1

}
.

For a second representation, take P =
∏

p∈P p. We have∑
n≤x

1P(n)
n

=
∑
n≤x

1
n

∑
d|(n,P )

µ(d) =
∑
d|P

µ(d)
d

∑
m≤x/d

1
m

=
∑
d|P

µ(d)
d

(log(x/d) + γ +O(d/x))

= δP log x−
∑
d|P

µ(d) log d
d

+ γδP + o(1)

as x→∞, where µ is the Möbius function. If we apply the Dirichlet convolution identity
µ log = −Λ ∗ µ, where Λ is the von Mangoldt function, we find that

−
∑
d|P

µ(d) log d
d

=
∑
ab|P

Λ(a)µ(b)
ab

=
∑
p∈P

log p
p

∑
b|P/p

µ(b)
b

= δP
∑
p∈P

log p
p− 1

.

Thus we have

PROPOSITION 1. Let P be any finite set of primes. Then

(1·2) γ(P) =
∏
p∈P

(
1− 1

p

){
γ +

∑
p∈P

log p
p− 1

}
.

We remark that this formula also can be deduced from (1·1) by an easy manipulation.

It is natural to inquire about the spectrum of values

G = {γ(P) : P is a finite set of primes}.

In particular, what is Γ:= inf G ? The closure of G is simple to describe in terms of Γ.

PROPOSITION 2. The set G is dense in [Γ,∞).

Proof. Suppose x > Γ and let P be a finite set of primes with γ(P) < x. Put

c =
(
x− γ(P)

) ∏
p∈P

(
1− 1

p

)−1

.

Let y be large and let Py be the union of P and the primes in (y, ecy]. By (1·2), the well-known Mertens estimates,
and the prime number theorem,

γ(Py) =
∏
p∈P

(
1− 1

p

) log y
c+ log y

(
1 +O

( 1
log y

))(
γ +

∑
p∈P

log p
p− 1

+ c+O(1/ log y)
)
.

Therefore, limy→∞ γ(Py) = x and the proof is complete.
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In caseP consists of the first r primes {p1, . . . , pr}, we replaceP by r in the preceding notation, and let γr represent

the generalized Euler constant for the integers sieved by the first r primes. Also define γ0 = γ(∅) = γ. These special
values play an important role in our theory of generalized Euler constants.

Table 1. Some Gamma Values (truncated)
γ = 0.57721
γ1 = 0.63518 γ11 = 0.56827 γ21 = 0.56513 γ31 = 0.56385
γ2 = 0.60655 γ12 = 0.56783 γ22 = 0.56495 γ32 = 0.56378
γ3 = 0.59254 γ13 = 0.56745 γ23 = 0.56477 γ33 = 0.56372
γ4 = 0.58202 γ14 = 0.56694 γ24 = 0.56462 γ34 = 0.56365
γ5 = 0.57893 γ15 = 0.56649 γ25 = 0.56454 γ35 = 0.56361
γ6 = 0.57540 γ16 = 0.56619 γ26 = 0.56445 γ36 = 0.56355
γ7 = 0.57352 γ17 = 0.56600 γ27 = 0.56433 γ37 = 0.56350
γ8 = 0.57131 γ18 = 0.56574 γ28 = 0.56420 γ38 = 0.56345
γ9 = 0.56978 γ19 = 0.56555 γ29 = 0.56406 γ39 = 0.56341
γ10 = 0.56913 γ20 = 0.56537 γ30 = 0.56391 γ40 = 0.56336

e−γ = 0.5614594835. . .

The next result will be proved in Section 2.

THEOREM 1. Let P be a finite set of primes. For some r, 0 ≤ r ≤ #P , we have γ(P) ≥ γr. Consequently,
Γ = infr≥0 γr.

Applying Mertens’ well-known formulas for sums and products of primes to (1·2), we find that

(1·3) γr ∼
e−γ

log pr
{log pr +O(1)} ∼ e−γ (r →∞) .

In particular, Γ ≤ e−γ and G is dense in [e−γ ,∞).
Values of γr for all r with pr ≤ 109 were computed to high precision using PARI/GP. For all such r, γr > e−γ

and γr+1 < γr. It is natural to ask if these trends persist. That is, (1) Is the sequence of γr’s indeed decreasing for all
r ≥ 1? (2) If the γr’s oscillate, are any of them smaller than e−γ , i.e., is Γ < e−γ ? We shall show that the answer to
(1) is No and the answer to (2) is No or Yes depending on whether the Riemann Hypothesis (RH) is true or false.

THEOREM 2. There are infinitely many integers r with γr+1 > γr and infinitely many integers r with γr+1 < γr.

Theorem 2 will be proved in Section 3. There we also argue that the smallest r satisfying γr+1 > γr is probably
larger than 10215, and hence no amount of computer calculation (today) would detect this phenomenon. This behavior
is closely linked to the classical problem of locating sign changes of π(x)− li(x), where π(x) is the number of primes
≤ x and

li(x) =
∫ x

0

dt

log t
= lim

ε→0+

(∫ 1−ε

0

+
∫ x

1+ε

)
dt

log t

is Gauss’ approximation to π(x).
Despite the oscillations, {γr} can be shown (on RH) to approach e−γ from above. If RH is false, {γr} assumes

values above and below e−γ (while converging to this value).

THEOREM 3. Assume RH. Then γr > e−γ for all r ≥ 0. Moreover, we have

(1·4) γr = e−γ

(
1 +

g(pr)√
pr(log pr)2

)
,

where 1.95 ≤ g(x) ≤ 2.05 for large x.

As we shall see later, lim supx→∞ g(x) > 2 and lim infx→∞ g(x) < 2.

THEOREM 4. Assume RH is false. Then γr < e−γ for infinitely many r. In particular, Γ < e−γ .
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COROLLARY 1. The Riemann Hypothesis is equivalent to the statement “γr > e−γ for all r ≥ 0.”

It is relatively easy to find reasonable, unconditional lower bounds on Γ by making use of Theorem 1, Proposition
1 and explicit bounds for counting functions of primes. By Theorem 7 of [10], we have∏

p≤x

(
1− 1

p

)
>

e−γ

log x

(
1− 1

2 log2 x

)
(x ≥ 285).

Theorem 6 of [10] states that∑
p≤x

log p
p

> log x− γ −
∑

p

log p
p(p− 1)

− 1
2 log x

(x > 1).

Using Proposition 1 and writing 1
p−1 = 1

p + 1
p(p−1) , we obtain for x = pr ≥ 285 the bound

γr ≥
e−γ

log x

(
1− 1

2 log2 x

) γ +
∑
p≤x

log p
p

+
∑

p

log p
p(p− 1)

−
∑

p≥x+1

log p
p(p− 1)


≥ e−γ

log x

(
1− 1

2 log2 x

) (
log x− 1

2 log x
− (x+ 1)(1 + log x)

x2

)
.

In the last step we used ∑
p≥x+1

log p
p(p− 1)

<
x+ 1
x

∫ ∞

x

log t
t2

dt =
(x+ 1)(1 + log x)

x2
.

By the aforementioned computer calculations, γr > e−γ when pr < 109, and for pr > 109 the bound given above
implies that γr ≥ 0.56. Therefore, we have unconditionally

Γ ≥ 0.56.

Better lower bounds can be achieved by utilizing longer computer calculations, better bounds for prime counts [9],
and some of the results from §4 below, especially (4·12).

2. An extremal property of {γr}
In this section we prove Theorem 1. Starting with an arbitrary finite set P of primes, we perform a sequence of

operations on P , at each step either removing the largest prime from our set or replacing the largest prime with a
smaller one. We stop when the resulting set is the first r primes, with 0 ≤ r ≤ #P . We make strategic choices of the
operations to create a sequence of sets of primes P0 = P,P1, . . . ,Pk, where

γ(P0) > γ(P1) > · · · > γ(Pk)

with Pk = {p1, p2, . . . , pr}, the first r primes.
The method is simple to describe. Let Q = Pj , which is not equal to any set {p1, p2, . . . , ps}, and with largest

element t. Let Q′ = Q\{t}. If γ(Q′) < γ(Q), we set Pj+1 = Q′. Otherwise, we set Pj+1 = Q′ ∪ {u}, where u is
the smallest prime not in Q. We have u < t by assumption. It remains to show in the latter case that

(2·1) γ(Pj+1) < γ(Q).

By (1·2), for any prime v 6∈ Q′,

(2·2) γ(Q′ ∪ {v}) = γ(Q′)
(

1− 1
v

+
log v
vA

)
=:γ(Q′)f(v), A := γ +

∑
p∈Q′

log p
p− 1

.

Observe that f(v) is strictly increasing for v < eA+1 and strictly decreasing for v > eA+1, and limv→∞ f(v) = 1.
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Thus f(v) > 1 for eA+1 ≤ v < ∞. Since γ(Q) = γ(Q′)f(t) ≤ γ(Q′), we have f(t) ≤ 1. It follows that
u < t ≤ eA+1 and hence f(u) < f(t) ≤ 1. Another application of (2·2), this time with v = u, proves (2·1) and the
theorem follows.

3. The γr’s are not monotone

Define

(3·1) A(x) := γ +
∑
p≤x

log p
p− 1

.

By (2·2), we have

γr+1 = γr

(
1− 1

pr+1
+

log pr+1

pr+1A(pr)

)
,

thus

(3·2) γr+1 ≤ γr ⇐⇒ A(pr) ≥ log pr+1.

THEOREM 5. We have A(x)− log x = Ω±(x−1/2 log log log x).

Proof. First introduce

(3·3) ∆(x) :=
∑
p≤x

log p
p− 1

−
∑
n≤x

Λ(n)
n

and θ(x) :=
∑
p≤x

log p .

Then

∆(x) =
∑
p≤x

(log p)
∑
α≥1

1
pα

−
∑

pα≤x

(log p)
1
pα

=
∑
p≤x

(log p)
∑

α≥blog x/ log pc+1

1
pα

=
∑
p≤x

log p
p− 1

p−blog x/ log pc ≥ 0.
(3·4)

Since pblog x/ log pc ≥ x/p, we have

(3·5) ∆(x) =
∑

√
x<p≤x

log p
p(p− 1)

+
∑

x1/3<p≤x1/2

log p
p2(p− 1)

+O

( ∑
p≤x1/3

log p
x

)
.

Aside from an error of O(x−1), the first sum is∑
p>
√

x

log p
p2

= −θ(
√
x)

x
+

∫ ∞

√
x

2θ(t)
t3

dt = x−1/2 +O(x−1/2 log−3 x),

using the bound |θ(x) − x| � x log−3 x which follows from the prime number theorem with a suitable error term.
The second sum and error term in (3·5) are each O(x−2/3), and we deduce that

(3·6) ∆(x) =
1√
x

+O

(
1√

x(log x)3

)
.

REMARK 1. Assuming RH and using the von Koch bound |θ(x)− x| �
√
x log2 x, we obtain the sharper estimate

∆(x) = x−1/2 +O(x−2/3).

By (3·6),

(3·7) A(x) = γ +
∑
n≤x

Λ(n)
n

+
1√
x

+O

(
1√

x(log x)3

)
.
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To analyze the above sum, introduce

(3·8) R(x) :=
∑
n≤x

Λ(n)
n

− log x+ γ.

For <s > 0, we compute the Mellin transform

(3·9)
∫ ∞

1

x−s−1R(x) dx = −1
s

ζ ′

ζ
(s+ 1)− 1

s2
+
γ

s
.

The largest real singularity of the function on the right comes from the trivial zero of ζ(s+ 1) at s = −3.
Let ρ = β + iτ represent a generic nontrivial zero of ζ(s) – we avoid use of γ for =ρ for obvious reasons. If RH

is false, there is a zero β + iτ of ζ with β > 1/2, and a straightforward application of Landau’s Oscillation Theorem
([1], Theorem 6.31) gives R(x) = Ω±(xβ−1−ε) for every ε > 0. In this case, A(x)− log x = Ω±(xβ−1−ε), which is
stronger than the assertion of the theorem.

If RH is true, we may analyze R(x) via the explicit formula

(3·10) R0(x) :=
1
2
{R(x−) +R(x+)} = −

∑
ρ

xρ−1

ρ− 1
+

∞∑
n=1

1
2n+ 1

x−2n−1 ,

where
∑

ρ means limT→∞
∑
|ρ|≤T . Equation (3·10) is deduced in a standard way from (3·9) by contour integration,

and limT→∞
∑
|ρ|≤T converges boundedly for x in any (fixed) compact set contained in (1, ∞). (cf. [3], Ch. 17,

where a similar formula is given for ψ0(x), as we now describe.)
In showing that

ψ(x) :=
∑
n≤x

Λ(n) = x+ Ω±(x1/2 log log log x),

Littlewood [6] (also cf. [3], Ch. 17) used the analogous explicit formula

ψ0(x) :=
1
2
{ψ(x+) + ψ(x−)} = x− ζ ′

ζ
(0)−

∑
ρ

xρ

ρ
+

∞∑
n=1

1
2n

x−2n

and proved that ∑
ρ

xρ

ρ
= Ω±(

√
x log log log x).

Forming a difference of normalized sums over the non-trivial zeros ρ, we obtain∣∣∣ ∑
ρ

xρ−1/2

ρ
−

∑
ρ

xρ−1/2

ρ− 1

∣∣∣ � ∑
ρ

∣∣∣ 1
ρ(ρ− 1)

∣∣∣ � 1.

Thus ∑
ρ

xρ−1

ρ− 1
= x−1/2 Ω±(log log log x),

and hence R(x) = Ω±(x−1/2 log log log x).
Therefore, in both cases (RH false, RH true), we have

R(x) = Ω±(x−1/2 log log log x),

and the theorem follows from (3·7) and (3·8).

By Theorem 5, there are arbitrarily large values of x for which A(x) < log x. If pr is the largest prime ≤ x, then

A(pr) = A(x) < log x < log pr+1
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for such x. This implies by (3·2) that γr+1 > γr. For the second part of Theorem 2, take x large and satisfying
A(x) > log x+ x−1/2 and let pr+1 be the largest prime ≤ x. By Bertrand’s postulate, pr+1 ≥ x/2. Hence

A(pr) = A(pr+1)−
log pr+1

pr+1 − 1
≥ log x+ x−1/2 − log x

x/2− 1
> log x ≥ log pr+1,

which implies γr+1 < γr.

Computations with PARI/GP reveal that γr+1 < γr for all r with pr < 109. By (3·7), to find r such that γr+1 > γr,
we need to search for values of x essentially satisfying R(x) < −x−1/2. By (3·10), this boils down to finding values
of u = log x such that ∑

ρ=β+iτ

eiuτ

iτ − 1/2
> 1.

Of course, the smallest zeros of ζ(s) make the greatest contributions to this sum.
Let `(u) be the truncated version of the preceding sum taken over the zeros ρ with |=ρ| ≤ T0 := 1132490.66

(approximately 2 million zeros with positive imaginary part, together with their conjugates). A table of these zeros,
accurate to within 3 · 10−9, is provided on Andrew Odlyzko’s web page
http://www.dtc.umn.edu/∼odlyzko/zeta tables/index.html.
In computations of `(u), the errors in the values of the zeros contribute a total error of at most

(3 · 10−9)u
∑

|=ρ|≤T0

1
|ρ|

≤ (4.5 · 10−7)u.

Computation using u-values at increments of 10−5 and an early abort strategy for u’s having too small a sum over
the first 1000 zeros, indicates that `(u) ≤ 0.92 for 10 ≤ u ≤ 495.7. Thus, it seems likely that the first r with
γr+1 > γr occurs when pr is of size at least e495.7 ≈ 1.9 × 10215. There is a possibility that the first occurence of
γr+1 > γr happens nearby, as `(495.702808) > 0.996. Going out further, we find that `(1859.129184) > 1.05, and
an averaging method of R. S. Lehman [5] can be used to prove that γr+1 > γr for many values of r in the vicinity of
e1859.129184 ≈ 2.567 × 10807. Incidentally, for the problem of locating sign changes of π(x) − li(x), one must find
values of u for which (essentially) ∑

ρ=β+iτ

eiuτ

iτ + 1/2
< −1.

A similarly truncated sum over zeros with |=ρ| ≤ 600, 000 first attains values less than −1 for positive u values when
u ≈ 1.398× 10316 [2].

4. Proof of Theorem 3

Showing that γr > e−γ for all r ≥ 0 under RH requires explicit estimates for prime numbers. Although sharper
estimates are known (cf. [9]), older results of Rosser and Schoenfeld suffice for our purposes. The next lemma follows
from Theorems 9 and 10 of [10].

LEMMA 4·1. We have θ(x) ≤ 1.017x for x > 0 and θ(x) ≥ 0.945x for x ≥ 1000.

The preceeding lemma is unconditional. On RH, we can do better for large x, such as the following results of
Schoenfeld ([11], Theorem 10 and Corollary 2).

LEMMA 4·2. Assume RH. Then

|θ(x)− x| <
√
x log2 x

8π
(x ≥ 599)
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and

|R(x)| ≤ 3 log2 x+ 6 log x+ 12
8π
√
x

(x ≥ 8.4).

Mertens’ formula in the form

−
∑
p≤x

log(1− 1/p) = log log x+ γ + o(1)

and a familiar small calculation give

−
∑
p≤x

log(1− 1/p)−
∑
n≤x

Λ(n)
n log n

=
∑
p≤x
pa>x

1
apa

= O
( 1

log x

)
= o(1).

It follows that

(4·1)
∑
n≤x

Λ(n)
n log n

= log log x+ γ + o(1).

We can obtain an exact expression for the last sum in terms of R (defined in (3·8)) by integrating by parts:∑
n≤x

Λ(n)
n log n

=
∫ x

2−

dt/t+ dR(t)
log t

= log log x− log log 2 +
R(x)
log x

− R(2)
log 2

+
∫ x

2

R(t) dt
t log2 t

= log log x+ c+
R(x)
log x

−
∫ ∞

x

R(t) dt
t log2 t

,

where

c :=
∫ ∞

2

R(t) dt
t log2 t

− R(2)
log 2

− log log 2 = γ,

by reference to (4·1) and the relation R(x) = o(1). Thus

(4·2)
∑
n≤x

Λ(n)
n log n

= log log x+ γ +
R(x)
log x

−
∫ ∞

x

R(t)
t log2 t

dt.

Let H(x) denote the integral in (4·2) and define

(4·3) ∆̃(x) :=
∑
p≤x
pa>x

1
apa

.

Using (1·2), engaging nearly all the preceding notation and writing pr = x, we have

(4·4) γr =
e−γ

log x
exp

{
− R(x)

log x
+H(x)− ∆̃(x)

}(
log x+R(x) + ∆(x)

)
.

We use Lemmas 4·1 and 4·2 to obtain explicit estimates for H(x), ∆(x), and ∆̃(x).
We shall show below that ∆(x) − ∆̃(x) log x ≥ 0. It is crucial for our arguments that this difference be small.

Also, although one may use Lemma 4·2 to bound H(x), we shall obtain a much better inequality by using the explicit
formula (3·10) for R0 (which agrees with R a.e.).

LEMMA 4·3. Assume RH. Then

|H(x)| ≤ 0.0462
√
x log2 x

(
1 +

4
log x

)
(x ≥ 100).
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Proof. Since R(x) = o(1) by the prime number theorem, we see that the integral defining H converges absolutely.

We write

H(x) = lim
X→∞

∫ X

x

R(t)
t log2 t

dt,

and treat the integral for H as a finite integral in justifying term-wise operations.
We now apply the explicit formula (3·10) for R. For t ≥ 100,

∞∑
n=1

t−2n−1

2n+ 1
≤ 0.34

t3

and thus

(4·5)
∫ ∞

x

1
t log2 t

∞∑
n=1

t−2n−1

2n+ 1
dt <

0.12
x3 log2 x

≤ 0.0000012
x1/2 log2 x

.

The series over zeta zeros in (3·10) converges boundedly to R0(x) as T → ∞ for x in a compact region; by
the preceding remark on the integral defining H , we can integrate the series term-wise. For each nontrivial zero ρ,
integration by parts gives ∫ ∞

x

tρ−2

log2 t
dt =

−xρ−1

(ρ− 1) log2 x
+

2
ρ− 1

∫ ∞

x

tρ−2

log3 t
dt

and thus

∣∣∣∣∫ ∞

x

tρ−2

log2 t
dt

∣∣∣∣ ≤ x−1/2

|ρ− 1| log2 x
+

2
|ρ− 1| log3 x

∫ ∞

x

t−3/2 dt

≤ x−1/2

|ρ− 1| log2 x

(
1 +

4
log x

)
.

Since RH is assumed true, we have by [3], Ch. 12, (10) and (11),∑
ρ

1
|ρ− 1|2

=
∑

ρ

1
|ρ|2

= 2
∑

ρ

<ρ
|ρ|2

= 2 + γ − log 4π = 0.0461914 . . . .

Putting these pieces together, we conclude that

|H(x)| ≤
∑

ρ

1
|ρ− 1|

∣∣∣∣∫ ∞

x

tρ−2

log2 t
dt

∣∣∣∣ +
0.0000012
√
x log2 x

≤ 0.0461915 + 0.0000012
√
x log2 x

(
1 +

4
log x

)
.

Under assumption of RH, we have

(4·6) H(x) =
x−1/2

log2 x

{∑
ρ

xiτ

(ρ− 1)2
+

4ϑ
log x

∑
ρ

1
|ρ− 1|2

+
0.12ϑ′

x5/2

}
,

where |ϑ| ≤ 1 and |ϑ′| ≤ 1. The series are each absolutely summable, and so the first series is an almost periodic
function of log x. Thus the values this series assumes are (nearly) repeated infinitely often. The other two terms in
(4·6) converge to 0 as x → ∞. Also, the mean value of H(x)x1/2 log2 x is 0 (integrate the first series); thus the first
series in (4·6) assumes both positive and negative values. The lim sup and lim inf of H(x)x1/2 log2 x are equal to the
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lim sup and lim inf of the first series in (4·6), and we have

H(x) = Ω±(x−1/2(log x)−2).

If one assumes that the zeros ρ in the upper half-plane have imaginary parts which are linearly independent over the
rationals (unproved even under RH, but widely believed), then Kronecker’s theorem implies that

lim sup
x→∞

H(x)
√
x(log x)2 = 2 + γ − log 4π, lim inf

x→∞
H(x)

√
x(log x)2 = −(2 + γ − log 4π).

Continuing to assume RH but making no linear independence assumption on the τ ’s, we can show that

lim inf
x→∞

H(x)
√
x(log x)2 ≤ −

∑
ρ

|ρ− 1|−2 +
1
2

∑
ρ

|ρ− 1|−4 < −0.04615,

which is close to −(2 + γ − log 4π). Indeed, for x = 1, the first series in (4·6) equals
∑

ρ(ρ − 1)−2, and by almost
periodicity this value is nearly repeated infinitely often. Also,

1
(ρ− 1)2

+
1

(ρ− 1)2
+

2
|ρ− 1|2

=
1

|ρ− 1|4
,

so that ∑
ρ

1
(ρ− 1)2

= −
∑

ρ

1
|ρ− 1|2

+
∑

ρ

1/2
|ρ− 1|4

.

The next two lemmas are unconditional; i.e. they do not depend on RH. We do not try to obtain the sharpest estimates
here.

LEMMA 4·4. We have

∆(x) ≤ 3.05√
x

(x ≥ 106).

Proof. Using (3·4) and the upper bound for θ(x) given in Lemma 4·1,

∆(x) ≤
√
x√

x− 1

∑
p>
√

x

log p
p2

+ 2
∑

p≤
√

x

log p
x

≤ 1000
999

(
−θ(

√
x)

x
+

∫ ∞

√
x

2θ(t)
t3

dt

)
+

2θ(
√
x)

x

≤ 1.017
(

4− 1000
999

)
x−1/2 < 3.05x−1/2.

LEMMA 4·5. We have

∆(x)/ log x ≥ ∆̃(x) (x > 1)(4·7)

∆(x)
log x

− ∆̃(x) =
2

√
x log2 x

+O

(
1

√
x log3 x

)
(x ≥ 2)(4·8)

∆(x)
log x

− ∆̃(x) ≥ 1.23
√
x log2 x

(x ≥ 106).(4·9)

Proof. By (3·4), we have

(4·10)
∆(x)
log x

− ∆̃(x) =
∑
p≤x

∑
a> log x

log p

1
pa

(
log p
log x

− 1
a

)
.
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Each summand on the right side is clearly positive, proving the first part of the lemma.

As shown in the proof of (3·5), the summands of ∆(x) associated with exponents a ≥ 3 make a total contribution
of O(x−2/3). Thus the corresponding summands in (4·10) contribute O(x−2/3/ log x). We handle the remaining term
by partial summation, writing∑

√
x<p≤x

p−2

(
log p
log x

− 1
2

)
=

∫ x

√
x

1
t2

{ 1
log x

− 1
2 log t

}
dθ(t)(4·11)

=
θ(x)

2x2 log x
+

∫ x

√
x

θ(t)t−3
{ 2

log x
− 1

log t
− 1

2 log2 t

}
dt.

Using the prime number theorem with an error term θ(t)− t� t log−2 t, the left side of (4·11) is seen to be

= O

(
1

√
x log3 x

)
+

∫ ∞

√
x

{( 2
t2 log x

− 1
t2 log t

− 1
t2 log2 t

)
+

1
2t2 log2 t

}
dt

= O

(
1

√
x log3 x

)
+

∫ ∞

√
x

1
2t2 log2 t

dt

=
2

√
x log2 x

+O

(
1

√
x log3 x

)
,

proving the second part of the lemma.
The proof of (4·7) shows the expression in (4·11) is a valid lower bound for ∆(x)/ log x − ∆̃(x). Inserting the

estimates from Lemma 4·1 and applying integration by parts gives, for x ≥ 106,

∆(x)
log x

− ∆̃(x) ≥ 0.4725
x log x

+ 0.945
∫ x

√
x

2/ log x− 1/ log t
t2

dt− 1.017
2

∫ x

√
x

dt

t2 log2 t

= −0.4725
x log x

+ 0.4365
∫ x

√
x

dt

t2 log2 t
.

Another application of integration by parts yields∫ x

√
x

dt

t2 log2 t
=

4
√
x log2 x

− 1
x log2 x

−
∫ x

√
x

2dt
t2 log3 t

≥ 4
√
x log2 x

− 1
x log2 x

− 16
√
x log3 x

≥ 2.84
√
x log2 x

.

Finally,

1
x log x

≤ log 106

1000
1

√
x log2 x

.

Combining the estimates, we obtain the third part of the lemma.

We are now set to complete the proof of Theorem 3. A short calculation using PARI/GP verifies that γr > e−γ for
pr < 106. Assume now that x = pr ≥ 106. By (4·4),

(4·12) γr = e−γ

(
1 +

R(x) + ∆(x)
log x

)
exp

{
−R(x) + ∆(x)

log x

}
exp

{
∆(x)
log x

− ∆̃(x) +H(x)
}
.
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By Lemmas 4·2 and 4·4,

|R(x)|+ ∆(x)
log x

≤ 3 log2 x+ 6 log x+ 12 + 24.4π
8π
√
x log x

≤ 0.1556 log x√
x

≤ 0.00215.

By Taylor’s theorem applied to −y + log(1 + y), if |y| ≤ 0.00215 then e−y(1 + y) ≥ e−0.501y2
. This, together with

Lemmas 4·3 and 4·5, yields

γr ≥ e−γ exp
{
−0.01213

log2 x

x
+

1.17
√
x log2 x

}
.

Since x−1/2 log4 x is decreasing for x ≥ e8,

log2 x

x
≤ log4 106

1000
1

√
x log2 x

≤ 36.431
√
x log2 x

.

We conclude that

γr ≥ e−γ exp
{

0.728
√
x log2 x

}
(x ≥ 106),

which completes the proof of the first assertion.
By combining (4·12) with Lemma 4·2, Lemma 4·4 and (4·8), we have

γr = e−γ exp
{
H(x) +

2
√
x log2 x

+O

(
1

√
x log3 x

)}
.

Lemma 4·3 implies that

|H(x)| ≤ 0.047
√
x log2 x

for large x, and this proves (1·4). By the commentary following the proof of Lemma 4·3, we see that lim inf g(x) < 2
and lim sup g(x) > 2.

5. Analysis of γr if RH is false

Start with (4·12) and note that e−y(1 + y) ≤ 1. Inserting the estimates from Lemma 4·5 gives

(5·1) γr ≤ e−γ exp
{
H(x) +O

( 1
√
x log2 x

)}
.

Our goal is to show that H(x) has large oscillations. Basically, a zero of ζ(s) with real part β > 1/2 induces oscilla-
tions in H(x) of size xβ−1−ε, which will overwhelm the error term in (5·1).

The Mellin transform of H(x) does not exist because of the blow-up of the integrand near x = 1; however the
function H(x) log x is bounded near x = 1.

LEMMA 5·1. For <s > 0, we have∫ ∞

1

x−s−1H(x) log x dx = − 1
s2

log
(
s ζ(s+ 1)
s+ 1

)
− 1− γ

s
+G(s),

where G(s) is a function that is analytic for <s > −1.

Proof. By (4·2),

H(x) log x = −(log x)
∑
n≤x

Λ(n)
n log n

+R(x) + (log x)(log log x+ γ).
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The Mellin transform of the sum is s−1 log ζ(s+ 1); hence∫ ∞

1

x−s−1(log x)
∑
n≤x

Λ(n)
n log n

dx = − d

ds

log ζ(s+ 1)
s

=
log ζ(s+ 1)

s2
− 1
s

ζ ′

ζ
(s+ 1).

Let

f(x) :=
∫ x

1

1− t−1

t log t
dt.

We have (cf. (6.7) of [1])

f(x) log x = (log log x+ γ) log x+O

(
1
x

)
(x > 1),

and note that a piecewise continuous function which is O(1/x) has a Mellin transform which is analytic for <s > −1.
Also,

s

∫ ∞

1

x−s−1f(x) dx =
∫ ∞

1

x−sf ′(x) dx =
∫ ∞

1

x−s 1− x−1

x log x
dx = log

(
s+ 1
s

)
.

Thus, ∫ ∞

1

x−s−1f(x) log x dx = − d

ds

1
s

log
(
s+ 1
s

)
=

1
s2

log
(
s+ 1
s

)
+

1
s2
− 1
s

+
1

s+ 1
.

Recalling (3·9), the proof is complete.

We see that the Mellin transform of H(x) log x has no real singularities in the region <s > −1. If ζ(s) has a
zero with real part β > 1/2, Landau’s oscillation theorem implies that H(x) log x = Ω±(xβ−1−ε) for every ε > 0.
Inequality (5·1) then implies that γr < e−γ for infinitely many r, proving Theorem 4.

REMARK 2. We leave as an open problem to show that γr > e−γ for infinitely many r in case RH is false. If the
supremum σ of real parts of zeros of ζ(s) is strictly less than 1, then Landau’s oscillation theorem immediately gives

H(x) = Ω±(xσ−1−ε)

for every ε > 0, while a simpler argument shows that

R(x) = O(xσ−1+ε).

By (4·4), we have

γr = e−γ exp
{
H(x) +O

(
R2(x)
log2 x

)
+O

(
1√

x log x

)}
and the desired result follows immediately. If ζ(s) has a sequence of zeros with real parts approaching 1, Landau’s
theorem is too crude to show that H(x) has larger oscillations than does R2(x)/ log2 x. In this case, techniques of
Pintz ([7], [8]) are perhaps useful.

Acknowledement. The authors thank the referee for a careful reading of the paper and for helpful suggestions re-
garding the exposition.
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