
ROUGH INTEGERS WITH A DIVISOR IN A GIVEN INTERVAL

KEVIN FORD

Abstract. We determine, up to multiplicative constants, the number of integers n 6 x
that have no prime factor 6 w and a divisor in (y, 2y]. Our estimate is uniform in x, y, w.
We apply this to determine the order of the number of distinct integers in the N × N
multiplication table which are free of prime factors 6 w, and the number of distinct fractions
of the form a1a2

b1b2
with 1 6 a1 6 b1 6 N and 1 6 a2 6 b2 6 N .

1. Introduction

In the paper [5], the author established the order of growth of H(x, y, z), the number of
integers n 6 x which have a divisor in the interval (y, z], for all x, y, z. An important special
case is

(1.1) H(x, y, 2y) � x

(log y)E(log2 y)3/2
(3 6 y 6

√
x),

where

E = 1− 1 + log2 2

log 2
= 0.086071332 . . . .

A shorter, more direct proof of the order of magnitude bounds in the special case (1.1)
is given in [6]. More on the history of estimations of H(x, y, z), further applications and
references may be found in [5].

A number of recent aplications have required similar bounds, but where the underlying
set of integers n is restricted to a special set, e.g. the set of shifted primes ([5, Theorem 6,7],
[9]) or the values of a polynomial [2, 1, 12, 13, 7]. More generally, we define

H(x, y, z;A) = |{n 6 x, n ∈ A : d|n for some d ∈ (y, z]}|.
Another natural set to consider is Rw, the set of integers with no prime factor p 6 w;
called w−rough numbers by some authors. Here we determinte the exact order of growth
of H(x, y, 2y;Rw) for all x, y, w; the more general quantity H(x, y, z;Rw) can be estimated
by similar methods, although there are many cases depending on the relative size of the
parameters w, x, y, z.

Theorem 1. Suppose that 4 6 y 6
√
x, 4 6 w 6 y/8 and write1 δ = log2 w

log2 y
.

(i) When 1− 1/ log 4 6 δ 6 1 we have

H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw)� x

log2w
� H(x, y, 2y;Rw).
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(ii) When 0 6 δ < 1− 1/ log 4, we have

H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw)� xδB(w, y)(log y)−E+
log(1−δ)

log 2 � H(x, y, 2y;Rw),

where
B(w, y) = min(1, (log2 y)−1/2((1− δ) log 4− 1)−1).

Remark 1. Some special cases are worth noting. From Theorem 1 we have

xδB(w, y)(log y)−E+
1−δ
log 2 �

{
x log2 w

(log2 y)
3/2 (log y)−E+

log(1−δ)
log 2 (δ 6 1− 1

log 4
− ε, ε > 0 fixed)

x log2 w

(log y)E(logw)1/ log 2(log2 y)
3/2 (log2w 6

√
log2 y).

Remark 2. When y >
√
x, one can obtain similar results by using the duality d|n ⇐⇒

(n/d)|n. That is, if x/2 < n 6 x, then d|n with y < d 6 2y is equivalent to d′|n with
d′ � x/y.

We illustrate the utility of Theorem 1 with two applications. The first is related to the
well-know multiplication table problem of Erdős [3, 4], which asks for estimates on the
number, M(N), of distinct integers in an N × N multiplication table. In [5] the author
proved, using (1.1), that

(1.2) M(N) � N2

(logN)E(log2N)3/2
.

More generally, consider the restricted multiplication table problem of bounding M(N ;A),
the number of distinct entries in an N × N multiplication table that belong to the set A.
For example, when λ 6= 0 is fixed and A = {p + λ : p prime}, the order of M(N ;A) was
determined in [5, Theorem 6] (upper bound) and [9] (lower bound).

Observe that M(N ;Rw) = 1 when w > N .

Corollary 2. Uniformly for 4 6 w 6 N/2, we have

M(N ;Rw) �

{
N2

log2 w
if logw > (logN)1−1/ log 4

N2δB(w,N)(logN)−E+
log(1−δ)

log 2 if logw = (log y)δ, δ 6 1− 1
log 4

.

Proof. If
√
N < w 6 N/2, then M(N ;Rw) counts entries in the multiplication table which

are primes in (w,N ] or the product of two such primes. The desired bounds follow. If

4 6 w 6
√
N , we use the inequalities

H

(
N2

4
,
N

4
,
N

2
;Rw

)
6M(N ;Rw) 6

∑
k>0

H

(
N2

2k
,
N

2k+1
,
N

2k
;Rw

)
.

The proof is easy: consider ab ∈ Rw, a 6 N and b 6 N . If N
4
< a 6 N

2
and ab 6 N2

4
, then

b 6 N and this proves the lower bound. The upper bound comes from taking N
2k+1 < a 6 N

2k

for some non-negative integer k. The desired bound for M(N ;Rw) now follow from Theorem
1, since we have H(x, y, 2y;Rw) � xf(y, w) where f(u,w) � f(y, w) for log u � log y. �

Next, we consider the ”Farey fraction multiplication table”. Let FN of Farey fractions of
order N , i.e.,

FN =
{a
b

: 1 6 a 6 b 6 N, (a, b) = 1
}
.
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In private conversation, Igor Shparlinski asked the author about the size of the product set
FNFN (in general, for sets A,B ∈ Z, AB denotes the product set {ab : a ∈ A, b ∈ B}).

Corollary 3. We have

M(N)2 � |FNFN | 6M(N)2.

Consequently, by (1.2), we have

|FNFN | �
N2

(logN)E(log2N)3/2
.

Proof. The upper bound is trivial, and thus the real work is on the lower bound. We achieve
this by placing restrictions on the fractions, firstly by putting them in dyadic intervals and
secondly by removing those elements divisible by small primes. To this end, define

AN = {n : N/2 6 n 6 N}, A(w)
N = AN ∩Rw.

Let w be a large, fixed constant. A simple inclusion-exclusion argument yields (here p denotes
a prime in the sums)

|FNFN | >
∣∣∣∣{a1a2b1b2

: a1, a2 ∈ A(w)
N/2; b1, b2 ∈ A

(w)
N ; (a1a2, b1b2) = 1

}∣∣∣∣
> |A(w)

N/2A
(w)
N/2| · |A

(w)
N A

(w)
N | −

∑
w<p6N/2

|A(w)
N/2A

(w)
N/2p| · |A

(w)
N A

(w)
N/p|

> |A(w)
N/2A

(w)
N/2| · |A

(w)
N A

(w)
N | −

∑
w<p6N/2

|AN/2AN/2p| · |ANAN/p|.

It is clear that for M 6 N we have

|ANAM | 6 H(MN,M/2,M)

and we deduce from (1.1) that∑
w<p6N/2

|AN/2AN/2p| · |ANAN/p| �
∑
p>w

N4

p2(log(N/p))2E(log2(N/p))
3
� M(N)2

w logw
.

We also have the lower bound

|A(w)
N A

(w)
M | > H(MN,M/2,M ;Rw)−H(MN/2,M/2,M ;Rw).

It follows that

(1.3)

|FNFN | >
(
H(N

2

4
, N

4
, N

2
;Rw)−H(N

2

8
, N

4
, N

2
;Rw)

)(
H(N2, N

2
, N ;Rw)−H(N

2

2
, N

2
, N ;Rw)

)
−

−O
(

N4

(logN)2E(log2N)3(w logw)

)
.

Inserting Theorem 1 into the estimate (1.3), and taking w to be a sufficiently large constant,
we obtain the lower bound in Corollary 3. �
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1.1. Notation. Let τ(n) be the number of positive divisors of n, and τ(n; y, z) denotes the
number of divisors of n within the interval (y, z]. Let ω(n) be the number of distinct prime
divisors of n. Let P+(n) be the largest prime factor of n and let P−(n) be the smallest
prime factor of n. Adopt the notational conventions P+(1) = 0 and P−(1) =∞. Constants
implied by O, � and � are absolute. The notation f � g means f � g and g � f . The
symbol p will always denote a prime. Lastly, log2 x denotes log log x.

1.2. Heuristics. Here we give a short heuristic argument to justify the formulas in Theorem
1. This is similar to the heuristics givin in [5, 6].

Write n = n′n′′, where n′ is composed only of primes in (w, 2y] and n′′ is composed only of
primes > 2y. For simplicity, assume n′ is squarefree and n′ 6 y100. Assume for the moment
that the set D(n′) = {log d : d|n′} is approximately uniformly distributed in [0, log n′]. If n′

has k prime factors, then τ(n′) = 2k and we thus expect that τ(n′, y, 2y) > 1 with probability
about

min

(
1,

2k

log y

)
.

This expression changes behavior at k = k0 :=
⌊
log2 y
log 2

⌋
. The number of n 6 x with n′ ∈ Rw

and ω(n′) = k is of size

x

log y

(log2 y − log2w)k

k!
,

and we obtain a heuristic estimate for H(x, y, 2y;Rw) of order

x

log2 y

[∑
k6k0

(2 log2 y − 2 log2w)k

k!
+ (log y)

∑
k>k0

(log2 y − log2w)k

k!

]
.

The first sum always dominates, since the second sum is dominated by the first summand
(k0 is always much larger than log2 y− log2w). The behavior of the first sum over k depends
on the relative sizes of k0 and 2 log2 y − 2 log2w. If k0 > 2 log2 y − 2 log2w, that is, logw >
(log y)1−1/ log 4, the first contains the “peak” and we obtain

H(x, y, 2y;Rw) ≈ x

log2 y
e2 log2 y−2 log2 w =

x

log2w
.

For smaller w, we are summing the left tail of the Poisson distribution and standard bounds
(see e.g. Lemma 2.4 below) yield

H(x, y, 2y;Rw) ≈ xB(y, w)(log y)−E+
log(1−δ)

log 2 .

This latter expression is too large by a factor 1/δ, and this stems from the uniformity
assumption about D(n′), which turns out to be false for all but a proportion δ of these
integers. Fluctuations in the distribution of the prime factors of n′ lead to clustering of the
divisors; more details can be found in [5, 6]. As in [5, 6], we really should be considering
those n′ which have nicely distributed divisors, and a useful measure of how nicely distributed
the divisors are is the function

L(a) = measL (a), L (a) =
⋃
d|a

[− log 2 + log d, log d).
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Adjusting our heuristic, we see that the probability that τ(n′, y, 2y) > 1 should be about
L(n′)/ log y, which is � 1/ log y on a set of n′ of density δ.

2. Preliminaries

Lemma 2.1 ([6, Lemma 3.1]). We have

(i) L(a) 6 min(τ(a) log 2, log 2 + log a);
(ii) If (a, b) = 1, then L(ab) 6 τ(b)L(a);

(iii) If p1 < · · · < pk, then

L(p1 · · · pk) 6 min
06j6k

2k−j(log(p1 · · · pj) + log 2).

Let P(a, b) be the set of all squarefree positive integers composed only of primes in (a, b].
We adopt the convention that 1 ∈P(a, b) for any a, b.

Lemma 2.2. (a) For t > w > 2 and k > 0 we have∑
a∈P(w,t)
ω(a)=k

1

a
6

(log2 t− log2w +O(1))k

k!
.

(b) For t > w > 2 and k > 1 we have∑
a∈P(w,t)
ω(a)=k

log a

a
� (1 + log(t/w))

(log2 t− log2w +O(1))k−1

(k − 1)!
.

(c) For 2 6 w 6 s 6 t, we have∑
a∈P(w,t)

L(a)

a
�
(

log t

log s

)2 ∑
a∈P(w,s)

L(a)

a
.

Proof. Item (a) is immediate from

∑
a∈P(w,t)
ω(a)=k

1

a
6

1

k!

( ∑
w<p6t

1

p

)k

and Mertens’ estimate. For item (b), we have∑
a∈P(w,t)
ω(a)=k

log a

a
=

∑
a∈P(w,t)
ω(a)=k

1

a

∑
p|a

log p 6
∑
w<p6t

log p

p

∑
a∈P(w,t)
ω(a)=k−1

1

a
.

The desired inequality follows from part (a) and Mertens’ estimates. For part (c), we factor
each a ∈ P(w, t) uniquely as a = a1a2 with a1 ∈ P(w, s) and a2 ∈ P(s, t). Then, using
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Lemma 2.1 (ii) we deduce that∑
a∈P(w,t)

L(a)

a
6

∑
a1∈P(w,s)

L(a1)

a1

∑
a2∈P(s,t)

τ(a2)

a2

=
∏
s<p6t

(
1 +

2

p

) ∑
a1∈P(w,s)

L(a1)

a1
.

The desired inequality follows from Mertens’ estimates. �

The following is a standard sieve bound, see e.g. [8].

Lemma 2.3. (a) Uniformly for x > 2z > 4, we have

|{x/2 < n 6 x : P−(n) > z}| � x

log z
.

Uniformly for x > z > 2 we have

|{n 6 x : P−(n) > z}| � x

log z
.

Finally, we quote standard bounds on the Poisson distribution, see e.g. the results in
Section 4 of [11].

Lemma 2.4. Uniformly for h 6 m 6 x, we have∑
h6k6m

xk

k!
� min

(√
x,

x

x−m
,m− h+ 1

)
xm

m!
.

3. Local-to-global estimates

Following a kind of local-to-global principle first utilized in [5], we bound H(x, y, 2y;Rw)
in terms of the function L(a). This justifies the heuristic presented in Section 1.2.

Lemma 3.1. If w 6 y1/15 and y 6
√
x, then

H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw)� x

log2 y

∑
a∈P(w,y)

L(a)

a
.

If w 6 y 6
√
x and w 6 y1/10, then

H(x, y, 2y;Rw)� x

log2 y

∑
a∈P(w,y)

L(a)

a
.

Proof. We begin with the lower bound. We may assume without loss of generality that
y > y0, where y0 is a sufficiently large constant, because in the case y < y0, for any prime
p ∈ (y, 2y] (such p exists by Bertrand’s Postulate) and we see that

H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw)� x/p�y0 x.

Consider integers n = ap1p2b ∈ (x/2, x] with P−(a) > w, p1 and p2 prime, satisfying the
inequalities

a 6 y1/5 < p1 < p2 6
1

4
y4/5 < P−(b),
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and with log(y/p1p2) ∈ L (a). The last condition implies that τ(ap1p2, y, 2y) > 1, and we also
have that P−(n) > w. Since y4/5 6 y/a < p1p2 6 2y, we have x/ap1p2 > x/(2y6/5) > 1

2
y4/5.

Thus, by Lemma 2.3, for each triple (a, p1, p2), the number of possible b is � x
ap1p2 log y

. Now

L (a) is the disjoint union of intervals of length > log 2 contained in [− log 2, log a]. For each
such interval [u, v), Mertens’ estimate implies that∑

u6log(y/p1p2)<v
y1/5<p1<p2<

1
4
y4/5

1

p1p2
>

∑
8y1/5<p1<y2/5

1

p1

∑
ye−v/p1<p26ye−u/p1

1

p2
� v − u

log y
.

Here we made use of the estimate v 6 log a 6 1
5

log y which implies that ye−v/p1 > y2/5 > p1.

Thus, with a fixed, the sum of 1
p1p2

is � L(a)
log y

and we obtain

H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw)� x

log2 y

∑
a6y1/5

P−(a)>w

L(a)

a
.

We to replace the sum over a with an unbounded set which is muliplicatively more convenient,
starting with∑

a6y1/5

P−(a)>w

L(a)

a
>

∑
a6y1/5

a∈P(w,y1/15)

L(a)

a
>

∑
a∈P(w,y1/15)

L(a)

a

(
1− log a

log(y1/5)

)
.

Break this into two sums, the first being what we want and the second involving∑
a∈P(w,y1/15)

L(a) log a

a
=

∑
a∈P(w,y1/15)

L(a)

a

∑
p|a

log p =
∑

w<p6y1/15

log p

p

∑
b∈P(w,y1/15)

p-b

L(pb)

b
.

Using the trivial relation L(pb) 6 2L(b) which comes from Lemma 2.1 (ii), and Mertens’
estimate, we have∑

a6y1/5

P−(a)>w

L(a)

a
>

∑
a∈P(w,y1/15)

L(a)

a

(
1− 2 log(y1/15) +O(1)

log(y1/5)

)
�

∑
a∈P(w,y1/15)

L(a)

a
.

An application of Lemma 2.2 (c) concludes the proof of the lower bound.
For the upper bound, we first relate H(x, y, 2y;Rw) to H∗(x, y, 2y;Rw), the number of

squarefree integers n 6 x with P−(n) > w and τ(n, y, z) > 1. Write n = n′n′′, where n′ is
squarefree, n′′ is squarefull and (n′, n′′) = 1. The number of n 6 x with n′′ > log10 y is

6 x
∑

n′′>log10 y

1

n′′
� x

log5 y
.

If n′′ 6 log10 y, then for some f |n′′, n′ has a divisor in (y/f, 2y/f ], hence

(3.1) H(x, y, 2y;Rw) 6
∑

n′′6log10 y
P−(n)>w

∑
f |n′′

H∗
(
x
n′′
, y
f
, 2y
f

;Rw

)
+O

(
x

log5 y

)
.
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Let w0 be a sufficiently large absolute constant. It suffices to prove the upper bound for
w > w0, for the case w < w0 follows from the case w = w0. In the sum,

y/f 6 y 6 (x/n′′)1/2 log5 y 6 (x/n′′)5/9

for large enough w0. We will show that for w0 6 y1 6 x
5/9
1 ,

(3.2) H∗(x1, y1, 2y1;Rw)� x1 max
t>y3/41

1

log2 t

∑
a∈P(w,t)

L(a)

a
.

It follows from (3.2) and (3.1) that

H(x, y, 2y;Rw)�
∑

n′′6log10 y
P−(n)>w

x

n′′

∑
f |n′′

max
t>(y/f)3/4

1

log2 t

∑
a∈P(w,t)

L(a)

a

� x max
t>y2/3

1

log2 t

∑
a∈P(w,t)

L(a)

a

∑
n′′6log10 y
P−(n)>w

τ(n′′)

n′′
.

The lemma follows by noting that the inner sum over squarefull n′′ is O(1), using the relative
estimate in Lemma 2.2 (c) with s = y2/3, and finally noting that P(w, y2/3) ⊆P(w, y).

It remains to prove (3.2). The right side is � x1/ log2 y1 since L(1) = log 2, and
hence it suffices to count those n ∈ (x1/ log2 y1, x1]. We’ll count separately those n ∈
(x1/2

r+1, x1/2
r] for some integer r, 0 6 r 6 5 log2 y1. Let A be the set of squarefree inte-

gers n ∈ (x1/2
r+1, x1/2

r] with a divisor in (y1, 2y1]. Put z1 = 2y1, y2 = x1
2r+2y1

, z2 = x1
2ry1

.

If n ∈ A , then n = m1m2 with yi < mi 6 zi (i = 1, 2). For some j ∈ {1, 2} we have
p = P+(mj) < P+(m3−j); in particular, p is not the largest prime factor of n. Fixing j, we
may write n = abp, where P+(a) < p < P−(b) and b > p. Since τ(ap, yj, zj) > 1, we have
yj/a 6 p 6 zj. By Lemma 2.3 and the fact that b > p, given a and p, the number of choices
for b is

� x1
2rap log p

6
x1

2rap log max (P+(a), yj/a)
,

Now a has a divisor in (yj/p, zj/p], and thus log(yj/p) ∈ L (a) or log(2yj/p) ∈ L (a). Since
L (a) is the disjoint union of intervals of length > log 2 with total measure L(a), by repeated
use of Mertens’ estimate we obtain∑

log(cyj/p)∈L (a)

p>P+(a)

1

p
� L(a)

log max (P+(a), yj/a)
(c = 1, 2).

Since yj > y
4/9
1 /2r+2 > y

3/4
1 , we have that

H∗(x, y, 2y;Rw)�
∑

06r65 log2 y1

x1
2r

∑
t∈{4y1,4y2}

∑
a∈P(w,t)

L(a)

a log2 (P+(a) + t/(4a))
.

We have 4yj > y
4/5
1 /2r > y

3/4
1 for any j and any r. Also, by [10, Lemma 2.2],∑

a∈P(w,t)

L(a)

a log2 (t/(4a) + P+(a))
� 1

log2 t

∑
a∈P(w,t)

L(a)

a
.
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Summing over r, we deduce (3.2). �

4. Proof of theorem 1: lower bounds

We first deal with simple cases. Let w0 be a sufficiently large constant and ε > 0 a
sufficiently small constant. Firstly, if y 6 w0, then Bertrand’s postulate implies that there
is a prime p ∈ (y, 2y] and therefore

H(x, y, 2y;Rw)−Hz(x/2, y, 2y;Rw) > #{x/2 < n 6 x : p|n} � x.

Also, if w 6 w0 < y and w 6 y/8, then

H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw) > H(x, y, 2y;Rw0)−H(x/2, y, 2y;Rw0)

and the desired bound follows from the case w = w0. Thirdly, when y > w0 and yε < w 6
y/8, we consider two caess: (a) y 6

√
x/8 and (b)

√
x/8 < y 6

√
x. In case (a), consider

n = pm where y < p 6 2y < P−(m). Since x/p > 4y for all such p, Lemma 2.3 implies

H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw) >
∑

y<p62y

#{x/2p < n 6 x/p : P−(n) > 2y}

�
∑

y<p62y

x

p log y
� x

log2w
.

In the case (b)
√
x/8 < y 6

√
x, consider n = pm where y < p 6 2y and P−(m) > y/8.

Such n have at most three prime factors larger than y, hence at most three representations
in this form. Since x/p > 2y/8, Lemma 2.3 similarly implies that

H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw) >
1

3

∑
y<p62y

#{x/2p < n 6 x/p : P−(n) > y/8}

�
∑

y<p62y

x

p log y
� x

log2w
.

From now on, we assume

(4.1) w0 < w 6 yε.

We begin with the local-to-global estimate for H(x, y, 2y;Rw) given in Lemma 3.1, and
relate L(a) to counts of pairs of divisors which are close together. Evidently,

(4.2) L(a) > (log 2)#{d|a : τ(a, d, 2d) = 0)} > (log 2)(τ(a)−W ∗(a)),

where

W ∗(a) = #{d|a, d′|a : d < d′ 6 2d}.
We will apply (4.2) with integers whose prime factors are localized. As in [6], partition

the primes into sets D1, D2, . . ., where each Dj consists of the primes in an interval (λj−1, λj],
with λj ≈ λ2j−1. More precisely, let λ0 = 1.9 and define inductively λj for j > 1 as the largest
prime so that

(4.3)
∑

λj−1<p6λj

1

p
6 log 2.
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For example, λ1 = 2 and λ2 = 7. By Mertens’ bounds, we have

log2 λj − log2 λj−1 = log 2 +O(1/ log λj−1),

and it follows that for some absolute constant K,

(4.4) 2j−K 6 log λj 6 2j+K (j > 0).

For a vector b = (b1, . . . , bJ) of non-negative integers, let A (b) be the set of square-free
integers a composed of exactly bj prime factors from Dj for each j.

Lemma 4.1. Assume b = (b1, . . . , bJ2), with bj = 0 for j < J1. Then

∑
a∈A (b)

W ∗(a)

a
� (2 log 2)bJ1+···+bJ2

bJ1 ! · · · bJ2 !

J2∑
j=J1

2−j+bJ1+···+bj .

Proof. Identical to the proof of Lemma 2.3 in [6], except that we remove the terms corre-
sponding to d = d′. �

We will only consider those intervals Dj ⊆ (w, y], that is, only J1 6 j 6 J2, where

(4.5) J1 := min{j : λj−1 > w}, J2 := max{j : λj 6 y}.

By (4.4), we have

(4.6)

∣∣∣∣J1 − log2w

log 2

∣∣∣∣ 6 K + 2,

∣∣∣∣J2 − log2 y

log 2

∣∣∣∣ 6 K + 1.

Put

(4.7) M =
log2w0

200
,

which is a sufficiently large constant because w0 is. Recalling (4.1) and (4.5), we may choose
ε such that

(4.8) J1 > 100M, J2 − J1 > 100M.

Let Bk be the set of vectors (bJ1 , . . . , bJ2) which satisfy

(a) bJ1 + · · ·+ bJ2 = k;

(b)
∑J2

j=J1
2−j+bJ1+···+bj 6 2−M ;

(c) bJ1+i−1 6M + i2 (i > 1);
(d) bJ2−i+1 6M + i2 (i > 1).

Item (b) ensures that the sum on a in Lemma 4.1 is small, provided that w0 is sufficiently
large. From the definition of J2, whenever b ∈ Bk and a ∈ A (b), we have a ∈P(w, y).

By Lemma 4.1, for any k and any b ∈ Bk we have

(4.9)
∑

a∈A (b)

W ∗(a)

a
6

1

10

(log 4)k

bJ1 ! · · · bJ2 !
.
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By (4.4), the fact that J1 is sufficiently large, and bj 6 (j + 1− J1)2 + M , for any k and
b ∈ Bk we have by (4.3)∑

a∈A (b)

τ(a)

a
= 2k

J2∏
j=J1

1

bj!

(∑
p1∈Dj

1

p1

∑
p2∈Dj
p2 6=p1

1

p2
· · ·

∑
pbj∈Dj

pbj 6∈{p1,...,pbj−1}

1

pbj

)

> 2k
J2∏
j=J1

1

bj!

(
log 2− bj

λj−1

)bj
>

(log 4)k

2bJ1 ! · · · bJ2 !
.

(4.10)

Combining Lemma 3.1, (4.2), (4.9), and (4.10), we arrive at

(4.11) H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw)� x

log2 y

∑
k16k6k2

∑
b∈Bk

1

bJ1 ! · · · bJ2 !

for any k1 6 k2. We bound the sum on b using techniques from [5].
Following our heuristic, take

(4.12) k2 =

⌊
min

(
log2 y

log 2
, 2(log2 y − log2w)

)
− 2M

⌋
.

By (4.1), k2 > 100M and by (4.6),

k2 = min(J2, (log 4)(J2 − J1))− 2M + θ, |θ| 6 (log 4)(2K + 3).

We will choose k1 to satisy

(4.13) 10M 6 k1 6 k2.

Also define

(4.14) v = J2 − J1 + 1, s = J1 − 2−M.

Setting gi = bJ1+i−1 for i > 1, we have

v∑
i=1

2−i+g1+···+gi = 2J1−1f(b) 6 2s+1.

By (c) and (d) in the definition of Bk, gi 6 M + i2 and gv+1−i 6 M + i2 for every i > 1.
Applying the argument on the top of page 419 in [5], it follows that for k1 6 k 6 k2 we have

(4.15)
∑
b∈Bk

(log 4)k

bJ1 ! · · · bJ2 !
� vkVol(Yk(s, v)),

where Yk(s, v) is the set of ξ = (ξ1, . . . , ξk) ∈ Rk satisfying

(i) 0 6 ξ1 6 · · · 6 ξk < 1;
(ii) For 1 6 i 6

√
k −M , ξM+i2 > i/v and ξk+1−(M+i2) < 1− i/v;

(iii)
∑k

j=1 2j−vξj 6 2s.

We now invoke a result from [5] concerning the volume of Yk(s, v).
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Lemma 4.2 ([5, Lemma 4.9]). The following is true for all sufficiently large M . Uniformly
for v > 1, 10M 6 k 6 100(v − 1), s >M/2 + 1 and 0 6 k − v 6 s−M/3− 1. Then

Vol(Yk(s, v))� k − v + 1

(k + 1)!
.

If w0 is large enough (implying that M is sufficiently large) and ε is sufficiently small, then
(4.5), (4.7), (4.12), (4.13) and (4.14) together imply that

v = J2 − J1 + 1 > 10,

10M 6 k1 6 k2 6 (log 4)(J2 − J1) = (log 4)(v − 1),

s > log2w −M >M/2 + 1,

k2 − v − s 6 (J2 − 2M)− (J2 − 1−M) = 1−M 6 −M/3− 1.

Thus, we see that the hypotheses of Lemma 4.2 are satisfied. Therefore, gathering (4.11),
(4.15) and invoking Lemma 4.2, we conclude that

(4.16) H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw)� x

log2 y

∑
k16k6k2

(v log 4)k

k!

(
k − v + 1

k + 1

)
.

Consider three cases: I. δ > 1− 1
log 4

, II. 1
10
6 δ < 1− 1

log 4
, III. 0 < δ < 1

10
.

Case I. We have log2w > (1− 1
log 4

) log2 y and thus, by (4.12) and (4.5),

k2 = b2(log2 y − log2w)− 2Mc,

For an appropriate choice of parameters ε,M,w0 (subject to (4.7)), we have by (4.8) the
bound

v log 4 > k > J2 − J1 > 100M.

Now set k1 = k2/10, so that (4.13) is satisfied. With these choices and (4.14), we have

k − v + 1

k + 1
� 1 (k1 6 k 6 k2).

Thus, apply Lemma 2.4 to the sum in (4.16), we obtain

H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw)� x

log2 y
ev log 4 � x

log2w
,

as required in this case.

Case II. By (4.12), we have

k2 =

⌊
log2 y

log 2
− 2M

⌋
,

and take

k1 =
k2
2
.

In this case, we have J1 � log2 y � J2 − J1, and thus by (4.14),

k − v + 1

k + 1
� 1 � δ (k1 6 k 6 k2).
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Hence, applying Lemma 2.4 with h = k1,m = k2, x = v log 4, we compute

min

(
x1/2,

x

x−m
,m− h+ 1

)
� min

(
(log2 y)1/2,

v log 4

v log 4− k2

)
� min

(
(log2 y)1/2,

1

1− 1
log 4
− δ

+O(1/ log2 y)

)
� δ(log2 y)1/2B(w, y).

Recalling the definition of E , we have by Stirling’s formula,

(v log 4)k2

k2!
� (e(1− δ))k2√

log2 y
=

(log y)2−E+
log(1−δ)

log 2√
log2 y

.

Invoking Lemma 2.4 we see that the sum in (4.16) is

� δB(w, y)(log y)2−E+
log(1−δ)

log 2 ,

and this gives the required lower bound in Theorem 1.

Case III. When δ < 1
10

, we also have

k2 =

⌊
log2 y

log 2
− 2M

⌋
,

but in this case we take
k1 = k2,

as we are in the range where the summation in (4.16) is dominated by single summand. Here

k2 − v + 1 � J1,
k − v + 1

k + 1
� log2w

log2 y
= δ.

Applying Lemma 2.4 to the sum in (4.16), we obtain

H(x, y, 2y;Rw)−H(x/2, y, 2y;Rw)� δx

log2 y

(v log 4)k2

k2!
.

Applying Stirling’s formula as in Case II and observing that B(w, y) = 1 in this case, we
conclude the desired upper bound.

This completes the proof of the lower bound in Theorem 1.

5. Proof of Theorem 1: upper bounds

In this section, we prove the upper bound in Theorem 1. We begin with simple cases. If
w0 is fixed and w 6 w0, then H(x, y, 2y;Rw) 6 H(x, y, 2y) and the required bound follows
from (1.1). Next, if log2w > (1− 1/ log 4) log2 y, then by Lemma 2.3,

H(x, y, 2y;Rw) 6
∑

y<d62y
P−(d)>w

|{m 6 x/d : P−(m) > w}| �
∑

y<d62y
P−(d)>w

x

d logw
� x

log2w
,

as required.
From now on, we assume that

(5.1) logw 6 (log y)1−1/ log 4,
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that is, δ 6 1 − 1
log 4

. We apply Lemma 3.1 and use upper bounds for L(a) from Lemma

2.1. As in [5], the sums involving L(a) are bounded in terms of multivariate integrals, which
were estimated accurately in [5, 6].

5.1. Case I. 1
10
6 δ 6 1− 1

log 4
. This case is very easy, as we expect no clustering of divisors.

Let

(5.2) k0 =

⌊
log2 y

log 2

⌋
.

Beginning with Lemma 3.1, we apply Lemma 2.1 (i) to bound L(a) and then apply Lemma
2.2 parts (a) and (b). We have

H(x, y, 2y;Rw)� x

log2 y

[∑
k6k0

2k
∑

a∈P(w,y)
ω(a)=k

1

a
+
∑
k>k0

∑
a∈P(w,y)
ω(a)=k

log a

a

]

� x

log2 y

[∑
k6k0

(2 log2 y − 2 log2w)k

k!
+ (log y)

∑
k>k0

(log2 y − log2w)k

k!

]
.

Since k0 > 1.4(log2 y − log2w), the second sum on the right side is dominated by the single
term k = k0 and thus by Stirling’s formula we get that∑
k>k0

(log2 y − log2w)k

k!
� (log2 y − log2w)k0

k0!
� ((e log 2)(1− δ))k0

(log2 y)1/2
� (log y)1−E+

log(1−δ)
log 2

(log2 y)1/2
.

We have k0 6 2 log2 y−2 log2w in the first sum, for which we invoke Lemma 2.4 and obtain,
with α = log2 y − log2w the bound∑

k6k0

(2 log2 y − 2 log2w)k

k!
� (2α)k0

k0!
min

(
α1/2,

α

α− k0

)
� (2e(log 2)(1− δ))k0 min

(
1, (log2 y)−1/2((1− δ) log 4− 1)−1

)
� (log y)−E+

log(1−δ)
log 2 B(w, y),

as required for Theorem 1.

5.2. Case II. δ 6 1
10
. This case is more delicate, because we expect that typically there will

be clustering of the divisors of a, and we must bound the probability of non-clustering.
We cut up the sum in Lemma 3.1 according to ω(a). Let

Tk =
∑

a∈P(w,y)
ω(a)=k

L(a)

a
.

We bound Tk in terms of a mutivariate integral, in a manner similar to that in [6].

Lemma 5.1. Suppose w is large, (5.1) holds, let

v =

⌊
log2 y − log2w

log 2

⌋
, u =

⌊
log2w

log 2

⌋
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and assume that 1 6 k 6 10v. Then

Tk � (2 log2 y − 2 log2w)kUk(v, u),

where

Uk(v, u) =

∫
· · ·
∫

06ξ16···6ξk61

min
06j6k

2−j(2vξ1+u + · · ·+ 2vξj+u + 1) dξ.

Proof. The proof is the same as the proof of Lemma 3.5 in [6], except that we make use of
the fact that P−(a) > w. Recall the definition of the sets Dj from Section 4. By (4.4), any
prime divisor of a lies in Dj with u−K − 2 6 j 6 v+ u+K + 3. Following the proof of [6,
Lemma 3.5], in particular using Lemma 2.1 (iii), we have

(5.3) Tk �
(2 log 2)k

k!

∫
[u−K−2,v+u+K+4]k

F (t) dt,

where, letting s1 6 s2 6 · · · 6 sk be the increasing rearrangement of t1, . . . , tk,

F (t) = min
06j6k

2−j(2s1 + · · ·+ 2sj + 1).

Observe that F (t) is symmetric in t1, . . . , tk. Making the change of variables

ti = u−K − 2 + (v + 2K + 6)ξi (1 6 i 6 k)

we see that 0 6 ξi 6 1 for each i. Utilizing the summetry of F (t), we find that the multiple
integral on the right side of (5.3) equals

(v + 2K + 6)kk!

∫
· · ·
∫

06ξ16···6ξk61

min
06j6k

2−j
(
2(v+2K+6)ξ1+u + · · ·+ 2(v+2K+6)ξj+u + 1

)
dξ.

We conclude that

Tk(y)� ((2 log 2)(v + 2K + 6))kUk(v, u).

Lastly, (v + 2K + 6)k � vk since k 6 10v, and the lemma follows. �

To bound Uk(u, v) we invoke the following estimate from [5, 6].

Lemma 5.2 ([5, Lemma 13.2],[6, Lemma 4.4]). Define

T (k, v, γ) = {ξ ∈ Rk : 0 6 ξ1 6 · · · 6 ξk 6 1, 2vξ1 + · · ·+ 2vξj > 2j−γ (1 6 j 6 k)}.

Suppose k, v, γ ∈ Z with 1 6 k 6 10v and γ > 0. Set b = k − v. Then

Vol(T (k, v, γ))� Y

22b−γ (k + 1)!
, Y =

{
b if b > γ + 5

(γ + 5− b)2(γ + 1) if b < γ + 5
.

Lemma 5.3. Suppose k, u, v are integers satisfying 1 6 k 6 10v and u > 1. Then

Uk(v, u)� u(1 + |k − v − u|2)
(k + 1)!(2k−v−u + 1)

.

Notice that the bound in Lemma 5.3 undergoes a change of behavior at k = v + u.
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Proof. Put b = k − v. For integers m > 0, consider ξ satisfying

2−m 6 min
06j6k

2−j
(
2vξ1+u + · · ·+ 2vξj+u + 1

)
< 21−m.

For 1 6 j 6 k we have

2−j
(
2vξ1+u + · · ·+ 2vξj+u

)
> max(2−j, 2−m−u − 2−j−u) > 2−m−u−1,

and thus ξ ∈ T (k, v,m+ u+ 1). Invoking Lemma 5.2, we find that

Uk(v, u) 6
∑
m>0

21−m Vol(T (k, v,m+ u+ 1))� 1

(k + 1)!

∑
m>0

2−mYm
22b−m−u−1 ,

Ym =

{
b if m+ u 6 b− 6

(m+ u+ 6− b)2(m+ u+ 2) if m+ u > b− 6
.

Dividing the sum according to the two cases yields∑
m>0

2−mYm
22b−u−m−1 �

∑
06m<b−u−5

b

2m22b−m−u−1 +
∑

m>max(0,b−u−5)

(m+ u+ 6− b)2(m+ u+ 2)

2m
.

The proof is completed by noting that if b > 6 + u, each sum on the right side is � b2u−b

and if b 6 5 + u, the first sum is empty and the second is � (6 + u− b)2 � 1 + (b− u)2. �

Finally, we complete the upper bound in Theorem 1. Let v =
⌊
log2 y−log2 w

log 2

⌋
, u =

⌊
log2 w
log 2

⌋
and define k0 by (5.2). Note that k0 = v + u+O(1). We now combine Lemmas 5.1 and 5.3.
Since k0 > 1.4(log2 y − log2w), we have∑

k06k610k0

Tk �
∑

k06k610k0

u(1 + (k − k0)2)
(k + 1)!2k−u−v

(2 log2 y − 2 log2w)k

� u2k0
∑
`>0

1 + `2

(k0 + 1 + `)!
(log2 y − log2w)k0+`

� (log2w)
(2 log2 y − 2 log2w)k0

(k0 + 1)!
.

Similarly, since k0 6 0.9(2 log2 y − 2 log2w), we have∑
06k<k0

Tk � 1 +
∑

16k<k0

u(k0 − k)2(2 log2 y − 2 log2w)k

(k + 1)!

� 1 + u

k0−1∑
`=1

u`2(2 log2 y − 2 log2w)k0−`

(k0 + 1− `)!

� (log2w)
(2 log2 y − 2 log2w)k0

(k0 + 1)!
.
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For the large values of k we use the crude bound L(a)� τ(a) from Lemma 2.1 (i), followed
by an application of Lemma 2.2 (a). This gives∑

k>10k0

Tk 6
∑
k>10k0

∑
a∈P(w,y)
ω(a)=k

2k log 2

a
6
∑
k>10k0

(2 log2 y − 2 log2w +O(1))k

k!

� (2 log2 y − 2 log2w +O(1))10k0

(10k0)!

� (2 log2 y − 2 log2w)k0

(k0 + 1)!
.

Combining these three bounds for sums of Tk with Lemma 3.1, Lemma 2.4, and Stirling’s
formula, we conclude that

H(x, y, 2y;Rw)� x

log2 y
(log2w)

(2 log2 y − 2 log2w)k0

(k0 + 1)!

� x log2w

(log2 y)3/2
(log y)−E+

log(1−δ)
log 2 .

The proof of the upper bound in Theorem 1 is complete.
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