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Abstract. We say that permutations π1, . . . , πr ∈ Sn invariably generate Sn if, no matter
how one chooses conjugates π′

1
, . . . , π′

r
of these permutations, π′

1
, . . . , π′

r
generate Sn. We

show that if π1, π2, π3 are chosen randomly from Sn then, with probability tending to 1 as
n → ∞, they do not invariably generate Sn. By contrast it was shown recently by Pemantle,
Peres and Rivin that four random elements do invariably generate Sn with probability
bounded away from zero. We include a proof of this statement which, while sharing many
features with their argument, is short and completely combinatorial.

1. Introduction

Albeit by Dixon’s theorem [3] two random elements π1, π2 of the symmetric group Sn

generate at least the whole alternating group An with high probability1 as n → ∞, it is less
clear how large the group generated by π′

1, π
′
2 must be when π′

1 and π′
2 are allowed to be

arbitrary conjugates of π1 and π2. Following Dixon [4] we say that a list π1, . . . , πr ∈ Sn

has a property P invariably if π′
1, . . . , π

′
r has property P whenever π′

i is conjugate to πi for
every i. How many random elements of Sn must we take before we expect them to invariably
generate Sn?

Several authors [2, 4, 7, 9, 11, 12] have already considered this question, owing to its
connection with computational Galois theory. To briefly explain this connection, suppose
we are given a polynomial f ∈ Z[x] of degree n with no repeated factors. Information about
the Galois group can be gained by reducing f modulo various primes p and factorizing the
reduced polynomial f̄ over Z/pZ. By classical Galois theory, if f̄ has irreducible factors of
degrees n1, . . . , nr then the Galois group G of f over Q has an element with cycle lengths
n1, . . . , nr. Moreover by Frobenius’s density theorem, if G = Sn then the frequency with
which a given cycle type arises is equal to the proportion of elements in Sn with that cycle
type. Thus if we suspect that G = Sn then the number of times we expect to have to iterate
this procedure before proving that G = Sn is controlled by the expected number of random
elements required to invariably generate Sn.

BG is supported by ERC Starting Grant 279438 “Approximate Algebraic Structure” and a Simons Investi-
gator Grant.
KF is supported by National Science Foundation grants DMS-1201442 and DMS-1501982.
1We adopt the convention that for a sequence of events En in finite probability spaces depending on some
parameter n, “En occurs with high probability” means with P(En) → 1 as n → ∞.
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 Luczak and Pyber [9] were the first to prove the existence of a constant C such that
C random permutations π1, . . . , πC ∈ Sn invariably generate Sn with probability bounded
away from zero. Their method does not directly yield a reasonable value of C, but recently
Pemantle, Peres, and Rivin [12] proved that we may take C = 4.

Theorem 1.1 (Pemantle–Peres–Rivin [12]). If π1, π2, π3, π4 ∈ Sn are chosen uniformly at

random then the probability that π1, π2, π3, π4 invariably generate Sn is bounded away from

zero.

Incidentally, Pemantle, Peres, and Rivin only prove that π1, π2, π3, π4 invariably generate
a transitive subgroup of Sn, but it is little more work to prove the theorem as stated above.
We give a somewhat simplified proof of this theorem in Section 2. Our main contribution
however is the lower bound C > 3, which will be proved in Section 3. Thus C can be taken
as small as 4, but no smaller.

Theorem 1.2. If π1, π2, π3 ∈ Sn are chosen uniformly at random then the probability that

π1, π2, π3 invariably generate a transitive subgroup (or, in particular, all of Sn) tends to zero

as n → ∞. Equivalently, with probability tending to 1 there is a positive integer k < n such

that π1, π2, π3 each have a fixed set of size k.

As in our recent paper [5], our main tool is the following model for the small-cycle structure
of a random permutation; see for example Arratia and Tavaré [1].

Lemma 1.3. Let X = (X1, X2, . . . ) be a sequence of independent Poisson random variables,

where Xj has parameter 1/j. If cj is the number of cycles of length j in a random permutation

π ∈ Sn, then if k is fixed and n → ∞ the distribution of (c1, . . . , ck) converges to that of

(X1, . . . , Xk).

The set of fixed-set sizes of a random permutation is thus modeled by the random sumset

L (X) =

{

∑

j>1

jxj : 0 6 xj 6 Xj

}

. (1.1)

Thus unsurprisingly the main task in proving Theorem 1.1 is to show that

P
(

L (X) ∩ L (X′) ∩ L (X′′) ∩ L (X′′′) = {0}
)

> 0, (1.2)

where X′,X′′,X′′′ are independent copies of X. Similarly, Theorem 1.2 follows almost im-
mediately from

P
(

L (X) ∩ L (X′) ∩ L (X′′) = {0}
)

= 0. (1.3)

Ultimately, these assertions come down to the inequalities log 2 < 3
4

and 2
3
< log 2 respec-

tively, as we shall see in the course of the proofs.

These questions about permutations have analogues in number theory. Our proof of
Theorem 1.2 is modeled after that of the well-known theorem of Maier and Tenenbaum [10]
on the propinquity of divisors : a random integer n (selected from {1, . . . , x} for large x) has
two distinct divisors d, d′ with d < d′ 6 2d with high probability (as x → ∞). In particular,
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we make heavy use of Riesz products, a device closely related to the sums
∑

d|n d
iθ that one

sees frequently in the propinquity literature.

The Maier–Tenenbaum theorem itself corresponds more perfectly with the assertion that
with high probability a random permutation π has, for some k with 0 < k < n, two different
fixed sets of size k (a true statement, but not one we establish here).

The number-theoretic analogue of Theorem 1.1 is a statement of the following kind:
if x is large and if we select four random integers n1, n2, n3, n4 independently at random
from {1, . . . , x} then, with probability bounded below by an absolute constant, any divisors
d1|n1, d2|n2, d3|n3, d4|n4 should have max di > 2 min di.

The number-theoretic analogue of Theorem 1.2 is a statement of the following kind: if
x is large and if we select three random integers n1, n2, n3 independently at random from
{1, . . . , x} then, with probability tending to 1 as x → ∞, there exist divisors d1|n1, d2|n2, d3|n3

with max di < 2 min di.

Both of these number-theoretical statements were established nearly 20 years ago by Raouj
and Stef [13]. In fact, rather more precise statements are established in that paper. We thank
Gérald Tenenbaum for bringing this paper to our attention.

The analogous problem of determining the expected number of random elements required
to invariable generatean arbitrary finite group has been considered in several recent papers
[6, 7, 8].

Notation. Throughout we use standard O(·) and o(·) notation, as well as the Vinogradov
notation X ≪ Y to mean X = O(Y ).

2. Four generators are enough

The principal result needed for the proof of Theorem 1.1 is the following proposition.

Proposition 2.1. The following is true uniformly for integers k, n with 1 6 k 6 n/2. If

π1, π2, π3, π4 ∈ Sn are chosen uniformly at random, then the probability that there is some

ℓ ∈ (k/2, k] such that π1, π2, π3, π4 each fix a set of size ℓ is O(k−c) for some c > 0.

We begin with a tool for counting permutations with a given number of cycles of length at
most k. By the Poisson model mentioned in the Introduction (Lemma 1.3), if k is fixed and
n → ∞, this statistic has distribution approaching that of X1 + · · ·+Xk, a Poisson variable
with parameter hk = 1 + 1

2
+ · · · + 1

k
. The next result tells us that the distribution is still

approximately Poisson uniformly over all choices of parameters k and n.

Lemma 2.2. Let n, k, ℓ be integers with n > k > 1 and ℓ > 0. Select π ∈ Sn at random.

Then

P(π has exactly ℓ cycles with length 6 k) 6
e

k

(1 + log k)ℓ

ℓ!

(

1 +
ℓ

1 + log k

)

.
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In particular if ℓ ≪ log k then this is O
(

(1 + log k)ℓ/kℓ!
)

, while if ℓ ≫ log k then this is

O
(

(1 + log k)ℓ−1/k(ℓ− 1)!
)

.

Proof. Denote by Sn(k, ℓ) the set of π ∈ Sn containing exactly ℓ cycles of length at most k.
Evidently

n|Sn(k, ℓ)| =
∑

π∈Sn(k,ℓ)

∑

σ|π
σ a cycle

|σ|.

Here the inner sum is over cycles σ which are factors of (i.e., contained in) π, and |σ| denotes
the length of σ. Write π = σπ′, and observe that π′ has either ℓ− 1 or ℓ cycles of length at
most k, depending on whether |σ| 6 k or not. Thus π′ ∈ Sn−|σ|(k,m), where m = ℓ − 1 or
m = ℓ, so

n|Sn(k, ℓ)| 6
n
∑

j=1

ℓ
∑

m=ℓ−1

∑

π′∈Sn−j(k,m)

∑

σ∈Sn,|σ|=j
σ a cycle

j

=
n
∑

j=1

ℓ
∑

m=ℓ−1

∑

π′∈Sn−j(k,m)

n!

(n− j)!
.

Now rearrange the sum according the cycle type (c1, . . . , cn) of the permutation π′, i.e., π′

has ci cycles of length i for 1 6 i 6 n, and c1 + 2c2 + · · · + ncn = n − j if π′ ∈ Sn−j. The
well known Cauchy formula states that the number of π′ ∈ Sn−j with a given cycle type is
(n− j)!/

∏

i ci!i
ci . It follows that

n|Sn(k, ℓ)| 6 n!
n
∑

j=1

∑

c1,...,cn>0
c1+2c2+···+ncn=n−j
c1+···+ck∈{ℓ−1,ℓ}

1
∏

i ci!i
ci

6 n!
∑

c1,...,cn>0
c1+···+ck∈{ℓ−1,ℓ}

1
∏

i ci!i
ci

= n!







∑

c1,...,ck>0
c1+···+ck=ℓ−1

1
∏

i ci!i
ci

+
∑

c1,...,ck>0
c1+···+ck=ℓ

1
∏

i ci!i
ci







∑

ck+1,...,cn>0

1
∏n

i=k+1 ci!i
ci

= n!

(

hℓ−1
k

(ℓ− 1)!
+

hℓ
k

ℓ!

)

∏

k<i6n

e1/i,
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where in the last line we used the multinomial theorem. The claimed bound now follows
using the inequalities hk 6 1 + log k and

∑

k<i6n

1

i
= hn − hk 6 log n− log k + 1. �

In our paper [5] we showed that the probability of a random permutation π ∈ Sn fixing
some set of size k is k−δ+o(1), where δ = 1 − 1+log log 2

log 2
≈ 0.086. As noted in that paper,

the main contribution to this estimate comes from rather exceptional permutations with an
unexpectedly large number, ≈ log k/ log 2, of cycles of length 6 k. By contrast a typical
permutation has ≈ log k cycles of length 6 k. By restricting to this “quenched” regime2 we
can establish a much stronger bound.

Lemma 2.3. Suppose that k, n are integers with 1 6 k 6 n/2, 0 < ε 6 1/2, and choose

π ∈ Sn uniformly at random. Then the probability that π fixes a set of size k and has at

most (1 + ε) log k cycles of length at most k is at most O(klog 2−1+2ε).

Proof. Fix ℓ 6 (1 + ε) log k and consider permutations π with exactly ℓ cycles of length at
most k. If π fixes some set X, |X| = k, write π1 = π|X and π2 = π|[n]\X for the induced
permutations on X and its complement. Then π1 has ℓ1 cycles of length 6 k, and π2 has ℓ2
cycles of length 6 k, where ℓ1 + ℓ2 = ℓ. By Lemma 2.2 the number of such π, for a given
choice of X and ℓ1, ℓ2, is bounded by a constant times

(1 + log k)ℓ1

kℓ1!
k! ·

(1 + log k)ℓ2

kℓ2!
(n− k)!,

which means that the probability we are interested in is bounded by a constant times

∑

ℓ1+ℓ2=ℓ

1

k2

(1 + log k)ℓ

ℓ1!ℓ2!
=

2ℓ(1 + log k)ℓ

k2ℓ!
.

By summing over all ℓ 6 ℓ0 = ⌊(1 + ε) log k⌋ we get the bound

1

k2

∑

ℓ6(1+ε) log k

2ℓ(1 + log k)ℓ

ℓ!
≪

1

k2

2ℓ0(1 + log k)ℓ0

ℓ0!

≪
1

k2
(2e/(1 + ε))(1+ε) log k

≪
1

k1−log 2−2ε
. �

Proof of Proposition 2.1. Let ε > 0 be small and fixed. First we will use Lemma 2.2 to
bound the probability that one of π1, π2, π3, π4 has more than ℓ0 = ⌊(1 + ε) log k⌋ cycles of

2The terminology is from [12] and apparently comes from statistical physics.
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length at most k. By that lemma, for each ℓ > ℓ0, the probability that π1 has ℓ cycles of
length at most k is bounded by

O

(

(1 + log k)ℓ−1

k(ℓ− 1)!

)

,

so the probability that π1 has more than ℓ0 cycles is bounded by a constant times

∑

ℓ>ℓ0

(1 + log k)ℓ−1

k(ℓ− 1)!
≪

(1 + log k)ℓ0−1

k(ℓ0 − 1)!
≪

1

k

(

e(1 + log k)

ℓ0 − 1

)ℓ0−1

≪
1

k

(

e

1 + ε

)(1+ε) log k

.

Now by a Taylor expansion of −1 + (1 + ε) log(e/(1 + ε)), this is bounded by O(k−ε2/3) if
ε 6 1

2
. Thus the probability that one of π1, π2, π3, π4 has more than ℓ0 cycles of length at

most k is also bounded by O(k−ε2/3).

On the other hand, by Lemma 2.3, for each ℓ ∈ (k/2, k] the probability that πi has at most
(1 + ε) log k cycles of length at most k and fixes a set of size ℓ is at most klog 2−1+2ε. Thus
the probability that π1, π2, π3, π4 each have at most (1 + ε) log k cycles of length at most k
and each fix a set of the same size ℓ for some ℓ ∈ (k/2, k] is at most k1+4(log 2−1+2ε). Since
1 + 4(log 2− 1) < 0, we have 1 + 4(log 2− 1 + 2ε) < 0 if ε is small enough (ε = 1/40 works),
and so the theorem holds with

c = min(ε2/3,−1 − 4(log 2 − 1 + 2ε)). �

An immediate corollary of Proposition 2.1 is obtained by fixing k, letting n → ∞, and
recalling the Poisson model (Lemma 1.3) and the definition (1.1) of L (X) .

Corollary 2.4. For any k > 2, the probability that L (X) ∩ L (X′) ∩ L (X′′) ∩ L (X′′′)
contains an integer ℓ ∈ (k/2, k] is O(k−c), for some c > 0.

Remark. If one wished to prove only this, we could substitute Lemma 2.2 with a corre-
sponding bound for P(X1 + · · · + Xk 6 ℓ), which follows very quickly from the fact that
X1 + · · · + Xk is Poisson with parameter hk.

Corollary 2.5. L (X)∩L (X′)∩L (X′′)∩L (X′′′) is almost surely finite, and equal to {0}
with positive probability.

Proof. Let Fk be the event that

L (X) ∩ L (X′) ∩ L (X′′) ∩ L (X′′′) ∩ (k,∞)

is nonempty. By applying Corollary 2.4 with k replaced by 2jk, j ∈ N, and summing the
geometric series, we obtain P(Fk) ≪ k−c for k > 1. In particular P(Fk) → 0, so P (

⋂

Fk) = 0,
so the first part of the corollary holds. For the second part, fix k0 such that P(Fk0) < 1.
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Then

P (L (X) ∩ L (X′) ∩ L (X′′) ∩ L (X′′′) = {0}) > P(Xj = 0 for all j 6 k0, and F c
k0

)

> P(Xj = 0 for all j 6 k0)P(F c
k0

)

> 0.

The second inequality here is a simple case of the FKG inequality [14, Theorem 1.19]. To see
the inequality directly, define X∗ = (X∗

1 , X
∗
2 , . . . ) by putting X∗

j = Xj if j > k0 and X∗
j = 0

if j 6 k0, and let F ∗
k0

be the event that

L (X∗) ∩ L (X′) ∩ L (X′′) ∩ L (X′′′) ∩ (k0,∞)

is nonempty. Clearly F ∗
k0

implies Fk0 , so

P(Xj = 0 for all j 6 k0, and F c
k0

) = P(Xj = 0 for all j 6 k0, and F ∗c
k0

)

= P(Xj = 0 for all j 6 k0)P(F ∗c
k0

)

> P(Xj = 0 for all j 6 k0)P(F c
k0

). �

Shortly we will complete the proof of Theorem 1.1. In the proof, we will need a trick
to deal with the possibility that π1, π2, π3, π4 ∈ An. The following lemma is helpful in this
regard. It shows that random even and random odd permutations have the same small-cycle
structure as random permutations with unconstrained parity (Lemma 1.3).

Lemma 2.6. Let π ∈ Sn be a random even permutation, and let cj(π) be the number of cycles

of length j. Fix k ∈ N. Then as n → ∞ the distribution of (c1(π), . . . , ck(π)) converges to

that of (X1, . . . , Xk). The same is true if π is a random odd permutation.

Proof. Choose π ∈ Sn uniformly at random, and define σ by putting σ = 1 if π is even
and σ = (12) if π is odd. Then πσ is uniformly distributed over An. By Lemma 1.3, as
n → ∞, the number of cycles in π of length at most 2k approaches a Poisson distribution
with parameter h2k 6 1 + log 2k. Thus, with high probability (as n → ∞) the total number
of points in cycles of π of length at most 2k is at most 2k log n, so with high probability each
of these cycles is disjoint from (12). That is, the points 1 and 2 are both contained in cycles
of π of length at least 2k + 1 with high probability. Now consider the probability that 1
and 2 are both contained in the same cycle and are close together. For each ℓ > 2k + 1, the
number of cycles of length ℓ containing both 1 and 2, which are a distance 6 k from each
other, equals

(

n−2
ℓ−2

)

2k(ℓ− 2)!. Hence, the number of permutations π containing such a cycle
is at most

∑

2k+16ℓ6n

2k(n− 2)! 6 2k(n− 1)!.

Hence, with high probability, if 1 and 2 are in the same cycle they are a distance at least k+1
from each other. Thus, with high probability, cj(πσ) = cj(π) for each j 6 k. Similarly πσ(12)
is uniformly distributed over odd permutations, and with high probability cj(πσ(12)) =
cj(π). �
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Proof of Theorem 1.1. Let π1, π2, π3, π4 ∈ Sn be random permutations with π1 odd. Let En,k

be the event that π1, π2, π3, π4 each fix a set of size ℓ for some ℓ in the range 1 6 ℓ 6 k, and let
Fn,k be the event that π1, π2, π3, π4 each fix a set of size ℓ for some ℓ in the range k < ℓ 6 n/2.
By Proposition 2.1 (and summing a geometric series as in the proof of Corollary 2.5) we have
P(Fn,k) ≪ k−c uniformly for 1 6 k 6 n/2, while by Corollary 2.5 and Lemma 2.6 we have
limn→∞ P(En,k) 6 1 − δ for all k, for some constant δ > 0. Fix k0 such that P(Fn,k0) 6 δ/3
for all n > 2k0. Then P(En,k0) + P(Fn,k0) 6 1 − δ/3 for all sufficiently large n, so we deduce
that with probability bounded away from zero π1, π2, π3, π4 do not fix sets of the same size
ℓ for any ℓ ∈ [1, n/2].

Thus with probability bounded away from zero π1, π2, π3, π4 invariably generate a transitive
subgroup of Sn. However by the  Luczak–Pyber theorem [9], π1 is, with high probability, not
contained in any transitive subgroup smaller than An. Since π1 6∈ An, with probability
bounded away from zero π1, π2, π3, π4 invariably generate Sn. �

3. Three generators are not enough

Theorem 1.2 follows immediately from the following more specific proposition.

Proposition 3.1. For every ε > 0 there exists k0 = k0(ε) and n0 = n0(ε) such that if n > n0

then with probability at least 1 − ε there is some ℓ 6 k0 such that π1, π2, π3 each fix a set of

size ℓ.

Let X be defined as before, and let Y and Z be independent copies of X. For I an interval
in N let

L (I,X) =

{

∑

j∈I

jxj : 0 6 xj 6 Xj

}

,

and define L (I,Y) and L (I,Z) analogously.

Lemma 3.2. Let I = {1, . . . , k} and let ε > 0. Then with probability at least 1 − ε we have

L (I,X),L (I,Y),L (I,Z) ⊂ [0, 3ε−1k].

Proof. Since E
∑

j∈I jXj = |I| = k, by Markov’s inequality we have
∑

j∈I jXj 6 3ε−1k with

probability at least 1 − ε/3. Similarly
∑

j∈I jYj 6 3ε−1k and
∑

j∈I jZj 6 3ε−1k each with

probability at least 1 − ε/3, and the lemma follows. �
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Lemma 3.3. Fix ε, 0 < ε < 1/2. There is a constant C(ε) so that with probability at least

1 − ε we have
∑

m<j6k

Xj > 0.99 log(k/m) − C(ε),

∑

m<j6k

Yj > 0.99 log(k/m) − C(ε), and

∑

m<j6k

Zj > 0.99 log(k/m) − C(ε).

for every nonnegative integer m 6 k.

Proof. Let C = C(ε) be a constant whose properties will be specified later. It suffices to
show that the first inequality holds for all m 6 k with probability at least 1 − ε/3. There
is nothing to prove if m > e−Ck, so we may suppose m 6 e−Ck. We may also suppose that
C > 1.

Let E be the event that
∑

m<j6k

Xj > 0.99 log(k/m) − 1

for all m 6 e−Ck. Suppose E fails, say
∑

m<j6k

Xj < 0.99 log(k/m) − 1

for some m 6 e−Ck. Writing m′ for the smallest power of 2 with m′ > m, we thus have
∑

m′<j6k

Xj 6
∑

m<j6k

Xj 6 0.99 log(k/m) − 1 6 0.99 log(k/m′).

Thus

1Ec 6
∑

m′62e−Ck
dyadic

0.99
∑

m′<j6k Xj−0.99 log(k/m′).

Whenever P is Poisson of parameter λ and a > 0 we have EaP = e(a−1)λ, and the sum
∑

m′<j6k Xj is Poisson with parameter
∑

m′<j6k 1/j = log(k/m′) + O(1), so

P(Ec) ≪
∑

m′62e−Ck
dyadic

exp ((0.99 − 1 − 0.99 log(0.99)) log(k/m′))

6
∑

m′62e−Ck
dyadic

(k/m′)−0.00005

≪ e−0.00005C .

Therefore, P(Ec) 6 ε/3 if C is taken large enough. �
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We need a standard estimate for the partial sums of the Fourier series
∑∞

j=1
cos(2πjθ)

j
=

− log |2 sin(πθ)|. Denote by ‖x‖ the distance from x to Z.

Lemma 3.4.

∑

j6m

cos(2πjθ)

j
= log min

(

1

‖θ‖
,m

)

+ O(1) for ‖θ‖ > 0.

Proof. We may assume that 0 < θ 6 1
2
. Using the bound cos(2πjθ) = 1 + O(j2θ2), we get

∑

j6min(m,1/θ)

cos(2πjθ)

j
= log min(m, 1/θ) + O(1).

This proves the lemma if ‖θ‖ 6 1/m. Suppose, then, that ‖θ‖ > 1/m. Set

Sj =

j
∑

n=0

e2πinθ,

and note that by summing the geometric series we have

Sj =
e2πijθ − 1

e2πiθ − 1
≪

1

θ
. (3.1)

Thus (by “Abel summation”),

∑

1/θ<j6m

cos(2πjθ)

j
= ℜ

∑

1/θ<j6m

e2πijθ

j
= ℜ

∑

1/θ<j6m

Sj − Sj−1

j

= ℜ
∑

1/θ<j6m−1

Sj

j(j + 1)
+

Sm

m
−

S⌈1/θ⌉−1

⌈1/θ⌉
.

The latter two terms here are O(1) by the trivial bound |Sj| 6 j, while from (3.1) the sum
is bounded by a constant times

1

θ

∑

j>1/θ

1

j2
≪ 1. �

Let T = R/Z be the unit torus, and denote e(z) = e2πiz. Given I,X,Y,Z define F : T2 →
C by

F (θ) =
∏

j∈I

(

1 + e(jθ1)

2

)Xj
(

1 + e(jθ2)

2

)Yj
(

1 + e(j(−θ1 − θ2))

2

)Zj

.

By expanding the product we see that F̂ : Z2 → C is supported on the set

S(I,X,Y,Z) = {(n1 − n3, n2 − n3) : n1 ∈ L (I,X), n2 ∈ L (I,Y), n3 ∈ L (I,Z)}. (3.2)
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Since
∑

a∈Z2 F̂ (a) = F (0) = 1, by Cauchy–Schwarz we have

1 =

(

∑

a∈Z2

F̂ (a)

)2

6

(

∑

a:F̂ (a) 6=0

1

)

∑

a∈Z2

|F̂ (a)|2 6 |S(I,X,Y,Z)|
∑

a∈Z2

|F̂ (a)|2.

Applying Parseval, we get

|S(I,X,Y,Z)| >

(

∑

a∈Z2

|F̂ (a)|2

)−1

=

(∫

T2

|F (θ)|2 dθ

)−1

. (3.3)

Lemma 3.5. Let

β = 1 −
2

3 log 2
− 0.02 ≈ 0.0182,

and let I = (kβ, k]. Fix ε ∈ (0, 1/2), and let E = E(ε) be the event from Lemma 3.3. Then

both of the bounds

E1E|F (θ)|2 ≪ε (k‖θ1‖
1/3‖θ2‖

1/3‖θ3‖
1/3)−2.02 (3.4)

and

E1E|F (θ)|2 ≪ε (k‖θi‖
1/2‖θj‖

1/2)−1.3 ({i, j} ⊂ {1, 2, 3}) (3.5)

hold uniformly for θ ∈ T2, where θ3 = −θ1 − θ2. The expectation is over X,Y,Z.

Proof. Define, for i ∈ {1, 2, 3},

ki =







kβ if ‖θi‖ > k−β;
1/‖θi‖ if 1/k < ‖θi‖ < k−β;
k if ‖θi‖ 6 1/k.

It is useful to note the (slightly crude) bound

ki 6
kβ

‖θi‖1−β
, (3.6)

which follows by an analysis of the three cases in the definition of ki. If E holds then
∑

k1<j6k

Xj +
∑

k2<j6k

Yj +
∑

k3<j6k

Zj > 0.99 log(k3/(k1k2k3)) − C(ε),

so

1E|F (θ)|2 ≪ε (k3/k1k2k3)
−0.99 log 2|F (θ)|22

∑
k1<j6k Xj+

∑
k2<j6k Yj+

∑
k3<j6k Zj .

From (3.6) and the inequality 3 × 0.99 log 2 × (1 − β) > 2.02, we deduce that

1E|F (θ)|2 ≪ε (k‖θ1‖
1/3‖θ2‖

1/3‖θ3‖
1/3)−2.02|F (θ)|22

∑
k1<j6k Xj+

∑
k2<j6k Yj+

∑
k3<j6k Zj .

Thus (3.4) will follow if we can prove

E|F (θ)|22
∑

k1<j6k Xj+
∑

k2<j6k Yj+
∑

k3<j6k Zj ≪ 1. (3.7)
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Similarly, from (3.6) for i = 1, 2 and the trivial bound k3 6 k, and using 2 × 0.99 log 2 ×
(1 − β) > 1.3, we deduce that

1E|F (θ)|2 ≪ε (k‖θ1‖
1/2‖θ2‖

1/2)−1.3|F (θ)|22
∑

k1<j6k Xj+
∑

k2<j6k Yj+
∑

k3<j6k Zj ,

and similarly for other permutations of the indices 1, 2, 3, so (3.5) will also follow from (3.7).

It remains only to prove (3.7). We have a factorization

E|F (θ)|22
∑

k1<j6k Xj+
∑

k2<j6k Yj+
∑

k3<j6k Zj

=
∏

kβ<j6k1

E

∣

∣

∣

∣

1 + e(jθ1)

2

∣

∣

∣

∣

2Xj
∏

k1<j6k

E

(

2

∣

∣

∣

∣

1 + e(jθ1)

2

∣

∣

∣

∣

2
)Xj

×
∏

kβ<j6k2

E

∣

∣

∣

∣

1 + e(jθ2)

2

∣

∣

∣

∣

2Yj
∏

k2<j6k

E

(

2

∣

∣

∣

∣

1 + e(jθ2)

2

∣

∣

∣

∣

2
)Yj

×
∏

kβ<j6k3

E

∣

∣

∣

∣

1 + e(jθ3)

2

∣

∣

∣

∣

2Zj
∏

k3<j6k

E

(

2

∣

∣

∣

∣

1 + e(jθ3)

2

∣

∣

∣

∣

2
)Zj

.

By using again the calculation EaP = e(a−1)λ for P Poisson with parameter λ, we get

E|F (θ)|22
∑

k1<j6k Xj+
∑

k2<j6k Yj+
∑

k3<j6k Zj

= exp
3
∑

i=1





∑

kβ<j6ki

1

j

(

∣

∣

∣

∣

1 + e(jθi)

2

∣

∣

∣

∣

2

− 1

)

+
∑

ki<j6k

1

j

(

2

∣

∣

∣

∣

1 + e(jθi)

2

∣

∣

∣

∣

2

− 1

)





= exp
3
∑

i=1





∑

kβ<j6ki

cos(2πjθi) − 1

2j
+
∑

ki<j6k

cos(2πjθi)

j





= exp
3
∑

i=1

(

1

2
log

min(ki, 1/‖θi‖)

min(kβ, 1/‖θi‖)
−

1

2
log

ki
kβ

+ log
min(k, 1/‖θi‖)

min(ki, 1/‖θi‖)
+ O(1)

)

by Lemma 3.4. Checking the three cases in the definition of ki separately, it can be confirmed
that this is always O(1). �

Corollary 3.6. With notation as in Lemma 3.5, we have
∫

T2

E1E|F (θ)|2 dθ ≪ε k
−2. (3.8)

Proof. Divide T2 into three regions R1, R2, R3 as follows:

R1 = {θ ∈ T2 : ‖θi‖ > 1/k for all three i ∈ {1, 2, 3}},

R2 = {θ ∈ T2 : ‖θi‖ > 1/k for exactly two i ∈ {1, 2, 3}},

R3 = {θ ∈ T2 : ‖θi‖ > 1/k for at most one i ∈ {1, 2, 3}}.
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We will bound the integral differently in each region.

Further subdivide R1 according to which of ‖θ1‖, ‖θ2‖, ‖θ3‖ is largest. In the subregion
R′

1 in which say ‖θ1‖ is largest we have ‖θ1‖ > ‖θ2‖
1/2‖θ3‖

1/2, so by (3.4) we have
∫

R′

1

E1E|F (θ)|2 dθ ≪ε

∫

R1

(k‖θ2‖
1/2‖θ3‖

1/2)−2.02 dθ

=

(∫

‖θ‖>1/k

(k‖θ‖)−1.01 dθ

)2

≍ k−2.

We can bound the integral over the other subregions in the same way, so the integral over
R1 is indeed ≪ε k

−2.

Similarly, subdivide R2 according to the relative order of ‖θ1‖, ‖θ2‖, ‖θ3‖, and focus for
the moment on the subregion R′

2 in which ‖θ1‖ 6 ‖θ2‖ 6 ‖θ3‖. This implies in particular
that ‖θ1‖ 6 1/k while ‖θ2‖ > 1/k. Thus by (3.5) with i = 2 and j = 3 we have

∫

R′

2

E1E|F (θ)|2 dθ ≪ε

∫

R′

2

(k‖θ2‖)−1.3 dθ ≍ k−2.

Again we can bound the integral over the other subregions in the same way, so the integral
over R2 is also ≪ε k

−2.

Finally, in the region R3 note that because θ1 + θ2 + θ3 = 0 we must have ‖θi‖ < 2/k for
each i. Thus from the trivial bound |F (θ)| 6 1 we have

∫

R3

E1E|F (θ)|2 dθ 6

∫

R3

1 ≍ k−2. �

Recall the definition of S(I,X,Y,Z), given in (3.2).

Proposition 3.7. Let I = (kβ, k]. There is a constant c > 0 such that with probability at

least 1/2 we have S(I,X,Y,Z) ⊂ [−10k, 10k]2 and |S(I,X,Y,Z)| > ck2.

Proof. Apply Lemma 3.3 with ε = 0.01, and let E be the resulting event. By Corollary 3.6
(and interchanging the order of integration and expectation) we have

E1E

∫

T2

|F (θ)|2 dθ ≪ k−2.

Thus by Markov’s inequality there is a constant C such that 1E

∫

T2 |F (θ)|2 dθ 6 Ck−2 with
probability at least 0.99. Since P(E) > 0.99 we deduce that

∫

T2 |F (θ)|2 dθ 6 Ck−2 with
probability at least 0.98. Applying (3.3), we have |S(I,X,Y,Z)| > C−1k2 with probability
at least 0.98.

On the other hand, by Lemma 3.2 with ε = 1/3 we have S(I,X,Y,Z) ⊂ [−10k, 10k]2

with probability at least 2/3, so we must have both S(I,X,Y,Z) ⊂ [−10k, 10k]2 and
|S(I,X,Y,Z)| > C−1k2 with probability at least 1 − 1/3 − 0.02 > 1/2. �
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Proposition 3.8. Let I = (kβ, 60k]. Then with probability bounded away from zero we can

find (xj)j∈I , (yj)j∈I , (zj)j∈I not all zero such that 0 6 xj 6 Xj, 0 6 yj 6 Yj, and 0 6 zj 6 Zj

for each j ∈ I and
∑

j∈I

jxj =
∑

j∈I

jyj =
∑

j∈I

jzj.

Proof. Let I ′ = (kβ, k]. By Proposition 3.7, with probability at least 1/2 we have

S(I ′,X,Y,Z) ⊂ [−10k, 10k]2

and |S(I ′,X,Y,Z)| ≫ k2. This event depends only on Xj, Yj , Zj for j 6 k, so independently
with probability at least 1/2 we can find j3 ∈ (20k, 50k] such that Zj3 > 0, as

P(Zj = 0 for all j ∈ (20k, 50k]) =
∏

j∈(20k,50k]

e−1/j
6 1/2. (3.9)

Given such a j3 the set T of pairs of integers (j1, j2) such that 10k < j1, j2 6 60k and for
which

j1(1, 0) + j2(0, 1) − j3(1, 1) ∈ −S(I ′,X,Y,Z)

has size |T | ≫ k2. In particular there is a set T1 of integers j1 in the range 10k < j1 6 60k
of size |T1| ≫ k such that for each j1 ∈ T1 there are ≫ k integers j2 in the same range
10k < j2 6 60k such that (j1, j2) ∈ T . Thus by two further computations along the lines
of (3.9), independently with probability ≫ 1 we can find j1 ∈ T1 such that Xj1 > 0, and
then j2 such that (j1, j2) ∈ T and such that Yj2 > 0.

But then by definition of S(I ′,X,Y,Z) we can find (xj)j∈I′ , (yj)j∈I′ , (zj)j∈I′ such that
0 6 xj 6 Xj, 0 6 yj 6 Yj, and 0 6 zj 6 Zj for all j ∈ I ′ and such that

j1 +
∑

j∈I′

jxj = j2 +
∑

j∈I′

jyj = j3 +
∑

j∈I′

jzj.

Thus the proposition follows from putting xj1 = yj2 = zj3 = 1, and putting all other xj, yj , zj
with j > k equal to 0. �

Corollary 3.9. L (X) ∩ L (Y) ∩ L (Z) is almost surely infinite.

Proof. Define k1 to be sufficiently large, and thereafter ki+1 = (60ki)
1/β. Then the intervals

Ii = (kβ
i , 60ki] are pairwise disjoint and by the proposition for each the probability that we

can find (xj)j∈Ii , (yj)j∈Ii , (zj)j∈Ii not all zero such that 0 6 xj 6 Xj, 0 6 yj 6 Yj, and
0 6 zj 6 Zj for each j ∈ Ii and

∑

j∈Ii

jxj =
∑

j∈Ii

jyj =
∑

j∈Ii

jzj

is bounded away from zero. Since these events are independent for different values of i the
corollary follows. �
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Proof of Proposition 3.1. By Corollary 3.9 there is some k0 = k0(ε) such that if L (X) ∩
L (Y) ∩ L (Z) ∩ [1, k0] is nonempty with probability at least 1 − ε/2. Thus by Lemma 1.3
there is some n0 = n0(ε) such that if n > n0 then with probability at least 1 − ε there is
some ℓ 6 k0 such that π1, π2, π3 each fix a set of size ℓ. �
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