
THE BRUN-HOOLEY SIEVE

K. Ford and H. Halberstam

1. Introduction

The object of this note is to give an alternative and, we think, simpler account
of the Brun-Hooley sieve (see [Ho]) and to derive a general theorem that is in a
form ready for numerous applications. We shall put forward also a ‘dual’ form of
Hooley’s method that probably has relevance to the multi-dimensional vector sieve
of Brüdern and Fouvry ([BF1],[BF2]).

Let A denote a finite integer sequence of about X elements and let P be a finite
set of primes. Writing P =

∏
p∈P p and (a, b) for the highest common factor of a

and b, our objective is to estimate the counting number

S(A,P) := |{a ∈ A : (a, P ) = 1}|.

The indicator function of the sub-set of A whose cardinality is S(A,P) is

∑
d|(a,P )

µ(d), a ∈ A;

and it is well known from Brun’s ‘pure’ sieve (a special case of the inclusion-
exclusion inequalities) that if ν(d) denotes the number of prime divisors of d and k
is an even natural number, then

(1)
∑

d|(a,P )

µ(d) ≤
∑

d|(a,P )
ν(d)≤k

µ(d).

Now let

P =
r⋃

j=1

Pj
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be a partition of P (so that Pi ∩ Pj = φ if i 6= j) and write Pj =
∏

p∈Pj

p. Then,

following Hooley (equivalently Bonferroni’s inequalities),∑
d|(a,P )

µ(d) =
r∏

j=1

∑
d|(a,Pj)

µ(d)

≤
r∏

j=1

∑
d|(a,Pj)
ν(d)≤kj

µ(d).(2)

for any choice of r positive even integers k1, . . . , kr; and consequently

(3)

S(A,P) =
∑
a∈A

∑
d|(a,P )

µ(d)

≤
∑

d1,...,dr

dj |Pj ,ν(dj)≤kj

µ(d1) · · ·µ(dr)|{a ∈ A : d1 . . . dr | a}|.

In Brun’s ‘pure’ sieve the inequality in (1) is reversed if k is odd, but for r ≥ 2
there is no such simple counterpart to (2). To find a lower bound for S(A,P)
Hooley derives an identity that is rather complicated to prove and to state, but we
can reach much the same conclusion via the following simple inequality:

Lemma 1. Suppose that 0 ≤ xj ≤ yj (j = 1, . . . , r). Then

(4) x1 . . . xr ≥ y1 . . . yr −
r∑

`=1

(y` − x`)
r∏

j=1
j 6=`

yj .

Proof. The inequality holds (with equality) when r = 1, and follows by induction
on r from

y1 . . . yr − x1 . . . xr = (y1 . . . yr−1 − x1 . . . xr−1)yr + x1 . . . xr−1(yr − xr)

≤ (y1 . . . yr−1 − x1 . . . xr−1)yr + y1 . . . yr−1(yr − xr). �

We apply the inequality with

xj =
∑

d|(a,Pj)

µ(d), yj =
∑

d|(a,Pj)
ν(d)≤kj

µ(d) (j = 1, . . . , r);

from Brun’s ‘pure’ sieve (see for example, [HR], Chapter 2, (2.4))

(5) 0 ≤ y` − x` ≤
∑

d|(a,P`)
ν(d)=k`+1

1 (` = 1, . . . , r),
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whence, by (4),

∑
d|(a,P )

µ(d) ≥
r∏

j=1

( ∑
d|(a,Pj)
ν(d)≤kj

µ(d)
)
−

r∑
`=1

( ∑
d|(a,P`)

ν(d)=k`+1

1
) r∏

j=1
j 6=`

( ∑
d|(a,Pj)
ν(d)≤kj

µ(d)
)

and therefore (cf. (3))

S(A,P) ≥
∑

d1,...,dr

dj |Pj ,ν(dj)≤kj

µ(d1) · · ·µ(dr) |{a ∈ A : d1 · · · dr | a}|

−
r∑

`=1

∑
d1,...,dr

dj |Pj ,ν(dj)≤kj(j 6=`)
d`|P`,ν(d`)=k`+1

µ

(
d1 · · · dr

d`

)
|{a ∈ A : d1 · · · dr | a}| .(6)

The proof of (5) is quite simple but, in any case, (5) will appear as a very special
case of a certain general identity ([DHR], Lemma 2.1) which we shall prove next.

2. A sieve identity

For each integer d let p−(d), p+(d) denote the least and largest prime factors
respectively of d, and set p+(1) = 1. Next, let χ(d) be any function defined on
the set of all positive integer divisors d of P that has the following properties:
(i) χ(1) = 1; (ii) χ(d) assumes only the values 0 or 1; (iii) χ is divisor-closed in the
sense that if χ(d) = 1 and t | d, then χ(t) = 1. Associate with χ its ‘complementary’
function χ̄(·) given by

χ̄(1) = 0, χ̄(d) = χ(d/p−(d))− χ(d) when d > 1, d | P .

Note that χ̄(d) also assumes only the values 0 or 1 and that χ̄(d) = 0 when χ(d) = 1.

Example. Let

χ(d) = χ(k)(d) =
{

1, ν(d) ≤ k,

0 otherwise.

Then

χ̄(k)(d) = 1 if and only if ν(d) = k + 1.

The identity we mentioned earlier first occurs in [HR], Chapter 2, §1, and is
sometimes referred to as the “fundamental sieve identity”; it asserts that

3



Lemma 2. For any divisor D of P and any arithmetic function h(·),

(7)
∑
d|D

h(d) =
∑
d|D

h(d)χ(d) +
∑
d|D

χ̄(d)
∑
t|D

p+(t)<p−(d)

h(dt)

(note that, in the second sum on the right, d > 1 may be assumed since χ̄(1) = 0).
In particular, if h is multiplicative,

(8)
∑
d|D

h(d) =
∑
d|D

h(d)χ(d) +
∑
d|D

h(d)χ̄(d)
∏
p|D

p<p−(d)

(1 + h(p)).

Before we prove the identity we shall illustrate it by taking h = µ. Since∏
p|D

p<p−(d)

(1 + µ(p)) =
{

1, p−(d) = p−(D),
0 otherwise,

we obtain

(9)
∑
d|D

µ(d) =
∑
d|D

µ(d)χ(d) +
∑
d|D

p−(d)=p−(D)

µ(d)χ̄(d),

and it follows in particular from the above example that∑
d|D

µ(d) =
∑
d|D

ν(d)≤k

µ(d) + (−1)k+1
∑
d|D

p−(d)=p−(D)
ν(d)=k+1

1,

so that (1) and (5) follow.

Proof of the Identity (from [DHR]). Suppose d > 1 is any divisor of D, and write

d = p1 · · · pm, p1 > p2 > · · · > pm.

Then

1− χ(d) =
m∑

i=1

(χ(p1 · · · pi−1)− χ(p1 · · · pi)) =
m∑

i=1

χ̄(p1 · · · pi)

=
∑

δ|d,δ>1

p+(d/δ)<p−(δ)

χ̄(δ),

and therefore∑
d|D

h(d)(1− χ(d)) =
∑
d|D
d>1

h(d)
∑

δ|d,δ>1

p+(d/δ)<p−(δ)

χ̄(δ) =
∑

δ|D,δ>1

χ̄(δ)
∑
δt|D

p+(t)<p−(δ)

h(δt)

=
∑

δ|D,δ>1

χ̄(δ)
∑
t|D

p+(t)<p−(δ)

h(δt).

This proves (7), and for multiplicative h (8) is obvious. �
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3. The main result

To progress beyond (3) and (6) we postulate some information about
|{a ∈ A : d | a}| when d | P ; and it is usual to assume that there exists a non-
negative multiplicative arithmetic function ω(·) such that the numbers

rd := |{a ∈ A : d | a}| − ω(d)
d

X

are in some sense remainders (note that r1 = |A| −X). Then, by (3),

(10) S(A,P) ≤ ΠX + R

where

(11) Π :=
r∏

j=1

( ∑
d|Pj

ν(d)≤kj

µ(d)
ω(d)

d

)
and R :=

∑
d1,... ,dr

dj |Pj ,ν(dj)≤kj

|rd1···dr
|;

and similarly (6) leads to

(12) S(A,P) ≥ Π
{

1−
r∑

`=1

( ∑
d|P`

ν(d)=k`+1

ω(d)
d

)
U−1

`

}
X −R−R′

where

U` :=
∑
d|P`

ν(d)≤k`

µ(d)
ω(d)

d
(` = 1, . . . , r)(13)

and

R′ :=
r∑

`=1

∑
d1,... ,dr

ν(dj)≤kj (j 6=`)
ν(d`)=k`+1

|rd1···dr
|.(14)

Write

Wj =
∑
d|Pj

µ(d)
ω(d)

d
=

∏
p∈Pj

(
1− ω(p)

p

)

and

W =
∑
d|P

µ(d)
ω(d)

d
=

∏
p∈P

(
1− ω(p)

p

)
= W1W2 · · ·Wr.
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We expect S(A,P) to be comparable (in some sense) with XW . Apply (8) with
D = Pj , h(d) = µ(d)ω(d)

d and χ = χ(kj) to deduce that

Wj =
∑
d|Pj

ν(d)≤kj

µ(d)
ω(d)

d
+ (−1)kj+1

∑
d|Pj

ν(d)=kj+1

ω(d)
d

∏
p∈Pj

p<p−(d)

(
1− ω(p)

p

)
,

whence, for each j = 1, . . . , r, since each kj is even, we have

(15) Uj −
∑
d|Pj

ν(d)=kj+1

ω(d)
d

≤ Wj ≤ Uj −Wj

∑
d|Pj

ν(d)=kj+1

ω(d)
d

.

Also

(16)
∑
d|Pj

ν(d)=kj+1

ω(d)
d

≤ 1
(kj + 1)!

( ∑
p∈Pj

ω(p)
p

)kj+1

,

and

(17)
∑
p∈Pj

ω(p)
p

≤
∑
p∈Pj

log
(

1− ω(p)
p

)−1

= log W−1
j =: Lj ,

say. Hence, by (11), (15) and (16),

(18) W ≤ Π ≤ W
r∏

j=1

(
1 +

L
kj+1
j

(kj + 1)!
eLj

)
≤ W expE

on writing

(19) E :=
r∑

j=1

L
kj+1
j

(kj + 1)!
eLj ;

and by (11) it follows that

(20) S(A,P) ≤ XW expE + R.

Next we turn to (12). By (15),

U−1
` ≤ W−1

` (1 + V`)−1, V` :=
∑
d|P`

ν(d)=k`+1

ω(d)
d

,
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so that, using (17) and (18),

S(A,P) ≥ {1− E′}XΠ−R−R′(21)

≥ {1− E′}XW −R−R′,

where

(22) E′ :=
r∑

j=1

eLj

1 + L
−1−kj

j (kj + 1)!
.

Since E′ < E we obtain the less precise but simpler bound

(23) S(A,P) ≥ {1− E}XW −R−R′.

To sum up:

Theorem. With E, E′, R and R′ as defined in (19), (22), (11) and (14), respec-
tively, we have

S(A,P) ≤ X
∏
p∈P

(
1− ω(p)

p

)
expE + R

and

S(A,P) ≥ (1− E′)X
∏
p∈P

(
1− ω(p)

p

)
−R−R′

≥ (1− E)X
∏
p∈P

(
1− ω(p)

p

)
−R−R′.

From now on take P to be a set of primes in the interval [2, z) and for each j = 1,
2, . . . , r let Pj = P ∩ [zj+1, zj) where

2 = zr+1 < zr < · · · < z1 = z.

For the moment we also assume, as is often the case, that

(23) |rd| ≤ ω(d), d|P.

Then ∑
d|Pj

ν(d)≤kj

ω(d) < z
kj

j

∑
d|Pj

ω(d)/d = z
kj

j

∏
p∈Pj

(
1 +

ω(p)
p

)
≤ z

kj

j W−1
j
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and hence, by (11),

R <

( r∏
j=1

z
kj

j

)
W−1.

Similarly,

R′ <

( r∏
j=1

z
kj

j

)
W−1

r∑
`=1

z`W`V` < z

( r∏
j=1

z
kj

j

)
W−1

r∑
`=1

Lk`+1
`

(k` + 1)!

< z

( r∏
j=1

z
kj

j

)
W−1E

by (16), (17) and (19). We conclude that

Corollary. With a partition of P of the kind described above, and assuming only
the condition (23), we have

S(A,P) ≤ XW{expE + η},(24)

where

η =
( r∏

j=1

z
kj

j

)
X−1W−2;

and that

S(A,P) ≥ XW

{
1− E′ − η − ηzE

}
.(25)

We also consider another type of bound on the remainders rd, by supposing that
|A| = π(Y ), the number of primes ≤ Y , and for each d|P , there are s(d) numbers
t1, . . . , ts(d) so that

|{a ∈ A : d|a}| =
s(d)∑
h=1

π(Y ; d, th),

where π(Y ; d, t) is the number of primes ≤ Y in the residue class t mod d. Here
ω(d) = ds(d)/φ(d) (in particular s(d) must be multiplicative) and

|rd| ≤
s(d)∑
h=1

∣∣∣∣π(Y ; d, th)− π(Y )
φ(d)

∣∣∣∣ .
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The quantities R and R′ are then bounded using the Bombieri-A.I. Vinogradov
Theorem. For every B > 0 there is a number A so that the following holds. If

r∏
j=1

z
kj

j ≤ Y 1/2(log Y )−A,

then R � Y (log Y )−B and thus

(26) S(A,P) ≤ XW expE + O(Y (log Y )−B),

and if

z
r∏

j=1

z
kj

j ≤ Y 1/2(log Y )−A,

then R + R′ � Y (log Y )−B and

(27) S(A,P) ≥ XW (1− E′)−O(Y (log Y )−B).

For an appropriate choice of B, R and R′ will be of smaller order than XW .

Remark. Michael Filaseta has pointed out to us that the Brun-Hooley sieve in
the above form may also be applied to a more general type of sieve. If A is any
finite set we may associate with each prime p ∈ P a subset Ap. All of the above
inequalities hold if we replace the quantity (a, P ) by∏

a∈Ap

p

throughout.

4. Applications

Inequalities (24)–(27) yield three kinds of results. We will concentrate on (24)
and (25) for now, as the same type of bounds also follow from (26) and (27) in a
similar fashion.

I. By (24),
S(A,P) � XW

provided only that E and η are bounded. This estimate has numerous applications
as an auxiliary counting device.

II. Inequality (25) is non-trivial only if

E′ + η + ηzE < 1,

for example, if E′ < 1 and ηzE = o(1) as X →∞. Then

S(A,P) > 0
9



tells us that there exists an element a of A all of whose prime factors from P are
large; and if P is carefully chosen it will follow that a has very few prime factors in
all. We shall give illustrations below.

III. Together, (24) and (25) yield

S(A,P) ∼ XW as X →∞,

provided that zη is bounded and E = o(1) as X → ∞. This is a result of ‘funda-
mental lemma’ type, and also has numerous applications.

We make all this clearer by choosing the sub-division points zj and postulating
some further information about the function ω. Let

(28) zr = log log X =: ξ

for short and

(29) log zj = K1−j log z (j = 1, . . . , r − 1)

where K > 1 is a constant to be chosen conveniently. Of course we regard X as
very large, and we determine r uniquely by

zK1−r

≤ ξ < zr−1 = zK2−r

,

so that, in particular,

(30)
1

log ξ
≤ Kr−1

log z
<

K

log ξ
.

We defer the choice of the even integers kj except that we put kr = ∞ always. This
is in order provided we estimate the magnitude of a divisor d of Pr by d < ξπ(ξ) < ξξ

in place of ξkr . As a consequence we have to modify the definition of η to

(31) η =
( r−1∏

j=1

z
kj

j

)
ξξX−1W−2,

and also note that, in the definitions (19) and (22) of E and E′, the summation
over j now runs from 1 to r − 1 only.

Next we impose on ω(·) the well-known Iwaniec condition:
(Ω) Suppose there exist positive constants κ and A such that

∏
y1≤p<y2

(
1− ω(p)

p

)−1

≤
(

log y2

log y1

)κ

exp
(

A

log y1

)
, 2 ≤ y1 < y2.
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Then

(32) W−1 ≤
(

log z

log 2

)κ

exp
(

A

log 2

)
= B(log z)κ, B =

exp(A/ log 2)
(log 2)κ

,

and, by (17),

Lj ≤ κ log
(

log zj

log zj+1

)
+

A

log zj+1
= κ log K +

AKj

log z
(1 ≤ j ≤ r − 1),

so that, by (30),

(33) Lj < κ log K +
AK

log ξ
=: L (1 ≤ j ≤ r − 1),

say.
Let us write

z = X1/u, u > 1;

then, by (31),

(34) η ≤ B2X
Γ
u−1(log X)2κ/u+log ξ, Γ :=

r−1∑
j=1

kj

Kj−1
.

Also, by (19)

(35) E < eL
r−1∑
j=1

Lkj+1

(kj + 1)!

and by (22)

(36) E′ < eL
r−1∑
j=1

1
1 + L−kj−1(kj + 1)!

.

We see from (34) that

(37) zη = o(1) as X →∞ if Γ + 1 < u.

Choosing the even integers k1 . . . , kr−1 depends on the kind of application one
has in mind. In categories I and III a reasonable all-purpose choice is

kj = b + 2(j − 1), j = 1, . . . , r − 1,
11



where b ≥ 2 is an even integer that remains at our disposal. Here

Γ =
r−2∑
i=0

b + 2i

Ki
<

bK

K − 1
+

2K

(K − 1)2
,

so that zη = o(1) if

u > 1 +
bK2 − (b− 2)K

(K − 1)2
;

also, by (35) (and bearing in mind an earlier remark)

E ≤ eL
r−1∑
j=1

Lb+1+2(j−1)

(b + 1 + 2(j − 1))!
= eL

r−2∑
i=0

Lb+1+2i

(b + 1 + 2i)!

≤ Lb+1

(b + 1)!
eL

∞∑
i=0

L2i

(2i)!
<

Lb+1

(b + 1)!
e2L <

(
eL

b + 1

)b+1

e2L.

By (33), L < 1.01κ log K if x is large enough. Taking K = e150/101 and b = 2 we
see that zη = o(1) as X →∞ if u > 4.35, and that

E <

(
1
2
κe1+κ

)3

.

This suffices for applications of type I.
For applications of type III we choose b large. For example, take K = 2 +

√
2

and
b = 2([ξ] + 1) > 2ξ,

so that zη = o(1) if u > 5ξ and

E <

(
1.69κ

ξ

)2ξ

e2.49κ → 0 as X →∞.

Notice that here we sieve only up to z = X
1

4 log log X , but obtain asymptotic equality
for S(A,P).

For applications of type II we have to proceed more carefully in order to arrive
at the best results of which the method is capable. Specifically, we have to choose
k1, . . . , kr−1 and K so as to minimize

(38) 1 + Γ = 1 +
r−1∑
j=1

kj

Kj−1

12



subject to

(39) eL
r−1∑
j=1

1
1 + (kj + 1)!L−1−kj

< 1.

The best procedure in this optimization exercise is, given a candidate K, to take as
many kj as possible to be 2 (as many as (39) allows), then take as many as possible
to be 4, etc. By (33), it is in order to take L = κ log K for purposes of numerical
computation, so that eL = Kκ. With a candidate K and

b(k) :=
Kκ

1 + (k + 1)!(κ log K)−k−1
,

the explicit procedure is to take the first n2 = b1/b(2)c kj ’s to be 2, the next n4 =
b(1− n2b(2))/b(4)c kj ’s to be 4, etc. In this way (35) remains true automatically
while the candidate K in conjunction with n2 twos, n4 fours, etc. determines 1+Γ.

The following example will serve as an illustration.
Example. Let A = {n2 + 1 : n ≤ x} and P = {2} ∪ {p < z : p ≡ 1 mod 4}.

Here X = x, ω(2) = 1, ω(p) = 2 when p ≡ 1 mod 4 (ω(p) = 0 otherwise), and

∏
y1≤p<y2

(
1− ω(p)

p

)−1

=
∏

y1≤p<y2
p≡1 (mod 4)

(
1− 2

p

)−1

, 2 < y1 < y2,

=
log y2

log y1

(
1 + O

(
1

log y1

))
.

Thus the Iwaniec condition (Ω) holds with κ = 1.
The best choice of K turns out to be 2.572, and one finds that n2 = 3, n4 = 3,

n6 = 3, n8 = 67, etc., and therefore 1 + Γ < 4.4766. Take u to be 4.48 and
z = x1/u = x1/4.48. We may conclude that A contains � x/ log x elements having
no prime factor < x

1
4.48 , and each of these elements obviously cannot have more

than 8 prime factors, or, as we say, is a P8.
The following table summarizes the best choices for κ = 1, 2, 3, 4, 5.

κ K u k1

1 2.57200 4.4766 2
2 1.54062 7.7441 2
3 1.28121 11.7710 2
4 1.41012 15.6685 4
5 1.31470 19.3749 4

The interested reader should be able to verify easily, using κ = 2, that the number
of prime twins not exceeding x is � x(log x)−2, and that there exist infinitely many
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integers such that each of n, n + 2 is the product of at most 7 prime factors. The
much more complicated Brun’s sieve gives nothing better.

Although dealing with a setA which is of the form {f(p) : p ≤ X, p prime}, where
f is a polynomial, requires an additional result (the Bombieri-A. I. Vinogradov
Theorem), it is still straightforward to obtain bounds in this case. For Type II
results, we note that (27) holds provided that u > 2(Γ + 1), where Γ is given by
(38) and we require (39) to hold. For example, if A = {p + 2 : p ≤ X, p prime}, so
that κ = 1, it follows that for infinitely many primes p, p + 2 is composed of prime
factors ≤ X1/8.96, which implies that p + 2 = P8.

We are indebted to the referee for several helpful remarks, and especially for
pointing out that the remainder sums R and R′ have, potentially, a highly flexible
structure – for example, we could leave R in the form∑

d1,... ,dr

dj |Pj ,ν(dj)≤kj

µ(d1) · · ·µ(dr)rd1···dr

– and that there are perhaps applications where this would be an advantage, for in-
stance if one were then able to use more recent and sharper versions of the Bombieri-
Vinogradov theorem. In the case of the prime twin conjecture, however, any such
refinement if deployed above would not improve on what can be accomplished by
the more sophisticated Rosser-Iwaniec sieve methods.

5. A dual of Hooley’s method

This method in the form of inequality (4) lends itself to a dual purpose. Rather
than aim for full generality here, consider the case of

A =
{ r∏

j=1

(ajn + bj) : n ≤ x

}
, r ≥ 2,

where the aj , bj are integers satisfying

r∏
j=1

aj

∏
1≤i<j≤r

(aibj − ajbi) 6= 0,

and the polynomial

F (n) :=
r∏

j=1

(ajn + bj)

has no fixed prime divisors. Let P be the set of all primes truncated at some z.
Obviously we are here addressing a generalized prime k-tuples conjecture, and the
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problem of estimating S(A,P) is of ‘dimension’ r, that is, has κ = r. However,
following the ‘vector’ sieve of Brüdern & Fouvry mentioned at the start, we have

∑
d|(F (n),P )

µ(d) =
r∏

j=1

∑
d|(ajn+bj ,P )

µ(d)

≤
r∏

j=1

∑
d|(ajn+bj ,P )

µ(d)χ+(d)

where χ+(d) characterizes the LINEAR upper Rosser-Iwaniec sieve; and, as in (4),

∑
d|(F (n),P )

µ(d) ≥
r∏

j=1

∑
d|(ajn+bj ,P )

µ(d)χ+(d)

−
r∑

`=1

( ∑
d|(a`n+b`,P )

p−(d)=p−((a`n+b`,P ))

χ̄+(d)
) r∏

j=1
j 6=`

( ∑
d|(ajn+bj ,P )

µ(d)χ+(d)
)

.

This seems to us superior to Lemma 13 of [BF1] or (2.6) of [BF2] in the treatment
of the ‘y` − x`’ terms, and should lead to better results.
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