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Chapter 1

From Kolmogorov’s theorem
on empirical distribution to
number theory

By Kevin Ford

We describe some new estimates for the probability that an empirical distribution
function of uniform-[0,1] random variables stays on one side of a given line, and give
applications to number theory.

1.1 Introduction

Let X1, . . . , Xn be real-valued independent random variables, each with distri-
bution function F (t). Let

Fn(t) =
1
n

#{i : Xi ≤ t}

be the corresponding empirical distribution function. For n, t fixed, Fn(t) is
a random variable. Applying the strong law of large numbers to the Bernoulli
variables

1{Xn≤t} (= 1 if Xn ≤ t, 0 otherwise),

we see that Fn(t) −→
n→∞

F (t) almost surely. In 1933, Glivenko [Gli33] and

(slightly later) Cantelli [Can33] proved that the convergence is uniform on the
real line : sup | Fn(t)− F (t) | −→

n→∞
0 almost surely. Immediately, in his seminal

paper [Kol33], Kolmogorov made a careful study of the convergence of Fn(t) to
F (t) as n → ∞ : he showed that if F is continuous, then for each λ > 0, the
probability P(sup |Fn(t)− F (t)| < λ/

√
n) is independent of F , and that

P(sup |Fn(t)− F (t)| < λ/
√
n)→

∞∑
k=−∞

(−1)ke−2k2λ2
(n→∞) (1.1)

uniformly in λ.
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4 CHAPTER 1. KOLMOGOROV AND NUMBER THEORY

The three papers of Glivenko, Kolmogorov and Cantelli appeared (in this
order) in the same issue of the Giornale dell Istituto Italiano degli Attuari, all
in Italian, and with almost the same title. The paper [Kol33] of Kolmogorov
also appears in his Selected Works ([KolW], p. 139-146; comments p. 574-583).

Six years later, Smirnov [Smi39] studied the corresponding one-sided bounds,
showing for λ ≥ 0 that

P(sup(Fn(t)− F (t)) < λ/
√
n)→ 1− e−2λ2

(n→∞). (1.2)

Together, (1.1) and (1.2) form the basis for the well-known Kolmogorov-Smirnov
goodness-of-fit tests.(1)

It is sometimes convenient to express probabilities of the above type in
terms of the “order statistics” of X1, . . . , Xn, which is the increasing sequence
ξ1 ≤ · · · ≤ ξn obtained by ordering (each realization of) X1, . . . , Xn.

From now on, we will consider uniform distribution on [0, 1], that is

F (t) =


0 t ≤ 0
t 0 < t < 1
1 t ≥ 1.

(1.3)

In this case, the numbers ξ1, . . . , ξn are called uniform order statistics. In this
note, we are interested in the behavior of

Qn(u, v) = P
(
∀ i ∈ {1, . . . , n} : ξi ≥

i− u
v

)
.

In this notation, Smirnov’s theorem reads(2) Qn(λ
√
n, n)→ 1− e−2λ2

.
Refinements to (1.2) were given later in the range λ0 ≤ λ = O(n1/6) for a

fixed positive λ0 (e.g. Smirnov [Smi44], Lauwerier [Lau63]; see also Ch. 9 of
[SW86]), in particular

Qn(λ
√
n) = 1− e−2λ2

(
1− 2λ

3n1/2
+O

(
λ4 + 1
n

))
. (1.4)

1Notice that applying the Central Limit Theorem to the Bernoulli variables 1{Xn≤t}, we
have only

P(|Fn(t)− F (t)| < λ/
√
n)→ 1

2π

∫ λ/σ(t)

−λ/σ(t)

e−s
2/2ds,

with σ(t) =
√
F (t)(1− F (t)). In Kolmogorov’s theorem, |Fn(t) − F (t)| is replaced by its

supremum over t, and the limit in the right-hand side is a universal (independent of F )
function, of which Kolmogorov gave the first table of values.

2Notice that

Fn(t) =


0 t ∈ (−∞, ξ1)

i/n t ∈ [ξi, ξi+1) (1 ≤ i ≤ n− 1)

1 t ∈ [ξn,+∞)

thus we see (with (1.3)) that

P(sup(Fn(t)− F (t)) < λ/
√
n) = P

(
max
i

(
i

n
− ξi) < λ/

√
n

)
= Qn(λ

√
n, n).
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Let w = u + v − n. Trivially Qn(u, v) = 0 when w ≤ 0 and Qn(u, v) = 1
when u ≥ n (recall that 0 ≤ Xi ≤ 1 from the choice of F ). If u ≤ 1 and w > 0,
the exact formula Qn(u, v) =

w

v
(1 + u/v)n−1 was found by Daniels [Dan45].

Estimating Qn(u, v) when u > 1 is much more difficult, however there is an
exact formula

Qn(u, v) =
w

vn

∑
0≤j<u

(
n

j

)
(w + n− j)n−j−1(j − u)j

= 1− w

vn

∑
u<j≤n

(
n

j

)
(w + n− j)n−j−1(j − u)j .

(1.5)

The special case v = n of (1.5) is due to Smirnov [Smi44], and the general case
is due to Pyke [Pyk59]. The equivalence of the two expressions for Qn(u, v)
follows from one of Abel’s identities ([Rio68], p. 18, (13a)). The first is more
convenient when u is very small and fixed, while the second is more convenient
for larger u because all summands are positive.

Smirnov [Smi44] estimated Qn(λ
√
n, n) using (1.5) and Stirling’s formula

for k!, and Csáki [Csa74] used similar methods to show

Qn(α
√
n, n+ (β − α)

√
n)→ 1− e−2αβ (n→∞).

for fixed α ≥ 0, β ≥ 0. Lauwerier [Lau63] and Penkov [Pen76], by con-
trast, started with (1.5) and used complex analytic methods to approximate
Qn(λ

√
n). Yet another approach is based on what are called “almost sure

invariance principles” or “strong approximation theorems” ([CR81], [Phi86]).
The strong Komlós-Major-Tusnády theorem [KMT75] implies

|Fn(t)− t− n−1/2Bn(t)| � log n
n

(0 ≤ t ≤ 1)

with probability ≥ 1−O(1/n), where Bn(t) is a Brownian bridge process. The
order logn

n on the right side is also best possible [KMT75] (see also Ch. 4 of
[CR81]). Since

P
(

sup
0≤t≤1

(Bn(t)− (at+ b)) ≤ 0
)

= 1− e−2b(a+b),

the KMT theorem implies the uniform estimate

Qn(u, v) = O

(
1
n

)
+ 1− e−

2(u+O(logn))(w+O(logn))
n

= 1− e−2uw/n +O

(
(u+ w + log n) logn

n

)
.

(1.6)

This gives an asymptotic for Qn(u, v) in a wide range of u and w, but requiring
u

logn →∞ and w
logn →∞.

For the application to number theory in [For04], we need sharper uniform
bounds than (1.6). In particular, we need the bound Qn(u, v) = O(u/n) uni-
formly for n ≥ 1, w = O(1) and 1 ≤ u ≤ n.
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1.2 New estimates for uniform order statistics

Theorem 1.2.1. Uniformly in u > 0, w > 0 and n ≥ 1, we have

Qn(u, v) = 1− e−2uw/n +O

(
u+ w

n

)
,

i.e. |O
(
u+w
n

)
| ≤ const

(
u+w
n

)
where the constant is independent of u, v, n.

In addition we have the following useful approximation.

Corollary 1.2.2. Uniformly in u > 0, w > 0 and n ≥ 1, we have

Qn(u, v) =
2uw
n

(
1 +O

(
1
u

+
1
w

+
uw

n

))
.

In particular, when uw/n → 0, u → ∞ and w → ∞ as n → ∞, we
see that Qn(u, v) is asymptotic to 2uw/n. Starting with (1.5), a complicated
modification of the complex analytic method of Lauwerier [Lau63] can be used
to prove Theorem 1.2.1. This was carried out in the original version of [For04],
and a sketch of the argument appears in [For04a].

Here we outline a new method based on the theory of random walks, full
details of which appear in [For06]. Rather than work with (1.5), we reinterpret
Qn(u, v) in terms of a random walk. Let Y1, · · · , Yn+1 be independent random
variables with exponential distribution, and let Wk = Y1 + · · ·+ Yk for 1 ≤ k ≤
n+ 1. By a well-known theorem of Rényi [Ren53], the vectors (ξ1, . . . , ξn) and
(W1/Wn+1, . . . ,Wn/Wn+1) have identical distributions. Similarly, given that
Wn+1 = v, the probability density function of the vector (W1/v, . . . ,Wn/v) is
identically n! on the set {(x1, . . . , xn) : 0 ≤ x1 ≤ · · · ≤ xn ≤ 1}. Therefore,

Qn(u, v) = P[ min
1≤i≤n

(Wi − i) ≥ −u |Wn+1 = v].

Put Xi = 1 − Yi, so that the Xi have mean 0, variance 1 and Xi < 1 for all i.
Let

Si = X1 + · · ·+Xi, Ti = max(0, S1, . . . , Si) (i ≥ 0).

The sequence 0, S1, S2, . . . can be thought of as a recurrent random walk on the
real line, with Ti measuring the farthest extent to the right that the walk has
achieved during the first i steps. Setting

Rm(x, y) = P[Tm−1 < y | Sm = x],

we have
Qn(u, v) = Rn+1(n+ 1− v, u). (1.7)

If we label the point y as a barrier, then Rm(x, y) is the probability of stopping
after m steps at x without crossing the barrier.

In proving (1.1) in [Kol33], Kolmogorov used a relation similar to (1.7).
Specifically, let Y1, Y2, . . . , Yn be independent random variables with discrete
distribution

P[Yj = r − 1] =
e−1

r!
(r = 0, 1, . . .)
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and let Zj = Y1 + · · ·+Yj for j ≥ 1. The variables Yi have mean 0 and variance
1. Kolmogorov proved that for integers u ≥ 1,

P(sup |Fn(t)− F (t)| ≤ u/n) =
n!en

nn
P
(

max
0≤j≤n−1

|Zj | < u,Zn = 0
)

= P
(

max
0≤j≤n−1

|Zj | < u |Zn = 0
)
.

Small modifications to the proof yield, for integers u ≥ 1 and for n ≥ 2, that

Qn(u, n) = P
(

max
0≤j≤n−1

Zj < u |Zn = 0
)
.

Let fm be the pdf for Sm (m = 1, 2, . . .). The Central Limit Theorem
for densities (e.g., Theorem 1 in §46 of [GK68]) implies that for large m and
|x| �

√
m, fm(x) ≈ (2πm)−1/2e−x

2/2m. However, there are asymmetries in the
distribution for |x| >

√
m, which can be seen using the exact formula

fm(x) =

{
(m−x)m−1

em−x(m−1)!
x ≤ m

0 x > m,
(1.8)

easily proved by induction on m.
Our principal tool for estimating Rn(x, y) is a reccurrence formula based

on the reflection principle for random walks. Suppose y ≥ 0 and y ≥ x. By
reflecting about the point y that part of the walk beyond the first crossing of
y, a recurrent random walk of n steps that crosses the point y and ends at
the point x is about as likely as a random walk which ends at 2y − x after n
steps. This of course is inexact, since the steps of a random walk may not be
symmetric and the walk may not hit y exactly. The next lemma gives a precise
measure of the accuracy of the reflection principle for our specific walk. For
convenience, define

R̃n(x, y) = fn(x)Rn(x, y) = D[Tn−1 < y, Sn = x],

where the last expression stands for d
dxP[Tn−1 < y, Sn < x]. From the reflection

principle we expect that R̃n(x, y) ≈ fn(x)− fn(2y − x).

Lemma 1.2.3. For a positive integer n ≥ 2, real y > 0, real x, and real a ≥ 1,

R̃n(x, y) = fn(x)−fn(y+a)+
∫ 1

0

n−1∑
k=1

R̃k(y+ξ, y) (fn−k(a− ξ)− fn−k(x− y − ξ)) dξ.

(1.9)

Proof. Start with

R̃n(x, y) = fn(x)− fn(y + a) + fn(y + a)−D[Tn−1 ≥ y, Sn = x].



8 CHAPTER 1. KOLMOGOROV AND NUMBER THEORY

If Sn = y + a, then there is a unique k, 1 ≤ k ≤ n − 1, so that Tk−1 < y and
Sk ≥ y. Thus,

fn(y + a) =
n−1∑
k=1

D[Tk−1 < y, Sk ≥ y, Sn = y + a]

=
n−1∑
k=1

∫ 1

0
D[Tk−1 < y, Sk = y + ξ, Sn = y + a] dξ

=
n−1∑
k=1

∫ 1

0
R̃k(y + ξ, y)fn−k(a− ξ) dξ.

Similarly,

D[Tn−1 ≥ y, Sn = x] =
n−1∑
k=1

D[Tk−1 < y, Sk ≥ y, Sn = x]

=
n−1∑
k=1

∫ 1

0
R̃k(y + ξ, y)fn−k(x− y − ξ) dξ.

In Lemma 1.2.3, we choose a = y − x − b(n, y − x), where b = b(n, z) is
the unique solution of fn(−z) = fn(z − b) ith −2 ≤ b ≤ z − 1 (b(n, z) exists
and is unique since fn(x) is unimodular with maximum at x = 1). This makes
|fn−k(a−ξ)−fn−k(x−y−ξ)| small, at least when k is small. Also, R̃k(y+ξ, y)
should be small, since it measures the liklihood of a walk staying to the left
of y for n − 1 steps and jumping over y on the n-th step. Suppose n ≥ 10,
0 ≤ y ≤ n

10 , and y ≤ x ≤ y + 1. We have fn(1 + x) ≤ fn(1− x) for x ≥ 0, thus
when 0 ≤ ξ ≤ 1 and 1 ≤ j ≤ n− 1, fj(5− ξ) ≤ fj(x− y − ξ). By Lemma 1.2.3
with a = 5,

R̃n(x, y) ≤ fn(x)− fn(y + 5) =
∫ y+5

x

t− 1
n− t

fn(t) dt� (y + 1)fn(y)
n

.

Together with estimates for |fn−k(a− ξ)−fn−k(x−y− ξ)| obtained from (1.8),
the integral-sum on the right of (1.9) can be shown to be small. We conclude
that, with small error,

Rn(x, y) ≈ 1− fn(2y − x− b)
fn(x)

.

The desired asymptotic for Qn(u, v) now follows from (1.8) and the asymptotic
b = b(n, z) = −2 +O( (z+1)2

n−1 ).
We note that when the steps in a recurrent random walk have an arbi-

trary continuous or lattice distribution, one can define a quantity analogous to
Rn(x, y). The same argument provides an analogous formula to (1.9) and an
analog of Theorem 1.2.1, namely

Rm(y − z, y) = 1− e−2yz/n +O

(
y + z + 1

n

)
(0 ≤ y �

√
n, 0 ≤ z �

√
n),

can be shown to hold for a very general class of distributions (see [Ford06a]).
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1.3 Number theory applications

Hardy and Ramanujan initiated the study of the statistical distribution of the
prime factors of integers in their ground-breaking 1917 paper [HR17], and much
work has been done on this topic since then. Write an arbitrary integer n =
p1p2 · · · pk, where the pi are primes and p1 ≤ · · · ≤ pk. Roughly speaking, the
quantities gj = log log pj+1 − log log pj behave like independent exponentially
distributed random variables. Of course the gj have discrete distributions, but
the distributions approach the exponential distribution as j → ∞. It is well-
known that a typical integer n has about log log b − log log a prime factors in
an interval (a, b] (see e.g. Ch. 1 of [HT88]), and the probability that n has at
least one prime factor in (a, b] is approximately(3)

1−
∏

a<p≤b
(1− 1/p) = 1− log a+O(1)

log b
.

One can also consider integers with a fixed number of prime factors and examine
the statistics

(ξ1, · · · , ξm), ξi =
log log pj+i − log log pj
log log pk − log log pj

, m = k − 1− j.

With k and j fixed, the numbers ξ1, . . . , ξm behave much like uniform order
statistics. This means that for “nice” functions f : [0, 1]m → R, the average of
f(ξ1, . . . , ξm) over n which are the product of k primes is about

m!
∫

0≤x1≤···≤xm≤1

f(x1, . . . , xm) dx1 · · · dxm.

The approximation gets better as j →∞.
These phenomena can be explained by considering the following “model” of

the integers (known as the Kubilius model). Let {Xp : p prime} be independent
Bernoulli random variables so that P(Xp = 0) = 1 − 1

p and P(Xp = 1) = 1
p .

Thus Xp models the event that a random integer is divisible by p. By an
elementary estimate,∑

a<p≤b
E(Xp) =

∑
a<p≤b

1
p

= log log b− log log a+O(1/ log a).

(The log log, rather than log, are due to the fact that we sum only on primes.)
For more about probabilistic number theory, the reader may consult the excel-
lent monographs of Elliott [Ell79].

Questions about the distribution of all divisors of integers are much more
difficult, since the corresponding random variables {Xd : d ≥ 1} are not at all
independent (e.g., X6 = 1 =⇒ X3 = 1). Consider the problem of estimating

3p will always denote a prime number;
∏
a<p≤b will be a product on primes,

∑
a<p≤b a

sum on primes.
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ε(y, z), the probability that a random integer has a divisor d satisfying y < d ≤
z. More precisely,

ε(y, z) = lim
x→∞

#{n ≤ x : ∃ d|n, y < d ≤ z}
x

·

Similarly, let εr(y, z) be the probability that a random integer has exactly r
divisors in the interval (y, z]. Interest in bounding ε(y, z) began in the 1930s
with a paper by Besicovitch [Bes34], who proved that lim infy→∞ ε(y, 2y) = 0.
A year later, Erdős [Erd35] improved this to limy→∞ ε(y, 2y) = 0. Later work,
especially by Erdős [Erd36], [Erd60] and Tenenbaum [Ten84], focused on deter-
mining the rate at which ε(y, 2y)→ 0 and on bounding ε(y, z) for more general
y, z. Chapter 2 of the book [HT88] contains a thorough exposition on such
bounds and their applications. The main theorem of [For04] is a determination
of the order of magnitude of ε(y, z) for all y, z; that is, bounding ε(y, z) between
two constant multiples of a smooth function of y, z. In particular, we show that
for some positive constants c1 and c2,

c1

(log y)δ(log log y)3/2
≤ ε(y, 2y) ≤ c2

(log y)δ(log log y)3/2
, (1.10)

where δ = 1− 1 + log log 2
log 2

= 0.08607 . . .. A relatively short, complete proof of

this special case is given in [For06b].
Concerning the behavior of εr(y, z), Erdős conjectured in [Erd60] that

lim
y→∞

ε1(y, 2y)
ε(y, 2y)

= 0.

The ratio
εr(y, z)
ε(y, z)

can be considered as the conditional probability that a ran-

dom integer contains exactly r divisors in (y, z] given that it has at least one

such divisor. In [Ten87] a lower bound
εr(y, 2y)
ε(y, 2y)

≥ c3f(y) was given, where

f(y) → 0 very slowly as y → ∞. Erdős conjecture is disproved in [For04],
where the order of εr(y, z) is determined for a wide range of y, z. In particular,
for any r ≥ 1 and any constant c > 1,

lim inf
y→∞

εr(y, cy)
ε(y, cy)

> 0.

Also,
εr(y, z)
ε(y, z)

→ 0 (z/y →∞),

confirming a conjecture of Tenenbaum [Ten87].
We now say a few words about the proofs. Let m be the product of the

distinct prime factors of n which are ≤ y. First, ε(y, 2y) can be estimated in
terms of ∑

m

L(m)
m

, L(m) = µ{u : ∃ d|m, eu < d ≤ 2eu},
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where µ denotes Lebesgue measure. The quantity L(m) is a kind of measure of
the global distribution of the divisors of m. If m = p1 · · · pk, then

L(m) ≤ min
0≤h≤k

2k−h log(2p1 · · · ph).

Most of the time, we expect log(2p1 · · · ph) = O(log ph), so

L(m) ≈ O
(

2k exp{ min
1≤h≤k

(−h log 2 + log log ph)}
)
.

Putting ξi =
log log pi
log log y

, then ξ1, . . . , ξk behave much like uniform order statistics.

Thus, upper bounds for averages of L(m) depend on the size of Qk(u, v) with

v =
log log y

log 2
. Utilizing Theorem 1.2.1 (actually, the weaker bound Qn(u, v) =

O( (u+1)(w+1)2

n ) proved in [For04] suffices) leads to the upper bound in (1.10).
Furthermore, the bulk of the contribution comes from numbers n with k =
log log y

log 2
+O(1). This implies that most integers which have a divisor in (y, 2y]

have about
log log y

log 2
prime factors ≤ y. By contrast, most integers n have about

log log y prime factors ≤ y.
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[Erd36] Erdős, P.: A generalization of a theorem of Besicovitch. J. London
Math. Soc., 11, 92–98 (1936)
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