LONG STRINGS OF CONSECUTIVE COMPOSITE VALUES OF POLYNOMIALS
KEVIN FORD, MIKHAIL R. GABDULLIN

ABSTRACT. We show that for any polynomial f : Z — Z with positive leading coefficient
and irreducible over Q, if x is large enough then there is a string of (log x)(loglog z)'/83%
consecutive integers n € [1,z] for which f(n) is composite. This improves the result in [6],
which states that there are such strings of length (logx)(loglog x)°f, where c; depends on f
and c; is exponentially small in the degree of f for some polynomials.

1. INTRODUCTION

The first author, together with Konyagin, Maynard, Pomerance and Tao, showed in [6] that
a general “sieved set” contains long gaps. More precisely, for each prime p consider a set /),
of residue classes modulo p, and call the collection of all sets I, a sieving system. As in [6],
assume the following regularity conditions:
(a) We have |[,| < p — 1 for all p;
(b) |1, is bounded; there is a B € N with |[,| < B for all p;
(¢) |I,| has average value 1, in the sense that

|1, C
1.1 [T(1-22) ~ =~ -
(1. pgx( P log (w = ),

for some constant C; > 0.
(d) There is a p > 0, so that the density of primes with |I,| > 1 equals p, that is,

ST =
ST AES
T—0 x/logx

p.

Now define the sieved set
Se =2\ J L,
p<z
so that S, is a periodic set with period equal to the product of the primes p < z. The main
theorem from [6] states that if (a)—(d) hold, then for any € > 0 and large x, the set .S, contains
a gap of size z(log x)°(")~¢, where

(1.2) C(p) {5>0 610% }
. p) = sup <Py
log(1/(24))
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In particular, C'(p) decays exponentially in 1/p. One of the principal applications of this
result in [6] is to finding long strings of consecutive composite values of polynomial sequences.
Consider a polynomial f : Z — Z of degree d > 1, with positive leading coefficient and
irreducible over Q. Let I, = ¢ for p < d and

I,:={neZ/pZ: f(n) =0 (mod p)} (p > d).

The polynomial need not have integer coefficients. Indeed, by Pélya’s theorem [11], f is integer
valued at integers if and only if f has the form f(z) = Zj:o a;(7) with every a; € Z. In
particular, d!f(y) € Z[y] and thus the sieving system is well-defined. We call the collection of
all sets I,, a polynomial sieving system.

By Lagrange’s theorem, |,| < d < p for all p > d, and hence (a) and (b) hold. Item (c)
holds by Landau’s Prime Ideal Theorem [9] (see also [4, pp. 35-36]), while (d) follows from
the Chebotarev Density Theorem [3] (see also [8]), with p = p(f) equal to C'/|G|, where G is
the Galois group of f, a subgroup of the symmetric group on d objects, and C' is the number
of elements of G having at least one fixed point. We have p(f) > 1/d always, and sometimes
olf) = 1/d.

Examples. When f(z) = z? + 1, we have || = 1, |[,| = 2 forall p = 1 (mod 4) and
|I,| = 0 for p =3 (mod 4). Thus, p(f) = 1/2. Similarly, if d = 2* for a positive integer k¥ and
f(z) = 2%+ 1, then |I,| = d for p = 1 (mod 2"™) and |I,| = 0 for all other odd primes p,
hence p(f) = 1/d = 1/2.

The connection with sieved sets comes from the obvious relation

{neN: f(n) >z, f(n) prime} < S,.

Now let X be large and set z := }log X. The period of the set S, is X '/2*°()) by the Prime
Number Theorem. Thus, writing g, for the longest gap in .S,, the interval [ X /2, X'| contains a
gap in S, of length g,. For large X, f(n) > « for all n € (X /2, X|, and we conclude that

(1.3) max{m:X/2<n<n+m<Xand f(n),..., f(n+m)composite} > g(1/2)iog x-

The main theorem of [6] implies that the left side of (1.3) is > (log X )(loglog X )¢ (/) —o(1),
In particular, we have [6, Corollary 1], which states that the left side of (1.3) is at least of
size > (log X)(loglog X)¢(/9=2(1) " The exponent here decays exponentially in d (roughly
C(1/d) ~ e=6%).

It is still an open conjecture (of Bunyakovsky [2]) that there are infinitely many integers n
for which f(n) is prime. Moreover it is believed (see the conjecture of Bateman and Horn [1])
that the density of these prime values on [X/2, X]is =; 1/log X, and so the gaps above would
be unusually large compared to the average gap of size = log X.

Our main result is a stronger lower bound on the length of strings of consecutive composite
values of polynomials, with exponent of log log = being independent of f.

Theorem 1. Let f be as above. For all € > 0 and large X, there are n,n + m € (X /2, X| with
m = (log X)(loglog X)“M=¢ and with f(n),..., f(n + m) all composite.

Numerically, 1/C(1) = 834.109.... In particular, when f(z) = z, our bound falls well
short of the best known lower bound for the maximal gap between the primes below x from [5],
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which is

» (log X)(loglog X)lOg log log 1ng.

log log log X

However, as noted in [6], the methods used to find large gaps between primes do not apply to
gaps in more general sieved sets.

Our proof is based on the method developed in [6], but with one important difference. In
[6], only one of the elements of I, is utilized for large ¢ (for those ¢ with |/,| > 1), whereas in
this paper we utilize all of the set /,. This introduces a number of complications, which we get
around using special properties of polynomial sequences. Our methods do not apply for all of
the sieved sets considered in [6], but they do generalize to sieved sets for which the sizes of the
I, have a limiting distribution and for which the difference sets I, — [, := {a — a’ : a,d’ € I},
interpreted as subsets of Z, do not have large overlap. To state our general theorem, we introduce
further conditions, Hypotheses (e), (f) and (g) (here and throughout the paper, the symbols p
and ¢ always denote primes):

(e) Foreach v € {1,..., B}, the density of those p with |I,| = v exists. That is, for some
non-negative real numbers p,, 1 < v < B, we have

<z =
e =v)
T x/logx

v

(f) For non-zero v, define
N@w)=#{p:vmodpel,—I,}.

Then, for all v > 1, we have N (v) « v%49.

(g) There are positive constants ci, co such that the following holds. Let v > 10, and for
each prime ¢ with |/;| > 1, let m, be a nonzero integer with m, mod ¢ € (I, — I,). If
|w| < wand k > 1, then

#{q: |I,] = 1,0 < |my| < u,my +w # 0, N(my +w) >k} < u(logu)™e "

Hypothesis (e) is stronger than Hypothesis (d) and will replace it. Furthermore, (e) implies
that the average of ]]p\, over p < z, i1s asymptotically p; +2ps + - - - + Bpp, which, by the weak
average assumption (c), equals 1.

Theorem 2. Consider any sieving system satisfying conditions (a)—(c) and (e)—(g) above. For
any € > 0 and large enough x, S, has a gap of size at least x(log x)c(l)_e.

Clearly, Theorem 1 follows from Theorem 2, provided that we verify (e), (f) and (g) in the
case of polynomial sieving systems. This verification is accomplished in the next section. The
following sections are devoted to the proof of Theorem 2. As noted, the main new idea is to
utilize all of the sets I, for large ¢, which is encoded in a certain weight function; see (3.12) for
specifics. Hypothesis (f) will be needed at the end of Section 4 and near the end of Section 6,
while hypothesis (g) will be needed for the proof of the crucial Lemma 6.3.
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2. VERIFYING THE HYPOTHESES OF THEOREM 2 FOR POLYNOMIAL SIEVING SYSTEMS

Item (e) is an immediate corollary of the Chebotarev density theorem. In fact, p, is precisely
the proportion of elements of the Galois group of f which have exactly v fixed points.

To verify (f) and (g), we introduce an auxiliary polynomial £’ which has roots which are the
differences of the roots of f. By Pdlya’s theorem [11], f is integer valued at integers if and only
if f has the form f(x) = Z;'l:o a; (j) with every a; € Z. In particular, there exists a minimal
positive integer ¢|d! such that ¢ f € Z[z]. Let also rq, ..., 4 be the complex roots of f. Writing

d
f@) =tf(z) = ca? + cq 12V + -+ ez + o = CH(I —ry),
i=1

where ¢ = ¢4, ¢, . .., Cq_1 € Z, we define the polynomial
d
2.1 F(z) = 2+ 1_[ (x —(r; — rj)> s Hf(:r; +7;),
1<ij<d i=1

so that deg ' = d2. We will need the following properties of F'.

Lemma 2.1. The polynomial F' obeys the following properties:
(i) F € Z[x];
(i) If f(a) = f(b) =0 (mod q) for some integers a and b, then F'(a — b) = 0 (mod q);
(iii) £ (1) # 0foranyl € Z\{0}.
Proof. Our proofs utilize the Fundamental Theorem of Symmetric Polynomials (FTSP) [10,
p-20, Theorem (2.4)], which states that any symmetric polynomial P € Z[u], with u =
(ug,...,ux), is equal to a polynomial in e;(u),...,ex(u) with integer coefficients, where
e; is the j-th elementary symmetric polynomial. In particular, by the definition of f, c; =
(—1)7"4cey_;(r) foreach 0 < j < d — 1. Thus ej(cry, ..., crq) € Zforall 1 < j < d.
We start with the first claim. By (2.1),

d
H[Z c:p—l—crl cj ,

whose coefficients are evidently symmetric polynomials in (crq,. .., crg) with integer coeffi-
cients. By FTSP, F' € Z|z].
Now we turn to the second claim. Fix a € Z. We have

f(z) = (x = a)g(z) + f(a)
for some polynomial g € Z[x] of degree d — 1 depending on «, and therefore by (2.1),
d

F(z) = ¢ [ [(x +ri — a)g(z + ;) + fla)h(x),

i=1

where, by another application of FTSP, h € Z[x]. A similar argument shows that

d
cd=1) H g(z + 1) € Z[x]

i=1
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as well. Thus, for any b € Z,

Fla—b) == ®) [ [gla—b+r) + fla)h(a —b).

=

i=1

Therefore, f(a) = f(b) = 0 (mod ¢) implies f(a) = f(b) =0 (mod ¢) and hence q|F(a — b)
for such ¢, as needed.

For the third claim, let us assume for a contradiction that '({) = 0 for some integer [ # 0. It
means that there is ry € C so that f(ry + [) = f(ry) = 0. But then the polynomial

g(x) = flz +1) = f(z)

also vanishes at the point © = ry and g # 0 (otherwise ry + kI would be zero of f for any k, so
that f = 0). Clearly, we also have deg g < deg f. But this is impossible, since f is irreducible
and thus the minimal polynomial of rq is f/c. O

We also need a classic theorem of Erdds [7] about the average size of the number of divisors
of polynomials. As is usual, 7(n) stands for the number of positive divisors of n.

Lemma 2.2. For any irreducible polynomial g € Z|x],

Zﬂ@(k)\) « zlogx.

k<z

Let w(n) denote the number of distinct prime factors of the nonzero integer n. If ¢ is prime
and v mod g € I, — I,, Lemma 2.1 (ii) implies that ¢|F(v). Lemma 2.1 (iii) implies that
F(v) # 0if v # 0. Since | F(v)| « v¥, w(F(v)) « logv + 1 and this proves (f).

Now we verify (g). If m, mod q € I, — I, then ¢|F(m,) by Lemma 2.1 (ii), and if m, # 0
then F(m,) # 0 by Lemma 2.1 (iii). We let m = m, + w. Thus, if m satisfies 0 < |m| < 2u,
|lw| < uwand m # w, there are O(logu) primes dividing F'(m — w); that is, O(log u) primes ¢
with m, + w = m. Also, if m mod p € I, — I, implies that p|F'(m). Also F' is the product of
at most d? irreducible factors, say F' = Fj ... F, with each F} irreducible. Hence, if N (m) =k
then there are at least k distinct primes p dividing F'(m), and therefore, for some i, at least k/s
distinct primes dividing F;(m). Hence, using Lemma 2.2,

#{u1/2<q<u:]\7(mq+w)2k} « #{0 < |m| <2u: N(m) = k}logu

< (logu) Z #{0 < |m| < 2u:w(F;(m)) = k/s}

< (logu) Y 27¥+ X' 7(F(m))

i=1 0<|m|<2u

k/d?

« 27 1log? u.

This proves (g), with ¢; = 2 and ¢, = (log 2)/d?, and completes the verification of the hypothe-
ses of Theorem 2 for polynomial sieving systems.
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3. NOTATION AND BASIC SETUP

We use notation similar to that of [6], with the most important change being the modification
of the weight function A (see (3.11) and (3.12) below). Throughout the proof, we will use
positive parameters /K, £, M which we describe below; one may think of them as being fixed
for most of the time (in fact, it is only the end of Section 4 where the exact choice of them
is important). The implied constant in « and related order estimates may depend on these
parameters. We will rely on probabilistic methods; boldface symbols such as S, A, n, etc. will
denote random variables (sets, functions, numbers, etc.), and the corresponding non-boldface
symbols S, A, n will denote deterministic counterparts of these variables.

For a fixed § € (1/103,C(1)), we define

3.1) y = [z(logz)’]
and

_ yloglogx
(3.2) = —(log I

As in [6], our goal is to find a number b so that S, + b has no elements in [1, y|, which will
show that S, has a gap of size at least y. This is accomplished in three stages:

(1) (Uniform random stage) First, we choose b modulo P(z) uniformly at random; equiv-
alently, for each prime p < z we choose b mod p randomly with uniform probability,
independently for each p.

(2) (Greedy stage) Secondly, choose b modulo primes in (z, z/2] randomly, but dependent
on the choice of b modulo p for p < z. A bit more precisely, for each prime g € (z, z/2]
with |I,| > 1, we will select b = b, (mod ¢) so that {b, + a + kq : k € Z,amod q €
I,} n[1,y] knocks out nearly as many elements of the random set (S, + b) N [1,y] as
possible. Unlike the argument in [6], we make use of all of the elements of /, in this
stage. This is the source of our improved theorems.

(3) (Clean up stage) Thirdly, we choose b modulo primes ¢ € (z/2,z] to ensure that the
remaining elements m € (S;/2 + b) N [1,y] do not lie in (S, + b) N [1, y] by matching
a unique prime ¢ = g(m) with |I,| > 1 to each element m and setting b = m (mod q).
Here we do use only a single element of /,, whereas using all of /, would not improve
our theorem at all.

To handle the Greedy stage (2), we divide the primes in (z,z/2] into subsets, where the
primes in each subset are about the same size and with |/ | is constant. Primes with rare values
of |1,| will play an insignificant role in our arguments, thus we define

N={1<v<B:p, >0}

so that, by the remarks following Hypothesis (g),
(3.3) dvp, =1

veN

For example, for the polynomial sieving system with f(z) = z? + 1, we have N' = {2} since
p1 = 0 (in fact, the only prime with |[,| = 1is p = 2).
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Let £ > 1 be a real number (which we will finally choose to be close to 1), and define the set
of scales

ﬁz{HE&&@w}gg<H<£}

x &z
so that
1/2
(3.4) 2oga)y < H< =Wy gy
z  loglogx

Foreach H € $Hand v € N, let

O, = {ae (g ] Il = v}

Hypothesis (e) implies that for each fixed [, v we have the asymptotic

(3.5) Q] ~ o1 = 1/€) g

(x — ).

Note that if we denote by p the density of primes p with |I,| > 1, then by (e),

<z:|L| =1
56 R TETE17 S I
T—00 z/logx =
Let also
Yy ?/]
= — =] = y
< {qe (e ) q|€N} Uon
and, forv e N,
QV = U QH,w
He$H
so that
o:=|Jon=J 2
He$H veN

We note that for all ¢ € Q, z < ¢ < x/2. Further, for each ¢ € Q, let H, be the unique H such
that ¢ € Qy, which is equivalent to

Y )
L <g< =,
gfﬂ E%
Let also M be a number with
6<M<T,
which we will eventually take to be very close to 6. We use the notation
S. =2\ J I,
p<z
and
Soa =2\ | I
Z<p<sT

and also adopt the abbreviations

(3.7 P:P(z)znp, Uza(z):zl_[(l—ﬂ), S=3S,+b,

Pz p<z p
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where b is a residue class chosen uniformly at random from Z/P(z)Z; so, S is a random shift
of S,. For a fixed H € $, we also define

(3.8) P= [[ p o1=0c(HY), bi=b (mod P), S;=Suu+by,

ng]\J

and
o(2)
(3.9) =[] p o2= . by=b (mod P,), Sy = Syu,+bs,.
o(HM) ’

HM <p<z
Obviously, for each H € 9,
(310) P=P1P27 0 = 0109, stlﬁSQ.

Note that all the quantities defined in (3.8) and (3.9) depend on H and M ; however, we will not
indicate this dependence for brevity (the values of H and M will always be clear from context).
Finally, let v, = |I,| for primes ¢. For primes ¢ € Q, let
I, ={a;,modgq,...,a,, mod ¢} (a;q€[l,q) nZ, 1 <i<v).

We set

(3.11) AP(J;q,n) = <|_|{n~|—ai7q+hq:1<h<{]}> N Sy,

i=1
this being a significant departure from [6]. Here AP(.J; ¢, n) is a portion of v, residue classes
modulo ¢q. Also define

]]-AP(KH;q,n)CSQ
AP(KHqn)| ’
AP i)

(3.12) A(H;q,n) =

where K is a positive integer which will be chosen large enough, and 1 x is the indicator func-
tion of a statement X . So, for each g € Q, the weights A(H; ¢, n) are random functions which
depend on b. Heuristically, A(H; ¢, n) has mean approximately 1, since the probability that a
given set Y lies in S is about a|2Y|; see Lemma 6.1 below for a precise statement.

3.1. General notational conventions. The notation f = O(g) and f « ¢ mean that f/g is
bounded. The notation f = O<(g) means that |f|/g < 1. The notation o(1) stands for a
function tending to zero as x — o0, at a rate which may depend only on the parameters &, K, M
and ¢, which we consider to be fixed. The notation f ~ g means f = g + o(1). As is usual,
w(n) is the number of distinct prime factors of n.

4. REDUCTION TO CONCENTRATION OF A\(H; q,n)

In this section we deduce Theorem 2 from the following statement. Recall that S = S, + b
with b chosen uniformly at random from Z/P(z)Z.

Theorem 3. Let§ < C(1), M >6, (> 1, K >0,0<e < %(M — 6), and assume that x is
large enough depending on 0, M, £, K, and e. Then there exist a choice of b (mod P(z)) and
subsets R < Q" for v e N so that:

(1) one has
(4.1) 1S A [1,y]] < 20y;
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(i) forall g e R = |,y R” one has

4.2) D AMHgqn) = (1 +O< (W)) (K +2)y;

—(K+1)y<n<y

(iii) for eachv e N andi € {1,...,v}, all but at most elements n of S n [1,y] obey

EBB2 logx
2
(43) q;y h<;H >\<Hq, q,n — Q;q — qh) = <CQ7V + Og (W)) (K + 2)y,
where Cy , is independent of n and i with

Koo 121800 (1/26)) (2 — o0).

@4 Cow ~ (K +2)M logé

We now commence with the deduction of Theorem 2 from Theorem 3. Let V' be the set of
elements n of S N [1,y] for which (4.3) holds for all v € N and ¢ = 1, ..., v. For each ¢ € R,
we define the random integer n, by the distribution

M Hy;q,n)
P(n, =n) = = (—(K+ 1y <n<y).
! Z—(K+1)y<n’<y A(‘HQJq?n/)

For ¢ € 'R, define the random set

Vq
€, = |_|e,~7q,
i=1
where
(4.5) e,=Vn{n,+a,+hqg:1<h<KH;)}, i=1,..1,.

Note that e; , and e; , are disjoint for ¢ # 7, since all a; 4 are distinct modulo g. To be able to
make a clean-up stage, we need to find a choice n, of n, (which corresponds to a choice e, of
the random sets e,) for each ¢ € R, so that for b satisfying b = n, (mod ¢) for ¢ € R, the
estimate

(4.6) (Sei2 +0) N [Lyl] <

holds. Then by (3.6), the number of primes p € (2/2,z] with [[,| = 1is ~ 3= for x large,
which guarantees that clean-up stage is possible. To be precise, we may match each element
m € (Sy2 +b) N [1,y] with a unique prime p € (x/2, z] with |,,| > 1, and choose b = m —ay,
(mod p) for each such pair. Then (S, + b) N [1,y] = &, as desired.

Since S = S,/ + b avoids the v, = || residues ng + a14, ..., ng + a,,, modulo ¢, we have,
by the definition of the set V' and (4.5),

(Ser2 + ) 0 [Lyl| <[ ((Sez + ) 0 (L) V| + A e

qeR
< ZZ8leogaZ V\Ueq

veN i=1 geR
px
< ;
4logx

pT
4logx
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thus verifying (4.6), provided that

< pr_
8logz

4.7)

V\Ueq

qeR

To show (4.7), we need the following hypergraph covering lemma, which is Lemma 3.1 of

[6].

Lemma 4.1 (Hypergraph covering lemma). Suppose that 0 < § < 1/2 and Ky > 1, and let
y = yo(9, Ko) with yo(0, Ko) sufficiently large, and let V be a finite set with |V| < y. Let
1 < s <y, and suppose that eq, ..., e; are random subsets of V' satisfying the following:

Ka(1 1/2
4.8) o] < Bollog) =y )
log log y
(4.9) Pvee) <y V¥V (veV,1<i<s),
(4.10) ZIP’(U, vee) <y V? (v,veV,u#),
i=1
(4.11) Y Pvee)—Cyl<n (veV),
=1
where Cy and n satisfy
1
4.12 10% < Cy <100, 7= .
12 ’ 77 (logy)loglogy

Then there are subsets e; of V, 1 < 1 < s, with e; being in the support of e; for every i, and
such that

(4.13) < OV,

V\ O €;
i=1

where Cs is an absolute constant.

We apply this lemma with s = |R|, {e; :i =1,...,s} = {e, : ¢ € R}, Ky = BK, and
n= P
20C,Cs(log )9

By (1.1) and (3.2), we have 0 = o(z) ~ C}/log z ~ C}/log z. The conclusion of the lemma
(with the bound (4.1)) implies that there is a choice of sets e, with

V\Ueq

geER

pVI _ poy pr

< C V = S < 5
anlV] 20C; (logx)? ~ 10C;(logx)? ~ 8logx

which is enough for (4.7), so that we are left to verify the conditions of the lemma. First of all,
by (3.4), we have
&gl = Z l€iq| < VK Hy <
i=1

BEy _ BK(log x)'/? _ BK(log )2
z  loglogz  loglogy
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which gives us (4.8). For eachn € V and ¢ € R, (4.2) together with the trivial bound
ANH;q,n) <oy BHq < y D (from (3.4), (3.11) and (3.12)) gives us

P(nee,) = Z Zq:IP’(nq =n—a;q — hq)

I<h<KHgi=1

(4.14) 1

& — Z ZAn—azq—hq)

Y <h<rm,i=1

<y 09997

which verifies (4.9). Now we turn to (4.11). From (4.2), (4.3), and (4.4), followed by an
application of (3.3), we obtain

Z]P’(neeq Z Z (neey) = ZVOQV“FO((lOg[E) 6(1+e)y =

geR veN geR¥ veN

- Z K+2 ]\;/f) g10g(1/(25)) +0(1) = Cy + o(1),

where we define

K1 -1/¢)
Cy = (K +2)Mlogé log(1/(24)).
Recalling that 6 < C(1) together with the definition (1.2) of C(1), we see that C is at least
10% provided that M — 6 and & — 1 are sufficiently small in terms of §, K is sufficiently large
interms of 4, 0 < ¢ < %(M — 6), and x is large enough depending on 0, M, ¢, K, e. Also
(5 < 100 due to 6 > 1073. Thus, (4.11) follows.
It remains to check that (4.10) holds. We take any distinct v, v’ € V and see that

Z P(v,v" € ¢,) < Z <i]P’(v, v € eiy) + Z P(veejqv' e ej,q)) .
i=1

qeR geER 1<i,j<yqy
i#]

If both v, v" both belong to some e; 4, then ¢ divides v — v'. Since V < [1,y], 0 < [v — V| <y
and also ¢ > z > y3/ 4 hence there is at most one such ¢. Further, if v € e;, and v e e  for
some g and ¢ # j, thenv — v = azq aj, (mod ¢) and hence v — v' mod g € I, — I,. By
hypothesis (f) and the bound |v — v/| < ¥, the number of such ¢ is « y* 49 Thus, by (4 14)

Z P(v,v' € e,) « y** - maxP(v e e;,) « y 5,

v,1,q

qeER

which gives (4.10).

Thus, we verified the conditions of Lemma 4.1, and (4.7) follows. This completes the proof
of Theorem 2 assuming Theorem 3.

5. CONCENTRATION OF A(H;q,n)

In this section we reduce Theorem 3 to the following assertion.
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Theorem 4. Let M > 2, K > 0, and £ > 1. Then
(1) One has

5.1) Els n [Lyl| = ov: E[sn [1,y]‘2 _ (1 L0 (@)) (o)

(i1) For every H € $, everyv € N and j € {0, 1,2},

52 E ), (_( > A(H;q,n)>j=(1+O(Z)§£))((K+2)y)ijH,ul;

q9€QmH v K+1)y<n<y

(ii1) For every H € §), everyv € N, i€ {1,...,v}, and j € {0,1, 2},

53) E ) ( > A(H;q,n—ai,q—qh)> =

neSn[1,y] qeQp,, h<KH
log H 1Qu,| - |[KH|\’
(1 +0 <W)> (0—2 ay.

Deduction of Theorem 3 from Theorem 4. Fix § < C(1), M > 6, ¢ > 1, K > 0, and also
0<e< %(M — 6). From Theorem 4 (i) we have

(0y)?

logy

2
E|[S n [1,y]| —o—y‘ «

Hence by Chebyshev’s inequality, we see that
(5.4) P(|S n[1,y]| < 20y) =1—0O(1/logx),

showing that (4.1) in Theorem 3 holds with probability 1 — o(1).
Now we work on parts (ii) and (iii) of Theorem 3. For each H € §) and v € N, we have from
(5.2)

2

2
(5.5) E > > AHign) - (K+2)y | « %
q€Qmu,, \ —(K+1)y<n<y
Now let Ry, be the (random) set of g € O, for which
Y
(5.6) Y AHig.n)— (K +2)y| < i
—(K+1)y<n<y

By estimating the left-hand side of (5.5) from below by the sum over ¢ € Qp ,\Rp . we find
that

(57) E‘QH,Z/\,R’H,I/‘ < M

HM—4-3¢ :



LONG STRINGS OF CONSECUTIVE COMPOSITE VALUES OF POLYNOMIALS 13

= U RH,IM

He$
and then Theorem 3 (i1) follows from the lower bound on H given in (3.4).
We now turn to the condition (iii) of Theorem 3. Similarly to (5.6), for each H € ), v € N,
and i € {1, ..., v}, from (5.3) we have

We let

2

58 E DD AHiqn—ai,—qgh) — [Quu| - IKH]

o
neSn[ly] \q€Qu., h<KH 2

L (1Qul LEHIY
HM-2—¢ o Y-

o9 0—2H1+8

Let £y, be the set of n € S N [1, y] such that

(5.9) > ) AH:;qn - aig— qh) -
quH,u thH
Then, since M > 6 and ¢ < (M — 6)/7, (5.8) implies that
oy oy
Eng,I/,i‘ < m ¢ m,

and, hence, |E ;| < oy/H'* with probability 1 — O(H~'*¢).

Now we estimate the contribution from “bad” primes g € Qg ,\Rp,,. Forany h < KH, we
get from Cauchy-Schwarz inequality for vector functions

E Z Z A(H;q,n—a;q —qh) <

quH,V\RH,V nesm[lvy]

2\ 1/2
(E|Qu,\Ru,)* [E ) o AHign)| |,
QH,V\RH,U f(K+1)y<n<y

where we extended the range of summation of A(H; ¢, -) to the larger interval (—(K + 1)y, y]
(note that a; , +¢h < ¢+ Ky < (K + 1)y and the weights XA(H; ¢, -) are non-negative). Further,
by the triangle inequality, (5.5) and (5.7),

2

E ). > AlH;qm)| <
Qu.\Ru,» | —(K+1)y<n<y
i 2,2 ¥?|Quy|
QH.\RHu,» —(K+1)y<n<y

Combining two latter estimates, using (5.7) again, and summing over all h < K H, we get

EY Y Y Agn - ay g« A2

neSn(1l,y] ¢€Qn,,\Ru,, h<KH
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Let F g, be the set of n € S n [1,y] such that

(5.10) DD AHgn—aig—qh) =

4€Qp.,\Ry,, h<KH

0-2H1+E

Then
o2y oylog H
HM—5—4e JHM-5-4¢’

E|F gl «

and, by Markov’s inequality,
o
\F il < HTZie
with probability 1 — O(H~(M=6-62))  Since ¢ < (M — 6)/7, we have M — 6 — 6¢ > ¢, and the
last probability becomes 1 — O(H ~¢).

Since Y, H ™ « (log )%, with probability 1 — o(1) we have that for all H € $), v € N,
and i € {1, ..., v} that both sets €,,;, F 1,,; have size at most (oy)H ' 7°.

Now we make a choice of b (mod P(z)). We consider the event that |S n [1,y]| < 20y
and that for each H,v, i, the sets €y ,,;, Fu,; have size at most (oy) H ~1=¢. By the above
discussion, this event holds with probability at least 1 — o(1) as x — oo (so this probability is at
least, say, 1/2 whenever z is large enough depending on ¢, M, ¢, K, and ¢). From now, we fix a
b mod P(z) such that it is so, and thus all of our random sets and weights become deterministic.
With this choice of b we verify condition (iii) in Theorem 3.

For fixed v € N and i € {1, ..., v}, we set

Mu,i = (S N [171/])\ U (SH,V,i Y -FH,V,Z')-

He$H

Now we verify (4.3) with given v and i for n. € M,;. By 3.4), 3 ;5. H'7° « (logz)~ (1+)3
and so the number of exceptional elements satisfies

9y

« (log 2)(@+9)5”

U (EH,V,i Y -FH,V,Z')

He$H

which, by (3.2), is smaller than czf7— ot for large x. We fix arbitrary n € M, ;. For such n, the
inequalities (5.9) and (5.10) both fail, and therefore for each H € ),

Z Z MNH;q,n—a;q—qh) = <1+O< <(logx)(1+5)5)> : 72 .

q€R 1, h<KH

Summing over all H € ), we have
2
Z Z MHg;q,n — aig — qh) = (1 + O< <—55)> Cou(K +2)y
JeRY KR H, (log z){1+e)

with (recall that o5 depends on H)

Quy| - |[KH
Z\ |- LKH]

02

Co =
. (K+2y

Note that Cy,, depends on z, K, M, £, and d, but not on n. Since
|KH|=KH(1+ O(1/H)) = KH(1+ O(logz)~°)

He$
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and
log 2
-1 -1
oyt = ] Q=ILlm) " ~ 77
B pes Mlog H
we get, using (3.5),
K H Hlogz K(1-1
Caw ~ (K +2)y pu(l =1/ Zﬁ)/ M1 gH K 2/§ Z1 H’
fien (08T 0og + og

as x — o0. Recalling the definition of §), we see that

K(1-1/¢)
CQ’”” K+2 1og§2_

where j runs over the interval

dloglog x <i< (1/2 + o(1)) loglog:z:‘
log ¢ log &

‘We thus obtain

Cop ~ MK < 2)logé log(1/(29)), x — oo,

and the claim (4.3) follows. ]

It remains to establish Theorem 4. This is the aim of the last section of the paper.

6. COMPUTING CORRELATIONS

In this section we prove Theorem 4. The claim (i) is exactly (5.1) and (5.2) of Theorem 3
from [6]. To verify the claims (ii) and (iii), we must rework the argument from [6] using our
new weight function A from (3.12). For H € ), let Dy be the collection of square-free numbers
D, all of whose prime divisors lie in (H™, z]. For each D € Dy, let Ip = 7Z/DZ be defined as
Ip = ﬂplD I,. Further, for A > 0, let

Aw(D)
6.1) Ea(miH) = (Lngo) D, 5 Lmmod Delp-1n-
DeDy\{1}

Note that E4(m; H) = Ea(—m; H) for all m € Z. Also, this notation differs slightly from
that in [6], in that we include the factor 1,,.¢ here. Our notation then makes in unnecessary to
explicitly exclude the case m = 0 from summations.

We need the following lemmas, which are Lemma 5.1 and Lemma 5.2 of [6], respectively.

Lemma 6.1. Let 10 < H < 2Y/M, 1 <1 < 10KH, and U < V be two finite sets of integers
with |V| = l. Then

PU c Sy) = (1 +o<yu\ HM 112 Y E2ZQB(0—U’;H)>>.

v’ eV
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Lemma 6.2. Let 10 < H < 2V/M 0 < AB? < H™ and (m;)er be a finite sequence such that

X
(62) ﬂmtza mod D) K ———— + R
; (ed BY 7 (D)

for some X, R > 0, and all D € Dy\{1} and a € 7./ DZ. Then for any integer j

: XA
EEA(mt +Jj;H) < g+ Rexp(AB?loglogy).
teT

For the rest of the paper we use the notation
A= A(H)=8B*K*H?
for the brevity, and also for prime ¢, define the set
Ay = {ai’q—ajvq‘lgigjgu}.

Recalling that a, , € [1, ¢, we see that A, = [1 — ¢,q — 1].
We will need the following bound, which is where we deploy Hypothesis (g).

Lemma 6.3. Let v € N and H € $). For q € Qp,, suppose that m, mod q € I, — I, with
0 < |my| < zlogx, and suppose that w € Z with |w| < xlogx. Then

‘QH,Z/’ IOgH

Z Eamy(mg +w; H) « e

quH,u

Proof. If my mod D € Ip — Ip, then m, mod p € I, — I, for each p|D. Thus, if m, + w # 0

then
A
Ey(mg+w; H) = 1_[ <1+—)—1
mg+w mod pe Ip—1I) p
HM <p<z
(6.3)

< exp (A > 1) —1.

mg+w mod pe Ip—1I)
HM <p<z

Recall the notation N (m) from Hypothesis (g). Thus, the number of primes p with H? < p < z
and with m,+w mod p € I, — I, is at most N (m,+w). Let c3 be a sufficiently large constant,
depending on ¢; and ¢, from Hypothesis (g), and let

@H,V = {q € Quy: N(my+w) <cs 10gH}.

Clearly, for q € @ i, We have

- <

~

Z 1 c3logH
p - HM

mg+w mod pe Ip—1I)
HJ\/I<p<Z

Therefore, using the fact that A = O(H?),

N Ea(mg + w; H) « || (exp<0((1og H)H-01-2)) _ 1) <

qeéH,u
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Using Hypothesis (g), for some positive constants ¢y, ¢ (depending only on the sieving system),

2 Ea(mg +w; H) < Z #{q €OQu,:myg+w#0, Nim,+w) = k.}eAk/HM
€9\ . k>c3log H
<az(loga)™*t Y e Fexp (O(kH )

k>c3log H

)cl+1 —caczlog H

< z(log
< | QH,I/|H_(M_2)7

e

if c3 is large enough, using the lower bound H > (log x)° from (3.4) and the asymptotic (3.5);
recall also that 6 < M < 7. This concludes the proof. (]

Now we fix H € $) and v € N for the rest of the paper. We start with the proof of part (ii) in
the case 7 = 1 (the case 7 = 0 being trivial), which is

64 E ) N AHqn) = (1 1) (Eiﬁ)) (K +2)y| Q..

q€Qmn, —(K+1)y<n<y

By (3.12), the left-hand side expands as

LAP(KH:qn)cS:
E 2 2 |AP(KH;q,n)| -~

q€Qmn,, —(K+1)y<n<y 2

Recall that, according to the definitions (3.8) and (3.9), b; and b, are independent, and so are
AP(KH;q,n) and Sy;. With b; fixed, AP(K H;q,n) is also fixed and we will denote it as
AP(KH;q,n). Then the above expression equals

P(b; = by)
Z Z Z “arwma EAP(KH ¢,n) < Ss).

q€Qn,, —(K+1)y<n<y by mod P 2

For fixed ¢, n, and b;, we apply Lemma 6.1 to the sets i/ = AP(K H;q,n) and

V=||{n+a,+qh:1<h<KH}

=1
sothatl = |V| = v|KH| = H. Since E4(m; H) is an increasing function of A, we find that
the left-hand side of (6.4) is equal to

€5 Y Y 1o+

q€Qn,, —(K+1)y<n<y
—FO(yH_2 Z Z Z EA(H)(aJrqh—qh’;H)).

q€QH,, a€Ay 1<h<h/<KH

We note that |a + g(h — /')| < (K + 1)y < xlogax for a € A, and large =. When h and &' are
fixed, we apply Lemma 6.3 with w = 0 and m, = a + gh — gh’, where we’ve chosen one of the
O(1) elements a € A, for each ¢. Thus, we see that the second line in (6.5) is

y’QH,V“OgH

< (yH ™) H?|Quy | - log H)H 1+ = L
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This proves the j = 1 case of part (i) in Theorem 4, that is, (6.4).

Now we turn to the case j = 2 of (ii), which is

EZ( > A(H;q,n))g—(1+O(%>)(K+2)2y2191{,y1.

q€QH,v —(K+1)y<n<y

The left-hand side is expanded as

E Z Z :H-AP(KH;q,nl)uAP(KH;q,nQ)CSQ
|AP (K H;qn1)|+|AP(KH;qn2)|
q€Qm,, —(K+1)y<nine<y “2

For fixed ¢, n1, no, we will apply Lemma 6.1 with
U=AP(KH;q,n)uAP(KH;q,ns)

and
V=Viul,

where

Vj=|_|{nj+ai,q+qh:1<h<KH}, Jj=12.

i=1

We first estimate the contribution of the triples (n1, no, ¢) for which V; and V5 have non-empty
intersection. This implies that (n; — ny) mod ¢ € A,, and, hence, there are O(yH ) such pairs
n1, ny for each ¢. Each of them contributes at most o, AKH _ y"(l), so the total contribution of
such triples is O(y'*°(Y|Qpy , |), which is negligible. Thus we may restrict our attention to those
triples (n1, ns, ¢) for which the sets V; and V4 do not intersect; let us call these triples good. In
particular, for any good triple (n, ns, q), the sets AP(K H; q,n;) and AP(K H; q,ny) also do

not intersect. Then it is enough to show that

LAP(KH gn1)UAP(K Hignz)cS2
(6.6) E Z Z |AP (K H;q,n1)|+|AP(K H;gn2)|

q€Qmn,, —(K+1)y<ni,na<y “2
(n1,m2,9) good

log H
- (1 +0 (;§H>> (K +2)*?|Qul.

Arguing as in the case 7 = 1, we see that the left-hand side of (6.6) equals

2, 2, <1+O<Hf\14—2>>+

q€QH,, —(K+1)y<nina<y
ni,n2,q) good
(67) (n1,n2,9) g

+O<% Z Z Ro(”h”%(l))’

q€QH,, —(K+1)y<ni,ne<y
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where
Ro(n1,n2,q) 1= Z Exm(v— 0" H)
v’ eV
vV’

& Z Z Eamy(m —ne+a+q(h—1'); H)
1<h,W<KH acA,
& 2 EA(H)(m—n2+a+q(h—h’);H)+HEA(H)(nl—nQ)

1<hW<KH
acAy
a##0 or h#h'

= Ri(n1,n2,q) + H Ezmy(n1 — na),

say. Recalling that all but O(y H) pairs (n;, ny) are good, we get the main term (K +2)%y?| Qg , |
from the first line of (6.7), with an acceptable error term.

We next estimate the contribution from Ry (ny, no, ¢). With ny, no, hy, h fixed and also fixing
one of the O(1) choices for a € A, for each g € Qp,, we estimate 3, o, Ri(n1,n2,q) using
Lemma 6.3 with w = ny — ny and m, = a + g(h — h'). Since either a # 0 or h # h’, we have
mg # 0. Also, for large z, |w| < zlogz and |m,| < xlog x. Therefore,

Q. llog H
S Rilmmag) « iy 2o
ni,n2 EQH,L
which is acceptable for (6.6). To estimate the contribution from E sy (n1 — ng; H), we apply
Lemma 6.2, by first fixing n, and observing that (6.2) holds with X = y and R = 1. Therefore,

recalling that A(H) « H?,

2 2 Eagmy(ni —n2s H) < [Quuly ( = U e loglogy)

€QH,y —(K+1)y<ni,ne<y

¥*1Quy|
HM-2 )
which is also acceptable for (6.6). This gives (6.6), as desired, completing the j = 2 case of (ii).

<

Proof of (iii). Fix H € $, v € N and 1 < i < v. The case j = 0 follows from part (i), so we
focus on the case 7 = 1, which states

log H
E Z Z Z H;q,n—ai7q—qh)=(1+O(;i_2))]QH7V|-[KHJ01y.

neSn([l,y] ¢€Qn,, hR<KH

It is enough to show that, for any h < K H,

log H
68 E Y > AHgn—ayg h):(1+0(;gM2)>|QH,V|aly.

neSn[1l,y] ¢€Qmu,»

According to (3.12), the left-hand side is equal to

E Z Z ]]-AP (KH;q,n—a;q—qh)cS2

|AP KH;qn—a;q—qh)|

neSn[1l,y] ¢€QH,.
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By (3.10), the condition n € S [1, y| implies that n € S; N [1, y]. On the other hand, if n € Sy,
thenn € AP(KH;q,n— a;,— qh), and thus the condition n € S, is contained in the condition
AP(KH;q,n—a;q, — qh) < Ss. So the left-hand side of (6.8) can be rewritten as

< 2 Z TaP(KHgn—ai an)=S;

|AP KH;qn—a; q—qh)|

neS1n[1,y] ¢€LH,.

Recalling that S, is independent of S; and of AP(K H; ¢,n — a;,— ¢h), we may apply Lemma
6.1 as before and find that the left-hand side of (6.8) is

1
E 2 Z (1+O<HM 2—|—H Z Z EA(H)(CL—i—qh’_qh//))).
neS1n[1,y] ¢€LH,v acAq W h'<KH

Recall that E|S; n [1,y]| = o1y by Theorem 4 (i). Thus, we see that (6.8) follows from
Lemma 6.3, applied with n, h’, b" fixed, w = 0, some choice of a € A, for each ¢, and m, =
a+ qh’ —qh”.

Now we turn to the case j = 2 of (iii), which states

69 > E > D AH; qun = tig, — b)) A Hi go,n — aig, — Goha)

hi,ho<KH neSn[l,y] q1,92€QmH,v
1 01
= (1+O(W>)|QHV|2 [ J2

Arguing as in the j = 1 case, the left-hand side equals

L AP(K Higi n—as.9, —q1h1) AP (K Higa,n—a;i g, —g2ha)=Sa
(6.10) YooE D] > :

|AP(K H;q1,n—a4,q; —q1h1)|+|AP (K H;q2,n—a;,qo —q2h2)| ’
hi,ho<KH nESlm 1 y] q1, QQEQHU 02

Note that here we again replace the condition n € S n [1,y] by n € S; n [1,y] for the same
reason as in j = 1 case. Further, by (5.1), the contribution from ¢; = ¢» is

« H2o2PEH QY oy <« |Qu |y W,

which, by (3.5), is an acceptable error term.
We call a pair (q1,q2) € Q%{’V with ¢; # @2 good, if for all Sy, all n € S; N [1,y] and all
hy, ho < K H we have

{n} =AP(KH;q,n—a;q — q1h1) " AP(KH;q,n — a;4, — @2h2),

and call (¢, ¢2) bad otherwise; recall that forany n € S;n[1,y], n liesinboth AP(K H; q;,n—
Qi g — q1h1) and AP(KH; ga,n — a; 4, — g2ha). We need to estimate the number of bad pairs.
First of all, if a pair (¢, ¢2) is bad then there is a choice of hq, hy so that both sets

|_| {ajl,(h — Qg t+ Q1(h,1/ - hl) : h,l/ < KH}

ji=1

and
14

|_| {aj2,q2 — Qg t QQ(hg - h2) : h’2’ < KH}

j2=1
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contain the same nonzero number, say, 1g. FiX ¢, j2, ho and kY so that

o = Ujyqp — Qiygy + qQ(h/QI - hQ)'
Then we have ng mod ¢; € I, — I,,. By Hypothesis (f), the number of such ¢; is O(y°*9).
Therefore, the number of bad pairs (q1, ¢2) is « y'4H? « y'°. Since each of them contributes
y' o) to the left side of (6.10), the contribution from these bad pairs is negligible.

It remains to estimate the contribution to (6.10) from good pairs (q1, g2). Note that if (g1, g2)
is a good pair, then, for any Sy, hy, ho, n the set

AP(KH;q1,n — ;g — 1h1) 0 AP(KH; q2,n — a; 4, — q2h2)

has size |AP(KH;q1,n—a; 4 —q1h1)|+ |AP(KH; g2, n — a; 4, — @2h2)| — 1. Then, as before,
we can apply Lemma 6.1 to rewrite the terms in (6.10) corresponding to good (q1, ¢2) as

6.11) ? 2 3 <1+0<H;_2)>+

2 (q1,92) good hi,ho<KH

+ O( 222 2 (HQE/(Ch) + H?E'(g2) + E"(qn, Q2)>>a

q1,92€QH,v

where again we used that E[S; n [1,y]| = o1y from (5.1), that 01 /09 = /02 and where we

define
Z Z Eamy(a+ qh —qh'; H)

acAq hW<KH

and
E'(qq) = ) D1 D Eaunla —ay+ qih — quhy — qahly + qeho; H).
1<hyi,ho<KH aleAql hll,h/2$KH
aQEAq2

As the number of bad pairs (¢;, ¢2) is very small, the first line of (6.11) produces the main
term in (5.3) with an acceptable error.
By Lemma 6.3 with w = 0,

\QH,Z,\QlogH

(6.12) > (E'q) + E'q) « H? T

q1,92€QH,v

For the sum on E”(-), if we have a; = ay = h} — hy = hY, — hy = 0 then the summand
is zero for any ¢;,qs. Consider now the summands with either a; # 0 or hy # h). Fix
hy, ha, by, h%, g2, as and also a choice a; € A, for each ¢; € Qp,. Apply Lemma 6.3 to the
sum over ¢;, with w = —ag — q2hl, + goho and my = ay + q1 (R} — hy) so that m, # 0. A similar
argument handles the case when ay # 0 or hy # hi, that is, fixing ¢, a; and summing over ¢,
and we conclude that

(6.13) D, Elana) <

q1,92€QH v

Inserting (6.12) and (6.13) into (6.11) establishes the desired bound (6.9).
This completes the proof of the case j = 2, and Theorem 4 (iii) follows.

4|QHV| log H
<« H N
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