THE DISTRIBUTION OF INTEGERS WITH AT LEAST TWO DIVISORS IN A SHORT INTERVAL

KEVIN FORD AND GÉRALD TENENBAUM

Abstract

We estimate the density of integers which have more than one divisor in an interval $(y, z]$ with $z \approx y+y /(\log y)^{\log 4-1}$. As a consequence, we determine the precise range of z such that most integers which have at least one divisor in $(y, z]$ have exactly one such divisor.

1. Introduction

Whereas, in usual cases, sieving by a set of primes may be fairly well controlled, through Buchstab's identity, sieving by a set of integers is a much more complicated task. However, some fairly precise results are known in the case where the set of integers is an interval. We refer to the recent work [1] of the first author for specific statements and references.

Define

$$
\begin{aligned}
\tau(n ; y, z) & :=|\{d \mid n: y<d \leqslant z\}|, \\
H(x, y, z) & :=|\{n \leqslant x: \tau(n ; y, z) \geqslant 1\}|, \\
H_{r}(x, y, z) & :=|\{n \leqslant x: \tau(n ; y, z)=r\}|, \\
H_{2}^{*}(x, y, z) & :=|\{n \leqslant x: \tau(n ; y, z) \geqslant 2\}|=\sum_{r \geqslant 2} H_{r}(x, y, z) .
\end{aligned}
$$

Thus, the numbers $H_{r}(x, y, z)(r \geqslant 1)$ describe the local laws of the function $\tau(n ; y, z)$. When y and z are close, it is expected that, if an integer has at least a divisor in $(y, z]$, then it usually has exactly one, in other words

$$
\begin{equation*}
H(x, y, z) \sim H_{1}(x, y, z) . \tag{1.1}
\end{equation*}
$$

In this paper, we address the problem of determining the exact range of validity of such behavior. In other words, we search for a necessary and sufficient condition so that $H_{2}^{*}(x, y, z)=o(H(x, y, z))$ as x and y tend to infinity. We show below that (1.1) holds if and only if

$$
\lfloor y\rfloor+1 \leqslant z<y+\frac{y}{(\log y)^{\log 4-1+o(1)}} \quad(y \rightarrow \infty)
$$

As with the results in [1], the ratios $H(x, y, z) / x$ and $H_{r}(x, y, z) / x$ are weakly dependent on x when $x \geqslant y^{2}$. We take pains to prove results which are valid throughout the range $10 \leqslant y \leqslant \sqrt{x}$, since many interesting applications require bounds for $H(x, y, z)$ and $H_{r}(x, y, z)$ when $y \approx \sqrt{x}$; see e.g. $\S 1$ of [1] and Ch. 2 of [4] for some examples.

As shown in [6], for given y, the threshold for the behavior of the function $H(x, y, z)$ lies near the critical value

$$
z=z_{0}(y):=y \exp \left\{(\log y)^{1-\log 4}\right\} \approx y+y /(\log y)^{\log 4-1} .
$$

Date: 9 February 2007.
First author supported by National Science Foundation grant DMS-0301083.

We concentrate on the case $z_{0}(y) \leqslant z \leqslant \mathrm{e} y$. Define

$$
\begin{align*}
& z=\mathrm{e}^{\eta} y, \quad \eta=(\log y)^{-\beta}, \quad \beta=\log 4-1-\Xi / \sqrt{\log _{2} y}, \quad \lambda=\frac{1+\beta}{\log 2}, \\
& Q(w)=\int_{1}^{w} \log t \mathrm{~d} t=w \log w-w+1 . \tag{1.2}
\end{align*}
$$

Here $\log _{k}$ denotes the k th iterate of the logarithm.
With the above notation, we have

$$
\log (z / y)=\frac{\mathrm{e}^{\Xi \sqrt{\log _{2} y}}}{(\log y)^{\log 4-1}}, \quad \log \left(z / z_{0}(y)\right)=\frac{\mathrm{e}^{\Xi \sqrt{\log _{2} y}}-1}{(\log y)^{\log 4-1}}
$$

so

$$
\begin{gather*}
0 \leqslant \Xi \leqslant(\log 4-1) \sqrt{\log _{2} y} \tag{1.3}\\
0 \leqslant \beta \leqslant \log 4-1 \tag{1.4}\\
\frac{1}{\log 2} \leqslant \lambda \leqslant 2 \tag{1.5}
\end{gather*}
$$

From Theorem 1 of [1], we know that, uniformly in $10 \leqslant y \leqslant \sqrt{x}, z_{0}(y) \leqslant z \leqslant \mathrm{e} y$,

$$
\begin{equation*}
H(x, y, z) \asymp \frac{\beta x}{(\Xi+1)(\log y)^{Q(\lambda)}} \tag{1.6}
\end{equation*}
$$

By Theorems 5 and 6 of [1], for any $c>0$ and uniformly in $y_{0}(r) \leqslant y \leqslant x^{1 / 2-c}, z_{0}(y) \leqslant z \leqslant \mathrm{e} y$ for a suitable constant $y_{0}(r)$, we have

$$
\begin{gather*}
\frac{H_{1}(x, y, z)}{H(x, y, z)} \asymp_{c} 1, \\
\frac{\Xi+1}{\sqrt{\log _{2} y}}<_{r, c} \frac{H_{r}(x, y, z)}{H(x, y, z)} \leqslant 1 \quad(r \geqslant 2) . \tag{1.7}
\end{gather*}
$$

When $0 \leqslant \Xi \leqslant o\left(\sqrt{\log _{2} y}\right)$ and $r \geqslant 2$, the upper and lower bounds above for $H_{r}(x, y, z)$ have different orders. We show in this paper that the lower bound represents the correct order of magnitude.
Theorem 1. Uniformly in $10 \leqslant y \leqslant \sqrt{x}, z_{0}(y) \leqslant z \leqslant \mathrm{e} y$, we have

$$
\frac{H_{2}^{*}(x, y, z)}{H(x, y, z)} \ll \frac{\Xi+1}{\sqrt{\log _{2} y}}
$$

where $\Xi=\Xi(y, z)$ is defined as in (1.2) and therefore satisfies (1.3).
Corollary 2. Let $r \geqslant 2$ and $c>0$. There exists a constant $y_{0}(r, c)$ such that, uniformly for $y_{0}(r, c) \leqslant y \leqslant x^{1 / 2-c}, z_{0}(y) \leqslant z \leqslant \mathrm{e} y$, we have

$$
\frac{H_{r}(x, y, z)}{H(x, y, z)} \asymp_{r, c} \frac{\Xi+1}{\sqrt{\log _{2} y}} .
$$

Theorem 1 tells us that $H_{2}^{*}(x, y, z)=o(H(x, y, z))$ whenever $z \geqslant z_{0}(y)$ and $\Xi=o\left(\sqrt{\log _{2} y}\right)$. It is a simple matter to adapt the proofs given in [5] to show that this latter relation persists in the range $\lfloor y\rfloor+1 \leqslant z \leqslant z_{0}(y)$. We thus obtain the following statement.
Corollary 3. If $y \rightarrow \infty, y \leqslant \sqrt{x}$, and $\lfloor y\rfloor+1 \leqslant z \leqslant y+y(\log y)^{1-\log 4+o(1)}$, we have

$$
H_{1}(x, y, z) \sim H(x, y, z) .
$$

Since we know from (1.7) that $H_{2}^{*}(x, y, z)>_{\varepsilon} H(x, y, z)$ when $\beta \leqslant \log 4-1-\varepsilon$ for any fixed $\varepsilon>0$ we have therefore completely answered the question raised at the beginning of this introduction concerning the exact validity range for the asymptotic formula (1.1). This may be viewed as a complement to a theorem of Hall (see [3], ch. 7; following a note mentioned by Hall in private correspondence, we slightly modify the statement) according to which

$$
\begin{equation*}
H(x, y, z) \sim F(-\Xi) \sum_{r \geqslant 1} r H_{r}(x, y, z)=F(-\Xi) \sum_{n \leqslant x} \tau(n ; y, z) \tag{1.8}
\end{equation*}
$$

in the range $\Xi=o\left(\log _{2} y\right)^{1 / 6}, x>\exp \left\{\log z \log _{2} z\right\}$ with

$$
F(\xi):=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\xi / \log 4} \mathrm{e}^{-u^{2}} \mathrm{~d} u
$$

It is likely that (1.8) still holds in the range $\left(\log _{2} y\right)^{1 / 6} \ll \Xi \leqslant o\left(\sqrt{\log _{2} y}\right)$.

2. Auxiliary estimates

In the sequel, unless otherwise indicated, constants implied by Landau's O and Vinogradov's \ll symbols are absolute and effective. Numerical values of reasonable size could easily be given if needed.

Let m be a positive integer. We denote by $P^{-}(m)$ the smallest, and by $P^{+}(m)$ the largest, prime factor of m, with the convention that $P^{-}(1)=\infty, P^{+}(1)=1$. We write $\omega(m)$ for the number of distinct prime factors of m and $\Omega(m)$ for the number of prime power divisors of m. We further define

$$
\omega(m ; t, u)=\sum_{\substack{p^{\nu} \| m \\ t<p \leqslant u}} 1, \quad \Omega(m ; t, u)=\sum_{\substack{p^{\nu} \| m \\ t<p \leqslant u}} \nu, \quad \bar{\Omega}(m ; t)=\Omega(m ; 2, t), \quad \bar{\Omega}(m)=\Omega(m ; 2, m) .
$$

Here and in the sequel, the letter p denotes a prime number. Also, we let $\mathscr{P}(u, v)$ denote the set of integers all of whose prime factors are in $(u, v]$ and write $\mathscr{P}^{*}(u, v)$ for the set of squarefree members of $\mathscr{P}(u, v)$. By convention, $1 \in \mathscr{P}^{*}(u, v)$.
Lemma 2.1. There is an absolute constant $C>0$ so that for $\frac{3}{2} \leqslant u<v, v \geqslant \mathrm{e}^{4}, 0 \leqslant \alpha \leqslant 1 / \log v$, we have

$$
\sum_{\substack{m \in \mathscr{P}(u, v) \\ \omega(m)=k}} \frac{1}{m^{1-\alpha}} \leqslant \frac{\left(\log _{2} v-\log _{2} u+C\right)^{k}}{k!}
$$

Proof. For a prime $p \leqslant v$, we have $p^{\alpha} \leqslant 1+2 \alpha \log p$, thus the sum in question is

$$
\leqslant \frac{1}{k!}\left(\sum_{u<p \leqslant v} \frac{1}{p^{1-\alpha}}+\frac{1}{p^{2-2 \alpha}}+\cdots\right)^{k} \leqslant \frac{\left\{\log _{2} v-\log _{2} u+O(1)\right\}^{k}}{k!} .
$$

We note incidentally that a similar lower bound is available when u and v are not too close. See for instance Lemma III. 13 of [2].
Lemma 2.2. Uniformly for $u \geqslant 10,0 \leqslant k \leqslant 2.9 \log _{2} u$, and $0 \leqslant \alpha \leqslant 1 /(100 \log u)$, we have

$$
\sum_{\substack{P^{+}(m) \leqslant u \\ \bar{\Omega}(m)=k}} \frac{1}{m^{1-\alpha}} \ll \frac{\left(\log _{2} u\right)^{k}}{k!} .
$$

Proof. We follow the proof of Theorem 08 of [4]. Let w be a complex number with $|w| \leqslant \frac{29}{10}$. If p is prime and $3 \leqslant p \leqslant u$, then $\left|w / p^{1-\alpha}\right| \leqslant \frac{99}{100}$ and $p^{\alpha} \leqslant 1+2 \alpha \log p$. Thus,

$$
S(w):=\sum_{P^{+}(m) \leqslant u} \frac{w^{\bar{\Omega}(m)}}{m^{1-\alpha}}=\left(1-\frac{1}{2^{1-\alpha}}\right)^{-1} \prod_{3 \leqslant p \leqslant u}\left(1-\frac{w}{p^{1-\alpha}}\right)^{-1} \ll \mathrm{e}^{(\Re w) \log _{2} u}
$$

Put $r:=k / \log _{2} u$. By Cauchy's formula and Stirling's formula,

$$
\sum_{\substack{P^{+}(m) \leqslant u \\ \bar{\Omega}(m)=k}} \frac{1}{m^{1-\alpha}}=\frac{1}{2 \pi r^{k}} \int_{-\pi}^{\pi} \mathrm{e}^{-i k \vartheta} S\left(r \mathrm{e}^{i \vartheta}\right) d \vartheta \ll \frac{\left(\log _{2} u\right)^{k}}{k^{k}} \int_{-\pi}^{\pi} \mathrm{e}^{k \cos \vartheta} d \vartheta \ll \frac{\left(\log _{2} u\right)^{k}}{k!}
$$

Lemma 2.3. Suppose z is large, $0 \leqslant a+b \leqslant \frac{5}{2} \log _{2} z$ and

$$
\exp \left\{(\log x)^{9 / 10}\right\} \leqslant w \leqslant z \leqslant x, \quad x z^{-1 /\left(10 \log _{2} z\right)} \leqslant Y \leqslant x
$$

The number of integers n with $x-Y<n \leqslant x, \bar{\Omega}(n ; w)=a$ and $\omega(n ; w, z)=\Omega(n ; w, z)=b$, is

$$
\ll \frac{Y}{\log z} \frac{\left\{\log _{2} w\right\}^{a}}{a!} \frac{(b+1)\left\{\log _{2} z-\log _{2} w+C\right\}^{b}}{b!}
$$

where C is a positive absolute constant.
Proof. There are $\ll x^{9 / 10}$ integers with $n \leqslant x^{9 / 10}$ or $2^{j} \mid n$ with $2^{j} \geqslant x^{1 / 10}$. For other n, write $n=r s t$, where $P^{+}(r) \leqslant w, s \in \mathscr{P}^{*}(w, z)$ and $P^{-}(t)>z$. Here $\bar{\Omega}(r)=a$ and $\omega(s)=b$. We have either $t=1$ or $t>z$. In the latter case $x / r s>z$, whence $Y / r s>\sqrt{z}$. We may therefore apply a standard sieve estimate to bound, for given r and s, the number of t by

$$
\ll \frac{Y}{r s \log z}
$$

By Lemmas 2.1 and 2.2,

$$
\sum_{r, s} \frac{1}{r s} \ll \frac{\left(\log _{2} w\right)^{a}\left(\log _{2} z-\log _{2} w+C\right)^{b}}{a!b!}
$$

If $t=1$, then we may assume $a+b \geqslant 1$. Set $p=P^{+}(n)$. If $b \geqslant 1$, then $p \mid s$ and we put $r_{1}:=r$ and $s_{1}:=s / p$. Otherwise, let $r_{1}:=r / p$ and $s_{1}:=s=1$. Let $A:=\bar{\Omega}\left(r_{1}\right)$ and $B:=\omega\left(s_{1}\right)$, so that $A+B=a+b-1$ in all circumstances. We have

$$
p \geqslant x^{1 / 2 \bar{\Omega}(n)} \geqslant x^{1 / 5 \log _{2} z} \geqslant(x / Y)^{2}
$$

Define the non-negative integer h by $z^{\mathrm{e}^{-h-1}}<p \leqslant z^{\mathrm{e}^{-h}}$. By the Brun-Titchmarsh theorem, we see that, for each given h, r_{1} and s_{1}, the number of p is $\ll Y \mathrm{e}^{h} /\left(r_{1} s_{1} \log z\right)$. Set $\alpha:=0$ if $h=0$ and $\alpha:=\mathrm{e}^{h} /(100 \log z)$ otherwise. For $h \geqslant 1$, we have $r_{1} s_{1}>x^{3 / 4} z^{-1 / \mathrm{e}}>\sqrt{z}$. Therefore, for $h \geqslant 0$,

$$
\frac{1}{r_{1} s_{1}} \leqslant \frac{z^{-\alpha / 2}}{\left(r_{1} s_{1}\right)^{1-\alpha}} \ll \frac{\mathrm{e}^{-\mathrm{e}^{h} / 200}}{\left(r_{1} s_{1}\right)^{1-\alpha}}
$$

Now, Lemmas 2.1 and 2.2 imply that

$$
\begin{aligned}
\sum_{r_{1}, s_{1}} \frac{1}{\left(r_{1} s_{1}\right)^{1-\alpha}} & \ll \frac{\left(\log _{2} w\right)^{A}\left(\log _{2} z-\log _{2} w+C\right)^{B}}{A!B!} \\
& \ll(b+1) \frac{\left(\log _{2} w\right)^{a}\left(\log _{2} z-\log _{2} w+C\right)^{b}}{a!b!},
\end{aligned}
$$

where we used the fact that $a \ll \log _{2} w$. Summing over all h, we derive that the number of those integers $n>x^{9 / 10}$ satisfying the conditions of the statement is

$$
\ll \frac{Y}{\log z}(b+1) \frac{\left(\log _{2} w\right)^{a}\left(\log _{2} z-\log _{2} w+C\right)^{b}}{a!b!}
$$

Since $a!b!\leqslant\left(3 \log _{2} z\right)^{3 \log _{2} z}$, this last expression is $>x^{9 / 10}$. This completes the proof.
Our final lemma is a special case of a theorem of Shiu (Theorem 03 of [4]).
Lemma 2.4. Let f be a multiplicative function such that $0 \leqslant f(n) \leqslant 1$ for all n. Then, for all x, Y with $1<\sqrt{x} \leqslant Y \leqslant x$, we have

$$
\sum_{x-Y<n \leqslant x} f(n) \ll \frac{Y}{\log x} \exp \left\{\sum_{p \leqslant x} \frac{f(p)}{p}\right\} .
$$

3. Decomposition and outline of the proof

Throughout, ε will denote a very small positive constant. Note that Theorem 1 holds trivially for $\beta \leqslant \log 4-1-\varepsilon$ since we then have $1 \ll \Xi / \log _{2} y$ and of course $H_{2}^{*}(x, y, z) \leqslant H(x, y, z)$. We may henceforth assume that

$$
\begin{equation*}
\log 4-1-\varepsilon \leqslant \beta \leqslant \log 4-1 \tag{3.1}
\end{equation*}
$$

Let

$$
K:=\left\lfloor\lambda \log _{2} z\right\rfloor,
$$

so that $\left(2-\frac{3}{2} \varepsilon\right) \log _{2} z \leqslant K \leqslant 2 \log _{2} z$. In light of (1.6), Theorem 1 reduces to

$$
\begin{equation*}
H_{2}^{*}(x, y, z) \ll \frac{x}{(\log y)^{Q(\lambda)} \sqrt{\log _{2} y}} . \tag{3.2}
\end{equation*}
$$

At this stage, we notice for further reference that, by Stirling's formula, for $k \leqslant K$ we have

$$
\begin{equation*}
\frac{\eta\left(2 \log _{2} z\right)^{k}}{k!(\log z)^{2}} \leqslant \frac{\eta\left(2 \log _{2} z\right)^{K}}{K!(\log z)^{2}} \asymp \frac{1}{(\log y)^{Q(\lambda)} \sqrt{\log _{2} y}} \tag{3.3}
\end{equation*}
$$

Let \mathcal{H} denote the set of integers $n \leqslant x$ with $\tau(n ; y, z) \geqslant 2$. We count separately the integers $n \in \mathcal{H}$ lying in 6 classes. In these definitions, we write $k=\bar{\Omega}(n ; z), b=K-k$ and for brevity we put $z_{h}=z^{\mathrm{e}^{-h}}$. Let

$$
K_{0}:=(2-3 \varepsilon) \log _{2} z
$$

and define

$$
\begin{aligned}
\mathcal{N}_{0} & :=\left\{n \in \mathcal{H}: n \leqslant x / \log z \text { or } \exists d>\log z: d^{2} \mid n\right\}, \\
\mathcal{N}_{1} & :=\left\{n \in \mathcal{H} \backslash \mathcal{N}_{0}: k \notin\left(K_{0}, K\right]\right\}, \\
\mathcal{N}_{2} & :=\bigcup_{1 \leqslant h \leqslant 5 \varepsilon \log _{2} z} \mathcal{N}_{2, h}, \\
\text { with } \mathcal{N}_{2, h} & :=\left\{n \in \mathcal{H} \backslash\left(\mathcal{N}_{0} \cup \mathcal{N}_{1}\right): \bar{\Omega}\left(n ; z_{h}, z\right) \leqslant \frac{19}{10} h-\frac{1}{100} b\right\} .
\end{aligned}
$$

For integers $n \in \mathcal{N}_{2}$, we will only use the fact that $\tau(n ; y, z) \geqslant 1$. Integers in other classes do not have too many small prime factors and it is sufficient to count pairs of divisors d_{1}, d_{2} of n in $(y, z]$. For each such pair, write $v=\left(d_{1}, d_{2}\right), d_{1}=v f_{1}, d_{2}=v f_{2}, n=f_{1} f_{2} v u$ and assume $f_{1}<f_{2}$. Let

$$
\begin{equation*}
F_{1}=\bar{\Omega}\left(f_{1}\right), \quad F_{2}=\bar{\Omega}\left(f_{2}\right), \quad V=\bar{\Omega}(v), \quad U=\bar{\Omega}(u, z) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
Z:=\exp \left\{(\log z)^{1-4 \varepsilon}\right\} \tag{3.5}
\end{equation*}
$$

For further reference, we note that if $n \notin \mathcal{N}_{0}$ and $h \leqslant 5 \varepsilon \log _{2} z$, then

$$
\bar{\Omega}\left(n ; z_{h}, z\right)=\omega\left(n ; z_{h}, z\right) .
$$

Now we define $\mathcal{H}^{*}:=\mathcal{H} \backslash\left(\mathcal{N}_{0} \cup \mathcal{N}_{1} \cup \mathcal{N}_{2}\right)$ and

$$
\begin{aligned}
& \mathcal{N}_{3}:=\left\{n \in \mathcal{H}^{*}: \min \left(u, f_{2}\right) \leqslant Z\right\}, \\
& \mathcal{N}_{4}:=\left\{n \in \mathcal{H}^{*}: \min \left(u, f_{2}\right)>z^{1 / 10}\right\}, \\
& \mathcal{N}_{5}:=\left\{n \in \mathcal{H}^{*}: Z<\min \left(u, f_{2}\right) \leqslant z^{1 / 10}\right\} .
\end{aligned}
$$

In the above decomposition, the main parts are \mathcal{N}_{2} and \mathcal{N}_{5}. We expect \mathcal{N}_{2} to be small since, conditionally on $\bar{\Omega}(n ; z)=k$, the normal value of $\bar{\Omega}\left(n ; z_{h}, z\right)$ is $h k / \log _{2} z>\frac{19}{10} h$. It is more difficult to see that \mathcal{N}_{5} is small too. This follows from the fact that we count integers in this set according to their number of factorizations in the form $n=u v f_{1} f_{2}$ with $y<v f_{1}<v f_{2} \leqslant z$. Suppose for instance that $f_{1}, f_{2} \leqslant z_{j}$. For $\bar{\Omega}(n ; z)=k$ and $\bar{\Omega}\left(n ; z_{j}, z\right)=G$, then, ignoring the given information on the localization of $v f_{1}$ and $v f_{2}$ in $(y, z]$, there are $4^{k-G} 2^{G}=4^{k} 2^{-G}$ such factorizations. Thus, larger G means fewer factorizations. On probabilistic grounds, larger G should also mean fewer factorizations when information on the localization of $v f_{1}$ and $v f_{2}$ is available.

We now briefly consider the cases of \mathcal{N}_{0} and \mathcal{N}_{1}.
Trivially,

$$
\begin{equation*}
\left|\mathcal{N}_{0}\right| \leqslant \frac{x}{\log z}+\sum_{d>\log z} \frac{x}{d^{2}} \ll \frac{x}{\log z} \ll \frac{x}{(\log y)^{Q(\lambda)} \sqrt{\log _{2} y}} \tag{3.6}
\end{equation*}
$$

since $Q(\lambda) \leqslant Q(2)=\log 4-1$ in the range under consideration.
By the argument on pages 40-41 of [4],

$$
\sum_{\substack{n \leqslant x \\ \bar{\Omega}(n ; z)>K}} 1 \ll \frac{x}{(\log y)^{Q(\lambda)} \sqrt{\log _{2} y}} .
$$

Setting $t:=1-\frac{3}{2} \varepsilon$, Lemma 2.4 gives

$$
\begin{aligned}
& \sum_{\substack{n \leqslant x \\
\tau(n ; y, z) \geqslant 1 \\
\bar{\Omega}(n ; z) \leqslant K_{0}}} 1 \leqslant t^{-(2-3 \varepsilon) \log _{2} z} \sum_{\substack{d m \leqslant x \\
y<d \leqslant z}} t^{\bar{\Omega}(d)+\bar{\Omega}(m ; z)} \ll x(\log z)^{2 t-2-\beta-(2-3 \varepsilon) \log t} \\
& \ll x(\log y)^{-\beta-2 \varepsilon^{2}} \ll x(\log y)^{-Q(\lambda)-\varepsilon^{2} / 2} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left|\mathcal{N}_{1}\right| \ll \frac{x}{(\log y)^{Q(\lambda)} \sqrt{\log _{2} y}} . \tag{3.7}
\end{equation*}
$$

In the next four sections, we show that

$$
\begin{equation*}
\left|\mathcal{N}_{j}\right| \ll \frac{x}{(\log y)^{Q(\lambda)} \sqrt{\log _{2} y}} \quad(2 \leqslant j \leqslant 5) . \tag{3.8}
\end{equation*}
$$

Together with (3.6) and (3.7), this will complete the proof of Theorem 1.

4. Estimation of $\left|\mathcal{N}_{2}\right|$

We plainly have $\left|\mathcal{N}_{2}\right| \leqslant \sum_{h}\left|\mathcal{N}_{2, h}\right|$. For $1 \leqslant h \leqslant 5 \varepsilon \log _{2} z$, the numbers $n \in \mathcal{N}_{2, h}$ satisfy

$$
\left\{\begin{array}{l}
x / \log z<n \leqslant x \\
k:=\bar{\Omega}(n ; z)=K-b, \quad 0 \leqslant b \leqslant 3 \varepsilon \log _{2} z \\
\bar{\Omega}\left(n ; z_{h}, z\right) \leqslant \frac{19}{10} h-\frac{1}{100} b
\end{array}\right.
$$

We note at the outset that $\mathcal{N}_{2, h}$ is empty unless $h \geqslant b / 190$.
Write $n=d u$ with $y<d \leqslant z$ and $u \leqslant x / y$. Let

$$
\bar{\Omega}\left(d ; z_{h}\right)=D_{1}, \quad \Omega\left(d ; z_{h}, z\right)=D_{2}, \quad \bar{\Omega}\left(u ; z_{h}\right)=U_{1}, \quad \Omega\left(u ; z_{h}, z\right)=U_{2}
$$

so that $D_{1}+D_{2} \geqslant 1, D_{2}+U_{2} \leqslant \frac{19}{10} h-\frac{1}{100} b$ and $D_{1}+D_{2}+U_{1}+U_{2}=k$.
Fix $k=K-b, h, D_{1}, D_{2}, U_{1}$ and U_{2}. By Lemma 2.3 (with $w=z_{h}, a=U_{1}, b=U_{2}$), the number of u is

$$
\ll \frac{x}{y \log z} \frac{\left(\log _{2} z-h\right)^{U_{1}}}{U_{1}!}\left(U_{2}+1\right) \frac{(h+C)^{U_{2}}}{U_{2}!} .
$$

A second application of Lemma 2.3 yields that the number of d is

$$
\ll \frac{\eta y}{\log z} \frac{\left(\log _{2} z-h\right)^{D_{1}}}{D_{1}!}\left(D_{2}+1\right) \frac{(h+C)^{D_{2}}}{D_{2}!} .
$$

Since $D_{2}+U_{2}<2 h$, we have $(h+C)^{U_{2}+D_{2}} \leqslant \mathrm{e}^{2 C} h^{U_{2}+D_{2}}$. Summing over $D_{1}, D_{2}, U_{1}, U_{2}$ with $G=D_{2}+U_{2}$ fixed and using the binomial theorem, we find that the number of n in question is

$$
\ll \frac{\eta x}{(\log z)^{2}}\left(\log _{2} z-h\right)^{k-G} h^{G}(G+1)^{2} \sum_{\substack{U_{1}+D_{1}=k-G \\ D_{2}+U_{2}=G}} \frac{1}{U_{1}!D_{1}!D_{2}!U_{2}!} \ll \frac{\eta x 2^{k}}{(\log z)^{2}} A(h, G),
$$

where

$$
A(h, G)=(G+1)^{2} \frac{\left(\log _{2} z-h\right)^{k-G} h^{G}}{(k-G)!G!} .
$$

Since $G+1 \leqslant G_{h}:=\left\lfloor\frac{19}{10} h\right\rfloor$, we have

$$
\frac{A(h, G+1)}{A(h, G)} \geqslant \frac{h(k-G)}{(G+1)\left(\log _{2} z-h\right)} \geqslant \frac{k-10 \varepsilon \log _{2} z}{1.9(1-5 \varepsilon) \log _{2} z}>\frac{21}{20}
$$

if ε is small enough. Next,

$$
\begin{aligned}
A\left(h, G_{h}\right) & \leqslant\left(G_{h}+1\right)^{2} \frac{\left(\log _{2} z-h\right)^{k-G_{h}}(h k)^{G_{h}}}{k!\left(G_{h} / \mathrm{e}\right)^{G_{h}}} \\
& \ll(h+1)^{2} \frac{\left(\log _{2} z\right)^{k}}{k!}\left(\frac{20}{19} \mathrm{e}\right)^{19 h / 10} \mathrm{e}^{-h\left(k-G_{h}\right) / \log _{2} z} \\
& \ll \frac{\left(\log _{2} z\right)^{k}}{k!} \mathrm{e}^{-h / 500},
\end{aligned}
$$

since $\left(k-G_{h}\right) / \log _{2} z>2-13 \varepsilon$ and $\frac{19}{10} \log \left(\frac{20}{19} \mathrm{e}\right)<2-1 / 400$. Thus,

$$
\sum_{b / 190 \leqslant h \leqslant 5 \varepsilon \log _{2} z} \sum_{0 \leqslant G \leqslant G_{h}} A(h, G) \ll \sum_{b / 190 \leqslant h \leqslant 5 \varepsilon \log _{2} z} A\left(h, G_{h}\right) \ll \frac{\left(\log _{2} z\right)^{k}}{k!} \mathrm{e}^{-b / 95000}
$$

and so

$$
\sum_{\substack{n \in \mathcal{N}_{2} \\ \bar{\Omega}(n ; z)=k}} 1 \ll \frac{\eta x\left(2 \log _{2} z\right)^{k}}{(\log z)^{2} k!} \mathrm{e}^{-(K-k) / 95000} \ll \frac{x \mathrm{e}^{-(K-k) / 95000}}{(\log y)^{Q(\lambda)} \sqrt{\log _{2} y}},
$$

by (3.3). Summing over the range $K_{0} \leqslant k \leqslant K$ furnishes the required estimate (3.8) for $j=2$.

5. Estimation of $\left|\mathcal{N}_{3}\right|$

All integers $n=f_{1} f_{2} u v$ counted in \mathcal{N}_{3} verify

$$
\left\{\begin{array}{l}
x / \log z<n \leqslant x \\
\bar{\Omega}(n ; z) \leqslant K \\
y<v f_{1}<v f_{2} \leqslant z, \quad \min \left(u, f_{2}\right) \leqslant Z
\end{array}\right.
$$

where Z is defined in (3.5). This is all we shall use in bounding $\left|\mathcal{N}_{3}\right|$.
Let $\mathcal{N}_{3,1}$ be the subset corresponding to the condition $f_{2} \leqslant Z$ and let $\mathcal{N}_{3,2}$ comprise those $n \in \mathcal{N}_{3}$ such that $u \leqslant Z$.

If $f_{2} \leqslant Z$, then $v>z^{1 / 2}$ and $u>x /\left\{v Z^{2} \log z\right\}>x^{1 / 3}$. For $\frac{1}{2} \leqslant t \leqslant 1$ we have

$$
\begin{aligned}
\left|\mathcal{N}_{3,1}\right| & \leqslant \sum_{f_{1}, f_{2}, v, u} t^{\bar{\Omega}\left(f_{1} f_{2} u v ; z\right)-K} \\
& =t^{-K} \sum_{f_{1} \leqslant Z} t^{\bar{\Omega}\left(f_{1}\right)} \sum_{f_{1}<f_{2} \leqslant \mathrm{e}^{\eta} f_{1}} t^{\bar{\Omega}\left(f_{2}\right)} \sum_{y / f_{1}<v \leqslant z / f_{1}} t^{\bar{\Omega}(v)} \sum_{u \leqslant x / f_{1} f_{2} v} t^{\bar{\Omega}(u ; z)} .
\end{aligned}
$$

Apply Lemma 2.4 to the three innermost sums. The u-sum is

$$
\ll \frac{x}{f_{1} f_{2} v}(\log z)^{t-1} \leqslant \frac{x}{f_{1} y}(\log z)^{t-1}
$$

and the v-sum is

$$
\ll \frac{\eta y}{f_{1}}(\log z)^{t-1}
$$

The f_{2}-sum is $\ll \eta f_{1}\left(\log f_{1}\right)^{t-1}$ if $f_{1}>\eta^{-3}$ and otherwise is $\ll \eta f_{1}$ trivially (note that $\eta f_{1} \gg 1$ follows from the fact that $\left.\left(f_{1}+1\right) / f_{1} \leqslant f_{2} / f_{1} \leqslant \mathrm{e}^{\eta}\right)$. Next

$$
\begin{aligned}
\sum_{f_{1} \leqslant \eta^{-3}} \frac{1}{f_{1}}+\sum_{2 \leqslant f_{1} \leqslant Z} \frac{t^{\bar{\Omega}\left(f_{1}\right)}}{f_{1}}\left(\log f_{1}\right)^{t-1} & \ll \log _{2} z+\left(\log _{2} z\right) \max _{j \leqslant \log _{2} Z} \mathrm{e}^{j(t-1)} \sum_{f_{1} \leqslant \exp \left\{\mathrm{e}^{j}\right\}} \frac{t^{\bar{\Omega}\left(f_{1}\right)}}{f_{1}} \\
& \ll\left(\log _{2} z\right)(\log Z)^{2 t-1} .
\end{aligned}
$$

Thus,

$$
\left|\mathcal{N}_{3,1}\right| \ll x\left(\log _{2} x\right)(\log x)^{E}
$$

with $E=-2 \beta-\lambda \log t+2 t-2+(2 t-1)(1-4 \varepsilon)$. We select optimally $t:=\frac{1}{4} \lambda /(1-2 \varepsilon)$, and check that $t \geqslant \frac{1}{2}$ since $\lambda \geqslant 2-\varepsilon / \log 2$. Then

$$
\begin{aligned}
E & =-Q(\lambda)+\lambda \log (1-2 \varepsilon)+4 \varepsilon \leqslant-Q(\lambda)+(2-\varepsilon / \log 2)\left(-2 \varepsilon-2 \varepsilon^{2}\right)+4 \varepsilon \\
& <-Q(\lambda)-\varepsilon^{2} .
\end{aligned}
$$

Next, we consider the case when $u \leqslant Z$. We observe that this implies

$$
\frac{1}{4} v z^{2} \leqslant v x \leqslant v n \log z=u f_{1} v f_{2} v \log z \leqslant Z z^{2} \log z
$$

hence $v \leqslant 4 Z \log z \leqslant Z^{2}$, and therefore

$$
\min \left(f_{1}, f_{2}\right)>z^{1 / 2}
$$

Also, $z>x^{1 / 3}$ since $x / \log z<n=u v f_{1} f_{2} \leqslant Z z^{2}$. Thus, for $\frac{1}{2} \leqslant t \leqslant 1$, we have

$$
\begin{aligned}
\left|\mathcal{N}_{3,2}\right| & \leqslant \sum_{f_{1}, f_{2}, v, u} t^{\bar{\Omega}\left(f_{1} f_{2} u v ; z\right)-K} \\
& =t^{-K} \sum_{v \leqslant Z^{2}} t^{\bar{\Omega}(v)} \sum_{u \leqslant x v / y^{2}} t^{\bar{\Omega}(u)} \sum_{y / v<f_{1} \leqslant z / v} t^{\bar{\Omega}\left(f_{1}\right)} \sum_{y / v<f_{2} \leqslant z / v} t^{\bar{\Omega}\left(f_{2}\right)} .
\end{aligned}
$$

The sums upon f_{1} and f_{2} are each

$$
\ll \frac{\eta y}{v}(\log z)^{t-1}
$$

and the u-sum is

$$
\ll \frac{x v}{y^{2}}\left(\log 2 x v / y^{2}\right)^{t-1} \leqslant \frac{x v}{y^{2}}(\log 2 v)^{t-1} .
$$

Thus, selecting the same value $t:=\frac{1}{4} \lambda /(1-2 \varepsilon)$, we obtain

$$
\begin{aligned}
\left|N_{3,2}\right| & \ll t^{-K} x \eta^{2}(\log z)^{2 t-1} \sum_{v \leqslant Z^{2}} \frac{t^{\bar{\Omega}(v)}(\log 2 v)^{t-1}}{v} \\
& \ll x\left(\log _{2} z\right)(\log z)^{E} \leqslant x\left(\log _{2} z\right)(\log z)^{-Q(\lambda)-\varepsilon^{2}} .
\end{aligned}
$$

This completes the proof of (3.8) with $j=3$.

6. Estimation of $\left|\mathcal{N}_{4}\right|$

We now consider those integers $n=f_{1} f_{2} u v$ such that

$$
\left\{\begin{array}{l}
x / \log z<n \leqslant x \\
k:=\bar{\Omega}(n ; z)=K-b, \quad 0 \leqslant b \leqslant 3 \varepsilon \log _{2} z \\
y<v f_{1}<v f_{2} \leqslant z, \quad \min \left(u, f_{2}\right)>z^{1 / 10}
\end{array}\right.
$$

With the notation (3.4), fix k, F_{1}, F_{2}, U and V. Here u, f_{1} and f_{2} are all $>\frac{1}{2} z^{1 / 10}$. By Lemma 2.3 (with $w=z$), for each triple f_{1}, f_{2}, v the number of u is

$$
\ll \frac{x}{f_{1} f_{2} v \log z} \frac{\left(\log _{2} z\right)^{U}}{U!}
$$

Using Lemma 2.3 two more times, we obtain, for each v,

$$
\sum_{y / v<f_{1} \leqslant z / v} \frac{1}{f_{1}} \sum_{y / v<f_{2} \leqslant z / v} \frac{1}{f_{2}} \ll \frac{\eta^{2}}{(\log z)^{2}} \frac{\left(\log _{2} z\right)^{F_{1}+F_{2}}}{F_{1}!F_{2}!} .
$$

Now, Lemma 2.2 gives

$$
\sum_{v} \frac{1}{v} \ll \frac{\left(\log _{2} z\right)^{V}}{V!}
$$

Gathering these estimates and using (3.3) yields

$$
\begin{aligned}
\left|\mathcal{N}_{4}\right| & \ll \frac{x \eta^{2}}{(\log z)^{3}} \sum_{(2-3 \varepsilon) \log _{2} z \leqslant k \leqslant K} \sum_{F_{1}+F_{2}+U+V=k} \frac{\left(\log _{2} z\right)^{k}}{F_{1}!F_{2}!U!V!} \\
& =\frac{x \eta^{2}}{(\log z)^{3}} \sum_{(2-3 \varepsilon) \log _{2} z \leqslant k \leqslant K} \frac{\left(2 \log _{2} z\right)^{k}}{k!} 2^{k} \\
& \ll \frac{x}{(\log y)^{Q(\lambda)} \sqrt{\log _{2} y}} \frac{2^{K} \eta}{\log z} \ll \frac{x}{(\log y)^{Q(\lambda)} \sqrt{\log _{2} y}} .
\end{aligned}
$$

Thus (3.8) holds for $j=4$.

7. Estimation of $\left|\mathcal{N}_{5}\right|$

It is plainly sufficient to bound the number of those $n=f_{1} f_{2} u v$ satisfying the following conditions

$$
\left\{\begin{array}{l}
x / \log z<n \leqslant x \\
k:=\bar{\Omega}(n ; z)=K-b, \quad 0 \leqslant b \leqslant 3 \varepsilon \log _{2} z \\
\bar{\Omega}\left(n ; z_{h}, z\right)>\frac{19}{10} h-\frac{1}{100} b \quad\left(1 \leqslant h \leqslant 5 \varepsilon \log _{2} z\right) \\
y<v f_{1}<v f_{2} \leqslant z, \quad Z<\min \left(u, f_{2}\right) \leqslant z^{1 / 10}
\end{array}\right.
$$

Define j by $z_{j+2}<\min \left(u, f_{2}\right) \leqslant z_{j+1}$. We have $1 \leqslant j \leqslant 5 \varepsilon \log _{2} z$. Let $\mathcal{N}_{5,1}$ be the set of those n satisfying the above conditions with $u \leqslant z_{j+1}$ and let $\mathcal{N}_{5,2}$ be the complementary set, for which $f_{2} \leqslant z_{j+1}$.

If $u \leqslant z_{j+1}$, then $v \leqslant\left(z^{2} u \log z\right) / x \leqslant 4 u \log z \leqslant z_{j}$ and $f_{2}>f_{1}>z^{1 / 2}$. Recall notation (3.4) and write

$$
F_{11}:=\bar{\Omega}\left(f_{1} ; z_{j}\right), \quad F_{12}:=\Omega\left(f_{1} ; z_{j}, z\right), \quad F_{21}:=\bar{\Omega}\left(f_{2} ; z_{j}\right), \quad F_{22}:=\Omega\left(f_{2} ; z_{j}, z\right),
$$

so that the initial condition upon $\bar{\Omega}\left(n ; z_{h}, z\right)$ with $h=j$ may be rewritten as

$$
F_{12}+F_{22} \geqslant G_{j}:=\max \left(0,\left\lfloor\frac{19}{10} j-b / 100\right\rfloor\right) .
$$

We count those n in a dyadic interval $(X, 2 X]$, where $x /(2 \log z) \leqslant X \leqslant x$. Fix $k, j, X, U, V, F_{r s}$ and apply Lemma 2.3 to sums over u, f_{1}, f_{2}. The number of n is question is

$$
\begin{aligned}
& \leqslant \sum_{v \leqslant z_{j}} \sum_{v X / z^{2} \leqslant u \leqslant 2 v X / y^{2}} \sum_{y / v<f_{1} \leqslant z / v} \sum_{y / v<f_{2} \leqslant z / v} 1 \\
& \ll \frac{\eta^{2} X \mathrm{e}^{j}}{(\log z)^{3}} \frac{\left(\log _{2} z-j\right)^{U+F_{11}+F_{21}}}{U!F_{11}!F_{21}!}\left(F_{12}+1\right)\left(F_{22}+1\right) \frac{(j+C)^{F_{12}+F_{22}}}{F_{12}!F_{22}!} \sum_{v \leqslant z_{j}} \frac{1}{v} .
\end{aligned}
$$

Bounding the v-sum by Lemma 2.2, and summing over $X, U, V, F_{r s}$ with $F_{12}+F_{22}=G$ yields

$$
\left|\mathcal{N}_{5,1}\right| \ll \frac{\eta^{2} x}{(\log z)^{3}} \sum_{(2-3 \varepsilon) \log _{2} z \leqslant k \leqslant K} 4^{k} \sum_{1 \leqslant j \leqslant 5 \varepsilon \log _{2} z} \sum_{G_{j} \leqslant G \leqslant k} M(j, G),
$$

where

$$
M(j, G):=\mathrm{e}^{j}(G+1)^{2} \frac{\left(\log _{2} z-j\right)^{k-G}(j+C)^{G}}{2^{G}(k-G)!G!} .
$$

Let $j_{b}=\left\lfloor\frac{1}{2} b+100 C+100\right\rfloor$. If $j \leqslant j_{b}$, then $j+C \leqslant \frac{99}{100}\left(j+C_{b}\right)$ with $C_{b}:=3 C+2+\frac{b}{100}$ and, introducing $R:=\max _{G \geqslant 0}\left\{(G+1)^{2}\left(\frac{99}{100}\right)^{G}\right\}$, we have

$$
\begin{aligned}
\sum_{1 \leqslant j \leqslant j_{b}} \sum_{G_{j} \leqslant G \leqslant k} M(j, G) & \leqslant R \sum_{1 \leqslant j \leqslant j_{b}} \mathrm{e}^{j} \sum_{0 \leqslant G \leqslant k} \frac{\left(\log _{2} z-j\right)^{k-G}\left(j+C_{b}\right)^{G}}{2^{G} G!(k-G)!} \\
& \ll \frac{1}{k!} \sum_{1 \leqslant j \leqslant j_{b}} \mathrm{e}^{j}\left(\log _{2} z-\frac{1}{2} j+\frac{1}{2} C_{b}\right)^{k} \\
& \ll \frac{\left(\log _{2} z\right)^{k}}{k!} \sum_{1 \leqslant j \leqslant j_{b}} \mathrm{e}^{j+(b / 200-j / 2) k / \log _{2} z} \\
& \ll \frac{\left(\log _{2} z\right)^{k}}{k!} \mathrm{e}^{b / 100+2 \varepsilon j_{b}} \ll \frac{\left(\log _{2} z\right)^{k}}{k!} \mathrm{e}^{b / 50} .
\end{aligned}
$$

When $j>j_{b}$, then

$$
G_{j} \geqslant \frac{9}{5}(j+C)+\frac{1}{10}\left(j_{b}+C+1\right)-\frac{1}{100} b-1 \geqslant \frac{9}{5}(j+C)+9 \geqslant 189 .
$$

Thus, for $G \geqslant G_{j}$ we have

$$
\frac{M(j, G+1)}{M(j, G)}=\left(\frac{G+2}{G+1}\right)^{2} \frac{j+C}{2(G+1)} \frac{k-G}{\log _{2} z-j} \leqslant \frac{4}{7}
$$

Therefore,

$$
\begin{aligned}
\sum_{G_{j} \leqslant G \leqslant k} M(j, G) & \ll M\left(j, G_{j}\right) \ll \frac{j^{2} \mathrm{e}^{j}}{k!} \frac{\left(\log _{2} z-j\right)^{k-G_{j}}(j k)^{G_{j}}}{2^{G_{j}} G_{j}!} \\
& \leqslant \frac{j^{2} \mathrm{e}^{j}\left(\log _{2} z\right)^{k}}{k!} \mathrm{e}^{-j\left(k-G_{j}\right) / \log _{2} z}\left(\frac{\mathrm{e} j k}{2 G_{j} \log _{2} z}\right)^{G_{j}} \ll \frac{\left(\log _{2} z\right)^{k}}{k!} \mathrm{e}^{-j / 5},
\end{aligned}
$$

since $k-G_{j} \geqslant(2-10 \varepsilon) \log _{2} z, \mathrm{e} j k /\left(2 G_{j} \log _{2} z\right) \leqslant \frac{5}{9} \mathrm{e}$, and $-1+\frac{19}{10} \log \left(\frac{5}{9} \mathrm{e}\right)<-\frac{1}{5}$. We conclude that

$$
\begin{equation*}
\sum_{1 \leqslant j \leqslant 5 \varepsilon \log _{2} z} \sum_{G_{j} \leqslant G \leqslant k} M(j, G) \ll \frac{\left(\log _{2} z\right)^{k}}{k!} \mathrm{e}^{b / 50} \tag{7.1}
\end{equation*}
$$

and hence, by (3.3),

$$
\left|\mathcal{N}_{5,1}\right| \ll \frac{\eta^{2} x}{(\log z)^{3}} \sum_{k \leqslant K} \frac{\left(2 \log _{2} z\right)^{k}}{k!} 2^{K-b / 2} \ll \frac{\eta^{2} 2^{K} x}{(\log z)^{3}} \frac{\left(2 \log _{2} z\right)^{K}}{K!} \ll \frac{x}{(\log y)^{Q(\lambda) \sqrt{\log _{2} y}} ~}
$$

Now assume $f_{2} \leqslant z_{j+1}$. Then $\min (u, v)>\sqrt{z}$. Fix F_{1}, F_{2} and

$$
\bar{\Omega}\left(v ; z_{j}\right)=V_{1}, \quad \Omega\left(v ; z_{j}, z\right)=V_{2}, \quad \bar{\Omega}\left(u ; z_{j}\right)=U_{1}, \quad \Omega\left(u ; z_{j}, z\right)=U_{2} .
$$

By Lemma 2.3, given f_{1}, f_{2} and v, the number of u is

$$
\ll \frac{x}{f_{1} f_{2} v \log z} \frac{\left(\log _{2} z-j\right)^{U_{1}}\left(U_{2}+1\right)(j+C)^{U_{2}}}{U_{1}!U_{2}!}
$$

Applying Lemma 2.3 again, for each f_{1} we have

$$
\sum_{\substack{f_{1}<f_{2} \leqslant e^{\eta} f_{1} \\ y / f_{1}<v \leqslant z / f_{1}}} \frac{1}{f_{2} v} \ll \frac{\eta^{2} \mathrm{e}^{j}}{(\log z)^{2}} \frac{\left(V_{2}+1\right)\left(\log _{2} z-j\right)^{V_{1}+F_{2}}(j+C)^{V_{2}}}{V_{1}!V_{2}!F_{2}!} .
$$

By Lemma 2.2,

$$
\sum_{f_{1} \leqslant z_{j}} \frac{1}{f_{1}} \ll \frac{\left(\log _{2} z-j\right)^{F_{1}}}{F_{1}!}
$$

Combine these estimates, and sum over $F_{1}, F_{2}, U_{1}, U_{2}, V_{1}, V_{2}$ with $V_{2}+U_{2}=G$. As in the estimation of $\left|\mathcal{N}_{5,1}\right|$, sum over k, j, G using (3.3) and (7.1). We obtain

$$
\begin{aligned}
\left|\mathcal{N}_{5,2}\right| & \ll \frac{\eta^{2} x}{(\log z)^{3}} \sum_{(2-3 \varepsilon) \log _{2} z \leqslant k \leqslant K} 4^{k} \sum_{1 \leqslant j \leqslant 5 \varepsilon \log _{2} z} \sum_{G_{j}<G \leqslant k} M(j, G) \\
& \ll \frac{x}{(\log y)^{Q(\lambda)} \sqrt{\log _{2} y}} .
\end{aligned}
$$

References

1. K. Ford, The distribution of integers with a divisor in a given interval, Annals of Math. (2008), to appear; ArXiv: math.NT/0401223.
2. H. Halberstam and K.F. Roth, Sequences, Second edition. Springer-Verlag, New York-Berlin, 1983, xviii+292 pp.
3. R. R. Hall, Sets of multiples, Cambridge Tracts in Mathematics 118. Cambridge University Press, Cambridge 1996.
4. R. R. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Mathematics, vol. 90, Cambridge University Press, Cambridge, 1988.
5. R. R. Hall and G. Tenenbaum, The set of multiples of a short interval, in : D.V. Chudnovsky et al. (eds), Number Theory (New York Seminar 1989-90), 119-128 (Springer Verlag 1991).
6. G. Tenenbaum, Sur la probabilité qu'un entier possède un diviseur dans un intervalle donné, Compositio Math. 51 (1984), 243-263.

Kevin Ford: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green St., Urbana, IL, 61801, USA
Gérald Tenenbaum: Institut Élie Cartan, Université Henri-Poincaré Nancy 1, B.P. 239, 54506 Vandeuvre-Lès-Nancy Cedex, France
E-mail address: ford@math.uiuc.edu gerald.tenenbaum@iecn.u-nancy.fr

