A STRONG FORM OF A PROBLEM OF R. L. GRAHAM

KEVIN FORD

ABSTRACT. If A is a set of M positive integers, let G(A) be the
maximum of a;/gcd(a;, a;) over a;,a; € A. We show that if G(A) is
not too much larger than M, then A must have a special structure.

1. INTRODUCTION

In 1970, R. L. Graham [3] conjectured that for any set of n positive
integers, there are two of them, say a and b, such that a/(a,b) > n. Here
(a,b) is the greatest common divisor of a and b. Graham’s conjecture
was proved for all large n independently by Zaharescu [5] and Szegedy
[4] in the mid-1980s. Introducing several new ideas, and making use of
explicit bounds for prime number counting functions, Balasubramanian
and Soundararajan [1] recently proved the conjecture for all n. They also
noted that their method of proof could be used to prove a stronger form of
Graham’s conjecture, but gave no details.

For a set A = {ay,...,a,} of positive integers, define
L L L
A = {—,—,...,—}, L =lemlag, az, - - ., ay),
ay as (47

which we refer to as the dual of A. Let G(A) be the maximum over all 4, j

of @ aia } We will confine our discussion to sets with gcd(ay,-..,a,) = 1,
iy Uj
since G(A) = G(dA), where dA = {das,...,day}. Also, since (aaza ) =
iy Uj
L/a]‘

T/an Ljay) for all 4, j, it follows that G(A) = G(A*).

Theorem BS (Balasubramanian-Soundararajan [1]) Let n > 4. For
every set A of n positive integers, G(A) > n. Furthermore, if G(A) = n
then either A or A* is equal to {1,2,...,n}.

The strengthening of Graham’s conjecture which we are concerned with
is an extension of the second part of the conjecture. We show that if A is
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a set of M positive integers and G(A) = N with N “not too much larger”
than M, then either A or A* liesin {1,2,...,N}.

Definition. Let f(/N) denote the largest number R so that the following
holds: for every set A of M positive integers with N — R < M < N and
G(A) < N, either A or A* lies in {1,2,...,N}.

cN loglog N

or large N, where ¢ > Q is
log? N f v

Theorem 1. We have f(N) >
an absolute constant.

Lower bounds for f(NN) have an application to a problem of determining
the maximum number of k-term arithmetic progressions of real numbers
one can have, any two of which have two elements in common (see [2]).
This in fact was the motivation for this work (In [2] a crude bound f(N) >
0.156@]\3’? for N > €!09%0 jg proved). In this paper we concentrate only
on the behavior of the bound for large NV, as a totally explicit version of
Theorem 2 would require a great deal of extra computation. By Theorem
BS, f(N) > 0for N > 5. A natural question is to determine the smallest X
so that f(N) > 1 for N > X. The example A = {2,3,4,6,8,9,10,12,18}
shows that f(10) = 0. Perhaps one can prove that f(N) > 1 for N > 11
using the methods in [1].

Remark. Balasubramanian and Soundararajan claim that their method

cN
ield N> ———
yields f(N) > log N loglog N’

We can also show a non-trivial upper bound on f(NV).

but this appears to be too optimistic.

N
Theorem 2. We have f(N) = O (m) .
Proof. Suppose that N is large, set L = %logN and let H be the product
of the primes < L. By the Prime Number Theorem, N2/ < H < N3/5 for
large N. Let No = H|N/H| so that N > Ng > N — H > N — N3/>, Here
|z| denotes the largest integer < z. Let
It is clear that G(A) < N and neither A nor A* is a subset of {1,2,...,N}.
Also
|A| = No+1—¢(No) = No+1-No [J(1-1/p)
p<L
ClNo _ CQN
logL = loglog N~
Here c¢1, co are positive absolute constants. O

> No —
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2. GENERAL LOWER BOUNDS

We first need to introduce some of the notation from [1]. Suppose A =
{ai,...,am}, ged(ar,--- ,am) =1, N > 7 and G(A) < N. If p is a prime
in (1.5N,2N) and p— N <m < N, define

— ; oYL G a  _

(2.1) R,(m) = {palrs (ai,aj) : @nay) - m, (@ a)) =p m}

and put r,(m) = |R,(m)|. Our proof is based on upper and lower bounds
for averages of 7,(m). Suppose that neither A nor A* lies in {1,2,..., N},
and that N/2+2 < M < N. We need not consider M outside this
range, since the set A = {a < N : (6,N) > 1} U {6 |[N/3]|} shows that
f(N)<N/3—-1< N/2—-2for N> 7. By Lemmas 4.1 and 4.2 of [2],

Y. pm-1> Y 1-(N-M)

+1 +1
(22)  "H<m<N P <m<N
rp(m)>2 rp(m)=0

>m(N)—m(p—N—1) = (N - M),
where 7(z) denotes the number of primes < z. Let
(2.3) Kpn(m)=|{m=abc:1<a<b<D,(ab)=12< T},

For any triple (a,b,c) counted in Kp n(m), we have

(2.4) N_mSaSD—l, a+1§b§%a, cgg.
In particular, b < v/N, so
(2.5) Kpn(m) =K g ym) (D>VN).
Let
D(p,A) = max max { god(as, ;) } .
p-N<m<N (ai,a;),(a,a;)€Ry(m) | ged(as, aj, air, ajr)

Lemma 2.1. If D = D(p, A), then

D=1 or <D<N,

2N —p —
and for pzil <m < N we have
rp(m) < (Kp,n(m) +1)(Kp,n(p—m) +1).

Proof. This follows from Lemmas 2.3, 2.4 and 2.5 of [1]. O

It follows from Lemma 2.1 and the definition of D(p, A) that r,(m) <1
for all m if and only if D(p, A) = 1.

The next lemma, a slightly weaker form of Lemma 4.1 of [1], shows that
A cannot contain many elements divisible by primes > 2N D~'/3,
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Lemma 2.2. Suppose p is a prime in (1.5N,2N —+/N) and D = D(p, A) >
1. With the possible exception of two primes, no prime ¢ > 2ND~1/3 can
divide an element of A.

A version of the Prime Number Theorem with crude error term will also
be needed:

Todt T
2.6 -/ Zio(—=2_).
(2:6) (@) /Q log ¢ (log“)x)

We may now state the fundamental lower bound for f(N). Here P+ (n)
denotes the largest prime factor of n.

Theorem 3. Suppose N is large and let &7 be a subset of the primes in
(1.5N,2N —+/N). Then

N

2.7) f(N) > —1+min (W’

|‘@|_1 min Z{Sl(paNaD)_SQ(p7N7D)}>J

VIEN<DSVN ‘=5,
where
S(Nl»:Hme@—NNyPﬂmpﬁNDAF}—%ﬁlﬂ—Q
1P, IV, ) . ND-1/3 ’
So(p, N, D)= > ((Kp,n(m)+1)(Epn(p—m)+1)-1).

EEL<m<N

Proof. Suppose |A| = M, G(A) < N and neither A nor A* is contained in
{1,2,...,N}. Let
Dy = max D(p, A).
1.5N<p<2N—V/N
If Dy =1, let p be the smallest prime > 1.5N. By (2.6), p < 1.6N. Since
D(p,A) =1, r,(m) <1forp— N <m < N and thus by (2.2) and (2.6),

—M> —a(p—N—-1)> .
N-M>xn(N)—=n(p—N 1)_310g]\7

If 1 < Dy <+/log N, let p be the smallest prime > 2N — N/D,. By (2.6),
p < 2N — N/(2Dy). By Lemma 2.1, D(p, A) = 1 and we similarly obtain
from (2.2) and (2.6) the bound

N
> > .
= 3Dglog N = 3(log N)3/2
Lastly, if Dy > +/log N, then we apply Lemma 2.2. Let ¢1,...,qs; be the

primes in the interval (2N D~/3, N]. Since 2ND~'/3 > N?/3 each number
m < N is divisible by at most one prime ¢;. Fix p € & and let R; be the

N-M>n(N)—-n(p—N-1)
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number of m € [p — N, N] divisible by ¢;. Then r,(m) = 0 for at least
So(p, N, Dg) values of m € [”;F—I,N], where

So(p, N, Dy) = i R;.
o N, Do) = gnin D
|T|:.972 €T

By (22), Lemma, 2.1 and the fact that K'D:’N(m) S KD7N(m) if D' S 1)7
N-M Z SO(pa NJ DO) - S2(P> N7D(p7 A)) Z SO(p7 Na DO) - 82(p7 NJ DO)
Averaging over p € & gives
(2.8) N—M > |27 ) [So(p, N, Dy) — Sa(p, N, Dy)].

pPEP

Since So(p, N, D) is an increasing function of D and Sa(p, N, D) is constant
for N'/2 < D < N by (2.5), the minimum over Dy of the right side of (2.8)
occurs for some Dy < N'/2. Finally, So(p, N,D) > Si(p,N, D) and this
completes the proof. O

3. LOWER BOUNDS FOR S

Lemma 3.1. Suppose N is large, 1.98N < p < 2N — N/ log’ N and
100 < D < +/N. Then

(2N —p)log D

N,D) >
Sl(pa ) )_ 610gN

Proof. Let R = 5222 and note that R < JN'/6. At most one prime
q > 2ND~'/3 can divide any number in [p — N, N], so

N p—N 2N —p
1<r<R

By hypothesis, 2 < 2(2N — p)N~5/6_ Thus, by (2.6),

N/ N 2N —
Si(p,N,D)> > / i—0(710> _3(756@'
1<r<R\Y(P—N)/T logt rlog™ N No/

The integral is

2N —p 2N —p
>
~ rlog(N/r) — rlogN
and -
1 + :
>y - z/ dt > log (0—381)1/3) > 0.178log D
<R r 1 t
since D > 100. For large N the result follows. O
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4. UPPER BOUNDS FOR S»

Lemma 4.1. If max(N/D,2N%/¢) < X\ < N/50, then

Remark 1. When A < N/D, the left side is zero by (2.4).

Proof. Ignoring the condition (a,b) = 1 in (2.3), the left side in the lemma
is at most the number of triples (a, b, ¢) with
N — X <abc<N, 1<b§£ b<D.
a — abc’
By (2.4),
N-—-)\ N N-—-) A

<c< > <1 = —F.
—S<e<, a5 b<(+fa, B=5

Let E be a parameter in [%,D], let 77 be the number of triples with
a < E —1 and T3 be the number of remaining triples.
We first estimate T7. For each pair (a,b), the number of ¢ is at most
N N-A N1 LYy,
b? ab b \b  a(l1+p) '
This is a decreasing function of b and is positive for b < (1 + f)a, so for
each a, the number of pairs (b, ¢) is

(4.1)

¥ N N-Xx BN (N = X\)log(1 + B)
5"5+/0 @+’ aarn Tt oo e a
)\2

Saﬂ+(—11()\—(N—/\)(5—%52))2054'27_-

Thus

E2

_ <log< ) log1—2/\/N)+T>
v (% (%

A E?
21—+ —
M r2ig ).

When D < N1/3, we take E = D, so that T, = 0 and
E? N?2/3 )\
By

< < —.
- X T 4N
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This gives the lemma in this case. Next assume D > N'/3. To bound T,
note that
N-—-A N
7 S c < ﬁ
For fixed ¢, we count the number of (a,b) for which
N - N N -

<a<b< , b> .
vVNc — ~ +V/Nc - oac

By symmetry (counting solutions with b < a also), this is

1 _ _ _

=3 |10 <o < 22 <o < o) B < |
I[«~/ N N-2A N [N-a

< - - +1) - - -1

-2 ;(JN_C ac ) (\/N_c c ]

N
I[[A N N- N - VN =
g—/ﬁ VA dar e VY A]
2/x=> VNe ac VNe Ve
A, Noa N ) ]
~2|lc +/Ne¢ c gN—)\ 2v/Nc¢
2

1 B A

S N T =y
Next we sum over ¢, using for 0 < z < y the bounds
Z 2 <2, Z ¢! <1/z +1log(y/).
2<c<y 2<c<y
We conclude that
N 3 A2 ( D? ND? )

B E T aN o \ N T e oy

<X D*  osi) 102 4 3N 2V
SON N\ 2NN TN TR E T EN T e )

T5 <

Take E = N'/3, which is close to optimal. Then combine the bounds for
Ty and T», using the bound A > 2N5/¢ to simplify the expression. This
completes the proof for D > N1/3, O

Lemma 4.2. Uniformly in x > y > 2 we have
z logx

1
Z m<<10g§+ Y .

y<n<z
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Proof. Start with the identity

Then

y<n<z

1L« P9 1
2 m—2d¢(d) m
(d)

O

Let #p be the set of primes in [N — 2B, N — B], where 2N%/¢ < B <
N/100. Making the substitution m — p —m in the definition of Sy, we see
that

(42) E Sz(p,N,D) = E §KD7N(m)KD7N(p—m)—}—KD’N(m).
pEPp PEPB
p—N<m<N

Suppose £ < D < VvN. By (2.6) and Lemma 4.1,

B3 9BD B+ D2
4. Y et .
(4.3) KD’N(m)«NlogN(10 N TN )
PEPB
p—N<m<N

Lemma 4.3. Suppose 2N°/® < B < N/100, N/(2B) < D < VN and
N —-2B <m < N. Then
B?logD

Kpn(p— 2 08
2 pn(p=m) € TN

2N—2B<p<N+m
Proof. By (2.4) and (4.1), the left side is at most the number of triples
(a,b,c) with abc + m prime and
N —-2B N N-2B 2B
<c< — < b< (1 = —_—.
b S¢Sy g Se<hs(+fe f=gg

Put E = min(D, N'/3), let T} be the number of triples with a < E —1 and
T, be the number of remaining triples. For fixed a < b < E, the number
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of ¢ is at most the number of primes in [2N — 2B,2N] which are = m
(mod ab). This is
B B
< $(ab)log(2B/(ab)) < $a)p(b)log N
by the Brun-Titchmarsh inequality and the inequality ¢(ab) > ¢(a)@(b).
By Lemma 4.2,

loga
Zd) Z¢ <<Z¢ (10g1+ﬂ) a)

B 2BE  BlogE 1
<<—( + 28 )+ Yy e

log
N N -2B N > NTG6B) ag(a)
B 2BE N
< N (log i +log E + log E)
< BlogE
N
Therefore,
B?logE
44 T _—.
(44) 'S NiogN

If D < N'/3 then T = 0 and the lemma follows from (4.4). Otherwise we
bound T3 starting with the inequalities

N —2B N o
D2 chﬁzN

and
N —-2B

Ve
In particular, be < N?/3. For fixed b, ¢ the number of a is at most the
number of primes in [2N — 2B,2N]| which are = m (mod bc). By the
Brun-Titchmarsh inequality, this is

< B < B
o(be) log(32)  G(B)()log N

ﬁ

By Lemma 4.2 again

N log N>

Z¢ <<Z¢ ( ¢N_2B " E
<W;@

< B (1,0 B, D*logN
AT Y N :
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Therefore
B? D B D?logN
4. T ——(log=4+—=—4+—7"—.
(4.5) 2<<NlogN<OgE+N+ N )
Together, (4.4) and (4.5) give the lemma in the case D > N'/3 because
log D > log N > (D?/N)log N. O

IfD < %, then the left side of (4.2) is zero. Otherwise, putting together
(4.2), (4.3) and Lemmas 4.1 and 4.3 gives the following.

Lemma 4.4. If2N%/% < B < N/100 and 1 < D <+/N, then
B*log?D B?logD
N2logN  NlogN "’

3" S(p,N,D) <
PEPB

5. PROOF OF THEOREM 1

Take B = lgg}l\,, where ¢; is a sufficiently small positive constant, and
put & = Pp. By (2.6), |Zs| > B/log N. Consequently, by Lemma 3.1,

B?log D
Z Sl(p,N,D) > %
PEPB 08

By Theorem 3 and Lemma 4.4, there are absolute constants cs, c3, so that
when N is large we have

N
N) > min{ ———
f( ) —_ mln(g(logN)3/27
2logD B3log’ D
min |:C2_BlOgD_c3(B gD og )])
VIogN<D<vN| logN N N

The minimum of the inner expression occurs at D = /log N if ¢; is small
enough, and this completes the proof.
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