MAXIMAL COLLECTIONS OF INTERSECTING
ARITHMETIC PROGRESSIONS

KEVIN FORD

ABSTRACT. Let N¢(k) be the maximum number of k-term arithmetic progressions
of real numbers, any two of which have ¢ points in common. We determine N2 (k) for
prime k and all large k, and give upper and lower bounds for N¢(k) when ¢ > 3.

Recent work by R. Howard, G. Kdrolyi and L. Székely [HKS] on the Erdés-
Ko-Rado intersection theorems ([EKR],[K],[W]) have led to consideration of the
following related problem:

For t > 2, what is the maximum number of distinct arithmetic progres-
sions of k real numbers, any pair of which have ¢ common members?

We will denote the maximum by N;(k). In this note we determine the exact value
of Ny(k) for large k and give some tools for bounding Ny (k) for ¢ > 3. For brevity,
we say a configuration of arithmetic progressions (APs) is t-intersecting if every
pair of APs have at least ¢ points in common.

By the difference of an AP we mean the common difference between consecutive
elements of the AP. We use (a, b) to denote the greatest common divisor of a and
b, the open interval (a,b), or the ordered pair (a,b), depending on the context.
Likewise [a, b] denotes the least common multiple of a and b, or the closed interval
[a, b]. The notation |z]| will denote the greatest integer < z.

For a configuration of k-term ¢-intersecting APs, let D = {di,...,d;} denote
the set of distinct differences that the arithmetic progressions (APs) have. For each
i let b; be the number of APs with difference d;. Clearly the ratios d;/d; must
be rational, thus we may assume without loss of generality that the progressions
consist of integers. We may also assume that the numbers d; have no common
prime factor. Since the APs of difference d; must intersect pairwise in at least ¢
elements, it follows that

(1.1) bi<k—t+1

for every i. Also, [d;,d;] is the distance between elements in the intersection of
an AP of difference d; and one of difference d;. Thus we must have [d;,d;] <

1991 Mathematics Subject Classification. Primary 05D05, 11B75 ,11B25 ; Secondary 11A05,
11N05, 11N37.
Research supported in part by NSF grant DMS-0070618.

Typeset by AMS-TEX



2 KEVIN FORD

d;(k —1)/(t — 1) for every i,j. In other words,

dj _k—1

(1.2) (divdy) ST—1

Vi, j.
By a theorem of Balasubramanian-Soundararajan [BS] (formerly a conjecture of R.
L. Graham [G]), | < (k—1)/(t — 1). It follows from (1.1) that

(1.3) Ny(k) < (k—t+1) {%J ,

which we refer to as the trivial upper bound.

In sections 2, 3 and 4 we work with the case t = 2, proving an exact formula for
Ny (k) that holds for all large k and “most” smaller k. Section 5 deals with the case
t > 3, and here we prove less precise bounds for N¢(k).

2. DETERMINING N3(k) WHEN k IS PRIME
We begin with an example of a large configuration of 2-intersecting APs.

Example 1. For 1 < i < j < k, let B;; be the AP whose ith element is 0 and
whose jth element is k!. This configuration of APs is clearly 2-intersecting, and
shows that

k(k —1)

(2.1) Na(k) 2 ——

This lower bound is roughly a factor 2 smaller than the trivial upper bound (1.1).

We shall show that in fact No(k) = 3k(k — 1) for all large k, as well as show
that all configurations of $k(k — 1) k-term 2-intersecting APs are equivalent to
the configuration in Example 1, i.e. they are equivalent modulo translations and
dilations.

We begin with a self-contained simple proof that N(k) = $k(k — 1) when k is
a prime. In particular, we do not require the theorem from [BS]. The proof of this
bound for general k requires the application of some powerful results, in particular
a strong form of the Balasubramanian-Soundararajan theorem and explicit bounds
for the number of primes in short intervals.

For each ¢, let D; be the set of the b; APs with difference d;, and let P; = Uaep, A.
In particular, P; is itself an AP of < 2k — ¢t numbers with difference d;. To simplify
the analysis, we shall suppose that

(2.2) by >by>--- > by

Our improvements to (1.1) all stem from an analysis of how the APs with two
distinct differences may be configured.

Lemma 2.1. For every i,j we have

d.
b; <2 (k— J )—1
(di’dj)
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Proof. Assume that d;/(d;,d;) = [d;,d;]/d; > k/2, else the lemma follows from
(1.1). Let y denote the least member of P;, and let S = P, N P;. Then S is
itself an AP with difference [d;,d;] and must contain 2 numbers in the interval
ly,y + (k — 1)d;]. Hence the smallest member z of S is < y + (k — 1)d; — [d;, d;]-
Each AP of difference d; contains two points of S and starts at one of the points
y+md;, 0 < m < k— 2. However, an AP of difference d; starting at one of the
points x + d;, ... ,x + mod; (mo = 2[d;, d;]/d; — k) only contains one point in S,
namely z + [d;, d;]. Thus

2d;
(di, dy)

bi<k—-1-mo=k—-1- +k. g

Remark. Lemma 2.1 is best possible, in the sense that for any two numbers
d;,d; with [d;,d;]/d; > k/2, there is a configuration of k-term 2-intersecting APs
with differences d;,d; and with b; = 2(k — d;/(d;,d;)) — 1. For example, take
the single AP of difference d; and starting at x = (k — 1)d; — [d;,d;], together
with the APs of difference d; starting at the points hd; for 0 < h < k — 2 and
hd; ¢{$+dl, ,.’13+m0d7;}.

Proposition A. If there are two points common to all APs € D; and the distance
between them is md;, then b; < k —m. This holds for any t > 2.

Proof. Let x be the smaller of the two common points. Each AP € D; must start
at one of the points z —rd;, 0 <r<k-m-—1. O

Lemma 2.2. For every pair i, j, either

d.
b <k— —1 b: <k—2
(di7 dj) o !

In particular, if d;/(d;,d;) > (k —1)/2, then

Proof. Let S = PN P; = {x1,...,2,}. Note that r > 2 and zp41 — 25 = [d;, d;]
for every h < r. Each AP € D; contains at least 2 numbers in S. If some AP € D;
contains exactly two numbers in S, say zp and xpy1, then every AP € D; must
contain these two points. Then Proposition A implies b; < k — d;/(d;, d;).

Next assume that r > 3 and every AP € D; contains at least 3 points in S. If
there are three points in S that are common to all APs € D;, then by Proposition
A, b; < k—2d;/(d;,d;). Otherwise r > 4 and the intersection of all AP € D;
contains w < 2 points in S. Thus, for some h there is an AP € D; containing
Zh,ZTh4+1 but not x4 and another AP € D; containing xp43_w, Thy2—w but not
Tht1—w (Here if m < 1 or m > r we define x,,, = 1 + (2 — 1) (m — 1)). Therefore
every AP € D; contains at least two points z, (¢ < h + 1) and two points z,
(9 = h+ 2 — w). In particular, every AP € D; contains zj and zp41, which gives
b; < k —d;/(d;,d;) by Proposition A. O

By combining Lemmas 2.1 and 2.2, we obtain a bound on b,, + b,, for any pair
m,n.
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Lemma 2.3. For every m,n we have
bm + bn < 2k - gm,n + max(O, k - gm,n - 1)7

where

d; + dj
Jm.n = mmax )
’ 1<i<n (diydj)
1<jsm

Proof. For some i < n, j < m we have g, , = €; + e, where

Let g = gmn and ¢ = 3k — b, —2g — 1. First, if e; > k — C"z'l, then Lemma 2.1
gives b; < c¢. Otherwise, suppose that e; > k — b,. By (2.2) and Lemma 2.1,
ej <k—3(bi+1) <k— (b, +1). Also by (2.2), b; > b, > k — ej, so Lemma 2.2
gives

bjék—2ei:k—2(g—ej)
<3k —-29g—-b,—1=c.

Finally, if e; < k — <t and e; < k — by, we have

bi > b, =3k—-29—c—1>k—2g+2e =k — 2ej,
whence by Lemma 2.2
bj<k—e=k—g+e; <2k—g— by
Therefore,
b, < bj < max(c,2k — g — by),

and the lemma follows. O

Lemma 2.4. Ifp > k is a prime and m + n > p, then

bm + b, < 2k — p.

Proof. By Lemma 2.3, it suffices to show that g, , > p. Without loss of generality,
assume ged(dy, da, . . . , dmax(m,n)) = 1. For brevity, let ¢; ; = d;/(d;, d;) for each 4, j.
If p|d; for some i < max(m,n), then p{d; for some j < max(m,n) and then ¢; ; >
p > k, contradicting (1.2). Thus, two of the numbers dy,...,dn, —d1,...,—dn
are congruent modulo p (and not congruent to 0). If d; and d; are congruent,
then |¢; ; — ¢ji| = p > k, which implies that ¢; ; > k or ¢;; > k, which is again
impossible. Therefore, d; and —d; are congruent for some i < n and j < m. It
follows that Cij + Cji = P- O
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Theorem 1. If k is prime, then No(k) = $k(k — 1).

Proof. The cases k = 2 and k = 3 are trivial. Suppose k£ = p > 5. First suppose
that I < k/2. By Lemma 2.2, at most one of the numbers b; can equal k — 1, so
that

N := Zb (k/2)(k —2)+1<%k(k—1).

Next, suppose [ > k/2. By Lemma 2.4, we have

by +bg—m <2k—p=k (k—1<m<l).
We next show that
(2.3) I<k—1.

First, if p|d; for some i, then p { d; for some j and then d;/(d;,d;) > p = k, which
contradicts (1.2). Likewise, if d; = d; (mod p), then
i d
(di;dj)  (di, dj)

Z p,

which implies one of the quotients is > p, again a contradiction. Thus the numbers
d; are distinct modulo p and not divisible by p, which proves (2.3). Applying (2.3)
and the trivial bound (1.1) for b, (m < p — 1), we obtain

N<(k—p/2)2l—p+1)+(p—1-1)(k—-1)

1 1
Combined with the lower bound (2.1), the theorem is established. [

3. THE THEOREM FOR GENERAL k

We first state several results related to Graham’s Conjecture that we shall re-

quire. For a set A = {aq,...,a,} of positive integers, we define
L L L
A* = {—,—,... ,—}, L =lcmlaq, as,. .. ,ay],
a; a9 (47%

which refer to as the dual of A.

Lemma 3.1 (Balasubramanian-Soundararajan). If A = {ay,...,a,} is a set
of positive integers, then for some i,j we have

a;

(ai7 aj)

= n.

Furthermore, if n > 5, (a1,... ,an) =1 and a;/(a;,a;) < n for all i,j, then either
A={1,...,n} or A*={1,...,n}.

Remarks. This theorem was a conjecture of R. L. Graham [G] and had been
previously been proved for all large n independently by Szegedy [Sz] and Zaharescu
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[Z]. Tt follows immediately from (1.2) that | < k — 1, where [ is the number of
distinct differences of the APs in the configuration.

From now on, we suppose that ged(a : a € A) = 1. For brevity, we define G(A)
to be the maximum of a/(a, a’) over all pairs of elements a, a’ belonging to a set A.
We let f(IN) be the largest number f so that the following holds:

For every set of positive integers A with |[A| = M, N — f < M < N and
G(A) < N, either A or A* is contained in {1,2,... ,N}.

Borrowing ideas from [BS], we will prove the following in section 4.

Lemma 3.2. If N > e'0000 ¢pepn

0.156N
N)> .
f(N) og® N

Remarks. In [BS], the authors claim that their methods yield

S cN
~ log Nloglog N

f(N)

for some positive constant ¢, but this appears to be too optimistic. In a separate
paper [F] we will show that the methods of [BS] can be used to prove that

cN loglog N

J(N) 2 10g2 N

We also have need of upper bounds on the gaps between consecutive primes.
We use explicit bounds for the error term in the Prime Number Theorem given by
Rosser and Schoenfeld (Theorem 11 of [S], see also [RS]).

Lemma 3.3. Let 0(z) = Zpgm logp, the sum being over primes p. For x > 101,

0(z) —z| < e(z)r, e(z)= 0.21962(log33)1/46_0'321979@.

Lemma 3.4. For k > e'%% there is a prime in the interval [k, k + a], where

a = 0.44k(log k)1/4e—0.321979\/m.

Proof. For x > €199 ¢(z) < 0.001, so by Lemma 3.3 we have
0(xz +2.003ze(z)) — 0(z) > (z + 2.003ze(z))(1 —e(x)) — z(1 +e(x))

= 2 (0.003e(z) — 2.003¢*(z)) > 0. O

The last tool we need is a method of bounding b; non-trivially when Lemma 2.4
does not apply.
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Lemma 3.5. When k > 10 and 1 < h <1 we have

h h2
Zbigmin<kh—2h+1,kh— )
pt 2logk

Proof. The bound kh —2h + 1 follows for all h since at most one of the b; can equal
k — 1 (from Lemma 2.2). When h < 2.5logk, 2h > h%/(2logk), so the second
bound follows as well. Next, suppose h > 2.5logk. The numbers d; all lie in some
interval of the form [B, (k — 1) B], since otherwise there would be two of them with
di/(d;,dj) > d;/d; > k — 1. If I is a collection of m indices with m > 3 logk, then
by Dirichlet’s box principle, there are two indices 7, € I such that

i |
1<d_<k1/m<1+Lk
d; m——logk

Therefore,

log k log k
(didy) < ds — dj < dj——2 di—%
m — 5 logk m——logk

By Lemma 2.2 it follows that

m 1
in(b;, b;) < k — —
min(b;, b;) log k
Applying this argument successively with m = h,m = h—1,..., we find a sequence

of indices {i, : %logk < m < h} such that for every m, i, < h and

m 1
L <k — .
bim S K Logk * 2J

Now write s = |h/log k+0.5] and note that log k is irrational. Thus, since b; = k—1
for at most one 1,

1
S b <kh—2(25logk] +1- 3 LorngriJ

i<h 2.5log k<m<h

=kh—2|2.5logk] +1— Z r([(r—l— Nlogk] — |[(r — %)logk])

3<r<s—1
—s(h—[(s = 3)logk])
=kh—sh+1+ Z |(r+ 1) logk|
2<r<s—1
s—1
<kh—sh+1+ (logk)» (r+1/2)

r=2
2

15
gkh—glogk-i-l— O

2logk’
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Theorem 2. For each k let a(k) = p — k where p is the smallest prime > k. If
k > 26 and

(3.1) min(f(k — 1) +2,7(k — 1) — m(2k/3) + 1) > 2a(k)logk,

the following holds: No(k) = @ and any configuration of @ 2-intersecting
k-term APs is equivalent to the configuration in FExample 1. Here (x) denotes the
number of primes < x.

Proof. Let N = > b;, let p be the smallest prime > k and a = p — k. By Lemma
3.1, 1 < k— 1. By Theorems 1 and 2 of [RS], we have

T T 3z
2 —_ .
(32) logz —1/2 <) < logm+210g2a: (= > 67)
Therefore, for £ > 400 we have
k 3 2/3 log k k
k—1)—m(2k/3 1 - .
m(k — 1) - m(2k/3) + lgk( T ologk  logk—09 "k >< 2log

By a short computation, 7(k — 1) — 7(2k/3) + 1 < k/(2logk) for 26 < k < 399,
and therefore the hypothesis implies a < ﬁ. Hence, if | < p/2 then Lemma 3.5

gives
l2

N < kl —
2logk
1 ak (k+a-1)?% k(k—-1)
< Sk(k — = .
\Qk(k 1)+ 2 8logk < 2

Next assume [ > p/2. For p —1 < m < [, Lemma 2.4 gives by, + bp_m < 2k —p,
hence

!
2 ) b <(2k—p)2—p+1).
m=p—I

Applying Lemma 3.5 to bound by + --- + by_;_1, we deduce that

N < (@k-p)- -1/ +kp—1-1) - LoD
_k(k-1) a’—a (k—1+a-1)2
== tg taelk-D- 21og k

Ifa=0and! < k—2 we obtain N < 3k(k—1). Likewise, ifa > 1and ! < k—2alogk,

then
k(k—1) a%*—a k—1+42a—2
N < — —
< + + (k—1) (a Slogk >

k(k—1)
2
< 5 2(a a) < 5

Lastly, we have to consider the two cases a =0,/ =k —1and l > k — 2alogk. For
the first case, Lemma 3.1 implies that either the set D = {d;,... ,d;} or D* is equal
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to {1,2,...,k — 1}. Furthermore, by (3.2) and a short computation, when k > 26
there is at least one prime in (2k/3, £ —1] and at least two primes in (k/2, k—1]. In
the second case, by hypothesis and the fact that =(2k/3) > n(k/2) + 1 for k > 17
(by (3.2) and a short computation), we have
(3.3) [ID|=1>k—1—min(f(k—1),m(k—1)—n(2k/3)—1,m(k—1) —7m(k/2)—2).
Since G(D) < k — 1, by the definition of f(k — 1), either D or D* is a subset of
{1,2,...,k — 1}. Furthermore, (3.3) also implies that D (or D*, as appropriate)
contains at least one prime in (2k/3, k — 1] and two primes in (k/2,k — 1].
Suppose first that D is a subset of {1,2,... ,k —1}. Suppose that d; = p where
p is a prime > 2k/3. For i # j, (d;,d;) = 1 so by Lemma 2.2 b; < k — d;, whence
d; < k—bjforalli#j. Ifd; > %(k—bj), Lemma 2.2 implies b; < k—dj =k —p <
k/3. If d; < 3(k—b;) then Lemma 2.1 gives b; < 2(k—p)—1 < 2k/3—1. Therefore

k—b; (2k—4 k—b: (k-1
N < J J b
2 ( 3 >+ 2 (3 )“

_ Rk, (10 B _k(k—1)
2 6 T\6 2 2

In the case that D* is a subset of {1,2,... ,k—1}, D* contains two primes p, g larger
than k/2. Let L be the least common multiple of the numbers d;, and suppose that
d; = L/p. For every i # j, we have p|d;, thus
di d;
dindy) 7 (dindy)
Lemma 2.2 implies that b; < k — L/d;. Likewise, if dp, = L/q then b; < k — L/d;.
Thus

= L/d;.

l l
N<Y (k—L/d) <lk=Y i=1(k—(I+1)/2) <k(k-1)/2.
i=1 i=1
Furthermore, N = %k(k — 1) precisely when | = k — 1, D* ={1,2,... ,k — 1} and
b; = k — i for each i. In particular, there are £k — 1 APs of difference L, with just
two numbers, say 0 and L, which are common to all of them. One of the APs, A4,
contains 0 and L but not 2L, while another, Ay, contains 0 and L but not —L.
Every AP with difference d; # L must have two points in common with each of
A1, As. Since d;|L, it follows that the AP must contain both 0 and L. Since every
AP contains both 0 and L, it follows immediately that the configuration of APs is
equivalent to Example 1. [

Theorem 3. The conclusion of Theorem 2 holds for k > 108000,

Proof. By (3.2), m(k — 1) — w(2k/3) + 1 > k/(4logk). For k > 108000 > 18420
Lemmas 3.2 and 3.4 imply
. —1)+2
a(k) < 0.44k(log k)1/4e_0'321979‘/m < 0 Oi3k < flk—1)+ .
l()g k 210gk
Therefore (3.1) holds for such k¥ and the conclusion of Theorem 2 follows. [

In [F] much better lower bounds are proven for f(k), but these are still insufficient
to prove (3.1) for all k£ (or even k > 10'°%). The barrier is our lack of adequate
bounds for primes in short intervals (e.g. [z, z + x/(61og® z)]) in the range % <
2 < 9000,
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4. A LOWER BOUND FOR f(N)

In this section we prove Lemma 3.2. By much longer arguments we can improve
the bounds roughly by a factor of log N ([F]). Our first lemma is a variant of a
lemma proved independently by Boyle [B] and Szegedy [Sz].

Lemma 4.1. Suppose |A| =M, M < N <2(M —2) and G(A) < N. If some but
not all elements of A are divisible by a prime q > N/2, then eitherq € A, A C [1, N]
or q € A*, A* C [1,N].

Proof. Without loss of generality, suppose ¢ divides a1, ... ,as and does not divide
Usi1,---,ap. We may also assume that 1 < s < M/2, else replace A with A*.
First, we have ¢ < N, else a1/(a1,apm) = g > N, contradicting our hypothesis.
Next, for 1 <i<'s, s+ 1< j <M we have (a;/q)|a;, for otherwise

a; a;/q

=q > 2q > N,
(ai, aj) (ai/q, aj)
which is impossible. Let b; = a;/q for i < s and set B = lem[by, ... ,bs]. Also let
C = ged(asy1, ... ,ap). Then it follows that B|C. Next define indices k and ¢ by
B B ag a;
= max — = max —

b ibT C 5O
As the numbers B/b; are distinct positive integers, B/by, > s. Likewise a;/C >
M — s. It follows that

Qg Qg Qg Qg BC C
N> = =—=———=2>3s(M-3s)=.
(at,ar)  (ag,by) by Cbp B ( )
Since C/B > 1, this forces s = 1. Thus B|a; for all 1 < i < M, which forces B =1
and hence ¢' = 1. It follows that a; = ¢q and for j > 2, a; = < N, as
required. [J
The example A={a < N:(6,N)>1}U{6 |N/3]|} shows that f(N) < N/3—-1
for N > 5. From now on, we assume that |A| = M with M > 2N/3+ 1. In
particular, when N > 7, 2(M — 2) > N.
We need to introduce some of the notation from [BS]. Suppose A = {a1,... ,apm}-
If p is a prime in (1.5N,2N) and p — N < m < N, define

a;
(ajva‘l)

rp(m) = |4 pairs (a4, a4) : a; < a; R R m
D =3P iy Aj i g5 (ai;aj) =m, (ai,aj) =D .

Lemma 4.2. If N > 7, G(A) < N and |A| = M, then for each prime p € (N,2N)

we have
Z (rp(m)—1)> Z 1—(N—-M).
2 <mg 2 Sm <N

p(m)2 »(m)=0

Proof. We first claim that the numbers in A are all coprime to p and incongruent
modulo p. If pla;, then p { a; for some j, whence a;/(a;,a;) > p > N, a con-
tradiction. Similarly, if a; = aj(mod p), a; > a;, and neither is divisible by p,
then a0 s
- - J 2 p > Na
(ai;a;)  (ai,a;)
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which also contradicts G(A) < N. This proves the claim. Since there are p%l

quadratic residues modulo p, by the box principle there are > M — ”2;1 dist_li_nct
a;+a;
(ai,a;)°

But 2% < 9N < 2p, so 21% — p_ Thus the pair is counted once in 7, (m) with

(aisa ) . (aiaj)
m = a;/(a;,a;). This means

pairs (a;,a;) with a; < a; and a? = a? (mod p). Since a; # a; (mod p), p|

and the lemma follows. O

If G(A) < N, 3N/2 < p < 2N, |A] = M and neither A nor A* lies in
{1,2,..., N}, Lemma 4.1 implies that r,(m) = 0 whenever m is prime or p —m is
prime. By Lemma 4.2, for each prime p € (1.5N,2N) we have

(4.1) S (rp(m) — 1) 2 w(N) — 7(p— N) — (N — M).

2l <mgN
Tp(m)>2

From Lemmas 2.3-2.5 of [BS], it follows that

(4.2) rp(m) < (K(m) + 1)(K(p —m) + 1),
where
(4.3) K(m)=Kn(m)= |{ablm:1 <b/a < N/m}|.

Actually in [BS] a stronger bound is proved, but (4.2) suffices for our purposes.
Putting these tools together gives

Lemma 4.3. Let & be a subset of the primes in (1.5N,2N). Then

FN) = —14— 3 [2(V) = w(p— N) — (K (m) + 1)(K(p—m) +1) - 1)
L@| pER L amgN

Proof. Suppose |A| = M, G(A) < N and neither A nor A* lies in {1,...,N}. By
(4.1) and (4.2) we obtain

N-Mzn(N)-n(p—-N)- (K(m)+1)(K(p—m)+1)—1)

for each p € &. Averaging over p € & gives the result. [J
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Lemma 4.4. If6N?%/3 < A< N/5, then

2log N
> Km < gt
N-A<mLEN (N =A)

Proof. The left side counts the number of triples (a, b, ¢) with
b
N — A < abec < N, 1<

This implies

N-XA_ _N N A
<_7 2__1247 b< 1 ) =
a SESp a2y L+ B, B=5_>

We divide the triples into two classes. Let T} be the number of triples with a <

N'/3_1 and T, be the number of remaining triples. For each pair (a,b), the number
of ¢ is at most

N N—)\+ N (1 1
b2 ab b

~ o b a(i+h)

The function on the right is a decreasing function of b and is positive for b < (1+/)a,
SO

@ N N — )
T1<21+Z/0 (a—l—t)2_a(a+t)dt
=21 g H(E - - w4 9)

N2/3 2 1
< p + A <§logN—log3).

To bound T5, note that ¢ < N/b®> < N3, For each ¢, both a and b lie in
[1\\;—)‘ \/—] and the number of pairs (a,b) is therefore at most

LA A
2 \ Nc vV Nec )

Summing on ¢ and using

1 T odt
<l 0.58, Ly
Zn ogzx + Z\/_ / \/Z< N

n<e n<T
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gives

A2 (1 A 1
<— (= +0. + /6y,
T5 < 9N < logN +0 58) 2\/_(2N )

3
Applying the hypotheses on A, we obtain

2/3 2
T 4T, < 3N >< A% log N

2
2 log N — 0.51 < .
(3 g N =051+ =3 3(N = \)

2(N — )

To prove Lemma 3.2, take &2 = &g, the set of primes in 2N —2B,2N — B for
some parameter B < N/4. By Lemma 3.3,

O(N)—6(N — B)
log N

— 2Ne(N/2)
log N '

B
> | P3|

Also, since the right side of (4.2) is invariant if m is replaced by p — m, we have

Y (K4 DE@-m)+ ) - =7 S (Km)K(p—m)+2K(m)

PEPB PEPB
pHL<mgN p—NLmN
2
1
<zl X Km) +losl > Km).

N—2B<m<N N—2B<mgN

For simplicity, we have essentially ignored the fact that p is prime in the sum over
K(m)K (p — m). Therefore, if 3N?/3 < B < N/10, Lemmas 4.3 and 4.4 give

8B*log’ N

B —2Ne(N/2) 4B%logN -1
9(N — 2B’

> — _ _
f(N) 2 -1+ log N 3(N — 2B) s

Also from Lemma 3.3 we obtain

B — 4N¢(N)

Pp| >
75| log2N

Now suppose that N > €999 Then ¢(N) < €(N/2) < 0.023(log N)~3. We take
B = 0.29N (log N)~2 and readily obtain

0.289984N  0.112133N  0.021681N
log® N log® N log® N
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5. THE BOUNDS WHEN t > 3

We begin with an example of a large configuration of ¢-intersecting APs, which
is a generalization of Example 1.

Example 2. For 1 <4 < j < kand (t—1)|(j —1), let B;; denote the AP whose ith

element is 0 and whose jth element is (¢ — 1)k!. Writing 0 = ;£ — | £, we have
k—t+1 . 2
k—i| K —@-Dk t—1 ,
1 Ny (k) > _ _02).
(5.1 N I e R R (B

i=1
Conjecture. For every k,

k2—(t—1)k+t—1
2t — 2 2

Ny (k) = (6 -6,
and every configuration of Ny(k) t-intersecting APs is equivalent to the configuration
in Example 2.

In short, the conjectured upper bound for Ny(k) occurs with a configuration of
APs with t points common to all of them. Unfortunately we cannot prove this for
any t > 3, even for sufficiently large k. However, we can improve on the trivial
bound (1.3) by means of analogs of Lemmas 2.1 and 2.2.

We adopt the notation of sections 1 and 2 and suppose that

by =--- 2 b

The next two lemmas are direct analogs of Lemmas 2.1 and 2.2. It is primarily
the weakness of Lemma 5.1, which is non-trivial only when d;/(d;, d;) > k/t, that
prevents us from proving the Conjecture.

Lemma 5.1. Fort > 2 and every i,j we have

Proof. Assume that d;/(d;,d;) > k/t, else the lemma follows from (1.1). Denote
by y the smallest member of P; and let S = P, N P;. S is itself an AP with
difference [d;, d;] and must contain ¢ numbers in [y,y + (kK — 1)d;], so the smallest
member z of S'is <y + (k —1)d; — (¢t — 1)[d;, d;]. By (1.1), each AP of difference
d; contains t points of S and starts at one of the points y + md;, 0 < m < k — 1.
However, an AP of difference d; starting at one of the points z + h[d;, d;] + md;,
(0 < h < t— 2,1 < m < tdj/(di,dj) — k, T+ h[dl,dj] +md7; S y+ (k — t)dl) OIlly
contain ¢t — 1 points in S. By (1.2), md; < [d;,d;] — d;, so these starting points are
distinct. The number of these starting points is

> E-1) (%dfjéj) - ’“) “e2
thus bkt [(t—l) <t(di0’ljdj)_k>_(t_2)}. O
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Lemma 5.2. Supposet > 2. For every pairi,j, either

dj di
or b: <k-—t
(di, dj) ’

In particular, if d;/(d;,d;) > (k—1)/t, then

by <k—(t—1)

dj
(di,dj)

b <k—(t—1)

Proof. Let S = P;,N P; = {z1,...,z,}. Note that r > t and zp4+1 — 2, = [d;, d;]
for every h < r. Each AP € D, contains at least ¢ numbers in S. If some AP € D;
contains exactly ¢ numbers in S, say xp,...,Tptt—1, then every AP € D; must
contain these ¢ points. By Proposition A, b; < k — (¢t — 1)d;/(d;,d;). Next assume
that r > ¢t + 1 and every AP € D; contains at least ¢ + 1 points in S. If there are
t+1 points in S that are common to all AP € D;, then by Proposition A, b; < k —
td;/(d;,d;). Otherwise r > t+2 and the intersection of all AP € D; contains w <t
points in S. Thus, for some h there is an AP € D; containing xp, ..., Zp4¢—1 but
not xp4++ and another AP € D; containing Tn49t—1—w, - - - Thot—w DU DO Thp1_4p.
Therefore every AP € D; contains at least ¢ points z, (¢ < h+¢ — 1) and ¢ points
zg (9 > h+t —w). In particular, every AP € D; contains z; and zp4¢—1, which
gives b; < k — (t — 1)d;/(d;, d;) as before. O

There is, unfortunately, no direct analog of Lemma 2.3. Lemmas 5.1 and 5.2
together do, however, provide significant improvements over the trivial bounds
(1.3).

Theorem 4. Suppose t > 3. We have Ny(k) < (A + 0o(1))k? as k — oo, where

32 —2t+1
42t —1)

t =

Proof. Suppose 1 <m <1< % and define p,,, to be the largest prime < 2m. For
each 4, let e; ; = d;/(d;,d;). Suppose m is such that p,, > k/t, i.e. k/t < pp <
2k=2 et

t—1 °

t—1 2t — 1

c=max | k —
(k=S 5

and note that 1 <c < k. Ife; ; > t_il — ﬁ for some ¢ < m, 7 < m, then Lemma
5.1 gives b; < c. Otherwise for all ¢ < m, j < m we have
k c t—1 Pm

e i < — < k+—7 < .
YT r—1 tt-1) T t2 T SPm

Since 2m > p,,, the proof of Lemma 2.4 implies that for some i < m, 7 < m we
have e; ; + €;; = pm- Assume without loss of generality that e; ; > e;;. Lemma
5.2 implies that either

t—1
bjgk—(t—l)ei,j<k—7pm<c
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or

2t—1
bigk—tej,i:k—pmt+tei,j< ﬁk_pmt_

¢ <e
t—1

In all cases by, < min(b;, b;) < ¢, provided that p,, > k/t. Since p,, = 2m — o(m),
we have

l

dobm< Y (k—¥pm>+ > (mt;lk—pm(t—l))—i- ok

m=1 m<l k/t<pm <2k/t Pm<k/t
P 22k /t
1 t+1 1
< — 1) | k2 1) | k2 — 1) | k2
(2t2(t—1) + o )) k* 4+ ( 12 + of )) k* 4+ <2t+o( )) k
= (A; +o(1))k2 O

Remarks. The o(1) can be removed with Lemmas 3.2 and 3.5 as in the proof
of Theorem 2. Furthermore, by Lemma 3.2, it can easily be shown that ) b; is at

most the conjectured bound when [ > % —f (%)

Thanks. The author thanks Laszlo Székely for posing the problem of bounding
N¢(k) and for helpful discussions, and thanks the referees for careful reading of the
paper and pointing out several misprints in the original version.
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