THE NUMBER OF SOLUTIONS OF $\lambda(x) = n$

KEVIN FORD AND FLORIAN LUCA

ABSTRACT. We study the question of whether for each n there is an $m \neq n$ with $\lambda(m) = \lambda(n)$, where λ is Carmichael's function. We give a "near" proof of the fact that this is the case unconditionally, and a complete conditional proof under the Extended Riemann Hypothesis.

To Professor Carl Pomerance on his 65th birthday

1. INTRODUCTION

Let $\lambda(n)$ be the Carmichael function, that is, $\lambda(n)$ is the largest order of any number modulo *n*. Recently, Banks et al [1] made the following conjecture:

Conjecture 1. For every positive integer n, there is an integer $m \neq n$ with $\lambda(m) = \lambda(n)$.

The analogous question for the Euler function $\phi(n)$ is known as Carmichael's conjecture and remains unsolved. If there are counterexamples to Conjecture 1, the authors of [1] proved that all such counterexamples n are multiples of the smallest counterexample n_0 . Further, they showed that if n_0 exists, then n_0 is divisible by every prime less than 30000. In this note, we prove that Conjecture 1 follows from the Extended Riemann Hypothesis (ERH) for Dirichlet *L*-functions, and also we come very close to proving the conjecture unconditionally.

If n has prime factorization $n = p_1^{e_1} \cdots p_k^{e_k}$, then $\lambda(n) = [\lambda(p_1^{e_1}), \ldots, \lambda(p_k^{e_k})]$, where $[a_1, \ldots, a_k]$ denotes the least common multiple of a_1, \ldots, a_k , $\lambda(p^e) = p^{e-1}(p-1)$ when p is odd or $e \leq 2$, and $\lambda(2^e) = 2^{e-2}$ when $e \geq 3$. The following is proved in §7 of [1].

Lemma 1.1. Suppose n_0 exists, that is, Conjecture 1 is false. Then (i) $2^4|n_0$ and (ii) if $(p-1)|\lambda(n_0)$ for a prime p, then $p^2|n_0$.

Proof. Since $\lambda(1) = \lambda(2)$ and $\lambda(4) = \lambda(8)$, part (i) follows. If $(p-1)|\lambda(n_0)$ and $p \nmid n_0$, then $\lambda(n_0) = \lambda(pn_0)$, which proves that $p|n_0$. Assume that $p^2 \nmid n_0$. By the minimality of n_0 , $\lambda(n_0/p) = \lambda(m)$ for some $m \neq n_0/p$. We have $p \nmid m$, else $(p-1)|\lambda(n_0/p)$ and $\lambda(n_0) = \lambda(n_0/p)$. Thus,

$$\lambda(n_0) = [p - 1, \lambda(n_0/p)] = [p - 1, \lambda(m)] = \lambda(pm),$$

a contradiction. Therefore, $p^2|n_0$, proving (ii).

Date: April 3, 2011.

Research of the first author supported by National Science Foundation grants DMS-0555367 and DMS-0901339. Research of the second author was supported in part by Grants SEP-CONACyT 79685 and PAPIIT 100508.

KEVIN FORD AND FLORIAN LUCA

With Lemma 1.1, it is easy to show that many primes must divide n_0 . For example, by (i) and (ii) with p = 3 and p = 5, we immediately obtain $3^2|n_0$ and $5^2|n_0$. Thus, $2^2 \cdot 3 \cdot 5|\lambda(n_0)$, and by (ii) again, n_0 is divisible by 7^2 , 11^2 , 13^2 , 31^2 and 61^2 . Subject to certain hypotheses, we may continue this process and deduce that every prime must divide n_0 , which would prove Conjecture 1.

Notation. Throughout, the letters p, q, r, s, with or without subscripts, will always denote primes. By *prime power* we mean a number of the form p^a where p is prime and $a \ge 1$, and a *proper prime power* is a prime power with $a \ge 2$.

For a prime q, we construct a tree T(q) with q as the root node as follows. Below q form links to each prime power p^e with $p^e || (q-1)$. Now continue the process, linking each p^e to the prime powers r^b with $r^b || (p-1)$, etc. The end result will be a tree with leaves which are powers of 2. For example, here is the tree corresponding to q = 149.

Let f(q) denote the largest proper prime power occurring in the tree. Set f(q) = 1 if there are no proper prime powers in the tree; this only happens when $q \in \{2, 3, 7, 43\}$ (If qis the smallest prime > 43 with f(q) = 1, then q - 1 is squarefree and $q > 2 \cdot 3 \cdot 7 \cdot 43 + 1$ by explicit calculation, so q - 1 has a prime divisor r other than 2, 3, 7, 43. By the minimality of q, f(r) > 1 and therefore f(q) > 1, a contradiction). Alternatively, we may define f(q)inductively by the formulas f(2) = 1 and if $q \ge 3$ and $q - 1 = p_1^{e_1} \cdots p_k^{e_k}$ with $e_1 = \cdots = e_h = 1 < e_{h+1} \le e_{h+2} \le \cdots \le e_k$, then

$$f(q) = \max(f(p_1), \dots, f(p_h), p_{h+1}^{e_{h+1}}, \dots, p_k^{e_k}).$$

For example, f(149) = 9. The tree T(q) is similar to the tree constructed for the Pratt primality certificate [7].

Conjecture 2. For every prime power p^a , there is a prime q with $p^a|(q-1)$ and $f(q) < p^{a+1}$.

Note that we must have $p^a || (q-1)$.

Theorem 1. Conjecture 2 implies Conjecture 1.

Proof. Suppose Conjecture 2 is true and Conjecture 1 is false. Let p^{a+1} be the smallest prime power not dividing $\lambda(n_0)$ (here $a \ge 0$). Each prime power divisor of p-1 is $< p^{a+1}$ and hence $(p-1)|\lambda(n_0)$. Lemma 1.1 implies that $p^2|n_0$, thus $p|\lambda(n_0)$ and $a \ge 1$. Let b = a + 1if p > 2 and b = a + 2 if p = 2, so that $\lambda(p^b) = p^a(p-1)$. We have $p^b||n_0$, since $p^{b+1}|n_0$ implies $p^{a+1}|\lambda(n_0)$ and $p^b \nmid n_0$ implies $\lambda(n_0) = \lambda(pn_0)$. We next claim that every prime rwith $f(r) < p^{a+1}$ satisfies $r^2|n_0$. Proceed by induction on r, noting that the case r = 2 is taken care of by Lemma 1.1 (i). Suppose s > 2, $f(s) < p^{a+1}$ and every prime r < s with $f(r) < p^{a+1}$ satisfies $r^2|n_0$. If r||(s-1), then $f(r) < p^{a+1}$ and hence $r|\lambda(n_0)$, and if $r^c||(s-1)$ with $c \geq 2$ then $r^c < p^{a+1}$ and hence $r^c |\lambda(n_0)$. Consequently, $(s-1)|\lambda(n_0)$, and applying Lemma 1.1 once again we see that $s^2|n_0$. By hypothesis, there is a prime q with $p^a|(q-1)$ and $f(q) < p^{a+1}$. In particular, $q^2|n_0$ and $q|\lambda(n_0)$. This means $p^a|\lambda(n_0/p^b)$ and

$$\lambda(n_0) = [\lambda(p^b), \lambda(n_0/p^b)] = [\lambda(p^{b-1}), \lambda(n_0/p^b)] = \lambda(n_0/p),$$

a contradiction.

We pose the following questions. (1) For each proper prime power p^a , is there a prime q with $f(q) = p^a$? (2) Is there a prime power p^a so that there are infinitely many primes q with $f(q) = p^a$? (3) Does $f(q) \to \infty$ as $q \to \infty$? Computations suggest that there are infinitely many primes q with f(q) = 4, but this will be very difficult to prove.

It is clear that f(q) is at most the largest prime power dividing q-1, thus

(1.1)
$$p^a || (q-1) \text{ and } q < p^{2a+1} \implies f(q) < p^{a+1}$$

Hence, it is almost sufficient to find a prime $q \equiv 1 \pmod{p^a}$ with $q < (p^a)^{2+1/a}$. Let P(b,m) denote the least prime which is $\equiv b \pmod{m}$. Linnik proved that there is a constant L such that $P(b,m) \ll m^L$ for all coprime b,m. The best constant known today is L = 5.5 and due to Heath-Brown. However, the Extended Riemann Hypothesis (ERH) for Dirichlet L-functions implies that

(1.2)
$$\left| \pi(x,m,b) - \frac{\mathrm{li}(x)}{\phi(m)} \right| \le x^{1/2} \log(xm^2)$$

uniformly in x, m, b [6], where $\pi(x, m, b)$ is the number of primes $r \leq x$ with $r \equiv b \pmod{m}$ and $\lim_{x \to \infty} x = \int_{2}^{x} \frac{dt}{\log t} \sim \frac{x}{\log x}$. Consequently, we may take $L = 2 + \varepsilon$ for any fixed ε . Using (1.2) and a finer analysis of f(q), we prove the following.

Theorem 2. ERH implies Conjecture 2.

The main result of this paper is the following "near" proof of Conjecture 2.

Theorem 3. For an effective constant K, if $p^a > K$ then there is a prime q with $p^a|(q-1)$ and $f(q) < p^{a+1}$.

Theorem 3 is proved in the next section. Next, the proof of Theorem 2 will be given in Section 3.

2. Proof of Theorem 3

We need first an effective lower bound for the number of primes in an arithmetic progression with prime power modulus.

Lemma 2.1. There are positive, effective constants K_1, K_2, K_3 so that if $p^a \ge K_1$ and $x \ge p^{aK_2}$, then

$$\pi(x; p^a, 1) - \pi(x; p^{a+1}, 1) \ge K_3 \frac{x/\log x}{p^{a+1/2}\log p}.$$

Proof. This basically follows from an effective version of Linnik's Theorem. For a modulus $q \geq 3$, let $\beta = \beta(q)$ the largest real zero of an *L*-function (primitive or not) of a real character of modulus q. If no such zero exists, set $\beta = \frac{1}{2}$. By Prop. 18.5 of [5], there are effective constants c_1, c_2, c_3 so that if $x \geq q^{c_1}$ then

(2.1)
$$\Psi(x;q,1) = \frac{x}{\phi(q)} \left[1 - \frac{x^{\beta-1}}{\beta} + \theta \left(x^{-\eta} + \frac{\log q}{q} \right) \right],$$

where $|\theta| \leq c_2$ and

$$\eta = \eta(q) = \frac{c_3 \log(2 + \frac{2}{(1-\beta)\log q})}{\log q}.$$

If p > 2, then the real character modulo p^a has conductor p, hence $\beta(p^a) = \beta(p)$. If p = 2 then any real character modulo p^a has conductor 4 or 8 and $\beta(2^a) = \frac{1}{2}$. By a classical theorem [2, §14 (12)], there is an effective constant c > 0 so that we have

$$\beta(p^a) \le 1 - \frac{c}{p^{1/2} \log^2 p}.$$

Fix a prime power $p^a \ge 8$ and let $\beta = \beta(p)$, $\eta = \eta(p^a)$. By (2.1) with $q = p^a$ and with $q = p^{a+1}$, we have

(2.2)
$$\Psi(x; p^{a}, 1) - \Psi(x; p^{a+1}, 1) = \frac{x}{p^{a}} \left[1 - \frac{x^{\beta(p)-1}}{\beta(p)} + \theta' \left(x^{-\eta} + \frac{\log p^{a}}{p^{a}} \right) \right],$$

where $|\theta'| \leq c_2 \frac{p+1}{p-1} \leq 3c_2$. If $\beta \leq 1 - 1/\log p^a$, then the left side of (2.2) is $\geq x/(2p^a)$ if p^a and K_2 are sufficiently large. If $\beta > 1 - 1/\log p^a$, let $\delta = 1 - \beta$, so that

$$1 - \frac{x^{\beta-1}}{\beta} \ge \beta - x^{-\delta} \ge 1 - \delta - e^{-\delta K_2 \log p^a}$$
$$\ge -\delta + \frac{\delta K_2 \log p^a}{1 + \delta K_2 \log p^a} \ge \delta \left(-1 + \frac{K_2 \log p^a}{1 + K_2} \right)$$
$$\ge \frac{K_2}{2 + 2K_2} (\delta \log p^a)$$

and

$$x^{-\eta} \le \left(\frac{\delta \log p^a}{2}\right)^{c_3 K_2} \le 2^{-K_2 c_3} (\delta \log p^a).$$

Hence,

$$\Psi(x; p^{a}, 1) - \Psi(x; p^{a+1}, 1) \gg \frac{x}{p^{a}} (\delta \log p^{a}) \gg \frac{x}{p^{a+1/2} \log p^{a}}$$

Finally,

$$\pi(x; p^{a}, 1) - \pi(x; p^{a+1}, 1) \ge \frac{\Psi(x; p^{a}, 1) - \Psi(x; p^{a+1}, 1) - O(\sqrt{x})}{\log x}$$

and the proof is complete.

Our next tool is an upper bound for the number of *prime chains* of a certain type. A *prime chain* is a sequence p_1, \ldots, p_k of primes such that $p_i|(p_{i+1}-1)$ for $1 \le i \le k-1$. The following is Theorem 2 in [4].

Lemma 2.2. For every $\varepsilon > 0$ there is an effective constant $C(\varepsilon)$ so that for any prime p, the number of prime chains with $p_1 = p$ and $p_k \leq x$ (varying k) is $\leq C(\varepsilon)(x/p)^{1+\varepsilon}$.

Remark. At the moment, the method of [4] gives

$$C(\varepsilon) = \exp \exp \left((1 + o(1)) \frac{1}{\varepsilon} \log \frac{1}{\varepsilon} \right)$$

as $\varepsilon \to 0^+$. We need a numerical value of $C(\varepsilon)$ in one case. By the argument in §3 of [4], if y < p, w is the product of the primes $\leq y$, and s > 1, then the number of primes in question is at most the largest column sum of

$$x^{s} \sum_{\substack{0 \le k \le \frac{\log x}{\log 2}}} M^{k}, \quad M = \left(\sum_{\substack{m \ge 1\\am+1 \equiv b \pmod{w}}} m^{-s}\right)_{b,a \in (\mathbb{Z}/w\mathbb{Z})^{*}}.$$

If all the eigenvalues of M lie inside the unit circle, then $\sum_{k=0}^{\infty} M^k = (I-M)^{-1}$. For example, taking $s = \frac{5}{4}$ and w = 210, so that M is a 48 × 48 matrix, we compute that the largest column sum of $(I-M)^{-1}$ is ≤ 7.37 , so $C(\frac{1}{4}) = 7.37$ is admissible.

Lemma 2.3. For $0 < \varepsilon \leq 1$ and $y \geq 10^{10}$, we have

$$\#\{q \le x : f(q) \ge y\} \le \frac{c(\varepsilon)x^{1+\varepsilon}}{y^{1/2+\varepsilon}\log y}$$

where

$$c(\varepsilon) = C(\varepsilon)(2^{-1-\varepsilon} - 6^{-1-\varepsilon})\zeta(1+\varepsilon)\left(0.44 + \frac{2.43}{1+2\varepsilon}\right).$$

Proof. For a prime power $s^b \ge y$ with $b \ge 2$, let q be a prime with $f(q) = s^b$. Then there is a prime $r \equiv 1 \pmod{s^b}$ and a prime chain with $p_1 = r$ and $p_k = q$. Write $r = ks^b + 1$. By Lemma 2.2, the number of such $q \le x$ is at most

$$\sum_{\substack{r \le x \\ r \equiv 1 \pmod{s^b}}} C(\varepsilon) \left(\frac{x}{r}\right)^{1+\varepsilon} \le C(\varepsilon) \left(\frac{x}{s^b}\right)^{1+\varepsilon} \sum_{\substack{k \ge 1 \\ ks^b+1 \text{ prime}}} k^{-1-\varepsilon}$$

If s > 3, we note that k is even and among any three consecutive even values of k, r is prime for at most two of them. For such s, the sum on k is at most $(2^{-1-\varepsilon} - 6^{-1-\varepsilon})\zeta(1+\varepsilon)$. For $s \in \{2,3\}$, we bound the sum on k trivially as $\zeta(1+\varepsilon)$. The number of $q \le x$ is therefore at most

(2.3)
$$C(\varepsilon)x^{1+\varepsilon}\zeta(1+\varepsilon)\left[\sum_{2^{b}\geq y}\frac{1}{(2^{b})^{1+\varepsilon}} + \sum_{3^{b}\geq y}\frac{1}{(3^{b})^{1+\varepsilon}} + (2^{-1-\varepsilon} - 6^{-1-\varepsilon})\sum_{s^{b}\geq y}\frac{1}{(s^{b})^{1+\varepsilon}}\right].$$

The first two sums in (2.3) total $\leq \frac{7}{2}y^{-1-\varepsilon}$. To estimate the third sum, let S(t) denote the number of proper prime powers $\leq t$. By Theorem 1 and Corollay 1 of [8], we have

$$\frac{x}{\log x} \le \pi(x) \le \frac{x}{\log x} \left(1 + \frac{3}{2\log x}\right) \qquad (x \ge 17).$$

If
$$t \ge 10^{10}$$
, then $S(t) > \pi(t^{1/2}) \ge \frac{2t^{1/2}}{\log t}$ and

$$S(t) = \sum_{k\ge 2} \pi(t^{1/k}) \le \sum_{k=2}^{7} \pi(t^{1/k}) + \left(\frac{\log t}{\log 2} - 7\right) \pi(t^{1/8})$$

$$\le \sum_{k=2}^{7} \frac{kt^{1/k}}{\log t} \left(1 + \frac{3k}{2\log t}\right) + \left(\frac{\log t}{\log 2} - 7\right) \frac{8t^{1/8}}{\log t} \left(1 + \frac{12}{\log t}\right)$$

$$\le 2.43 \frac{t^{1/2}}{\log t}.$$

By partial summation,

(2.4)

$$\sum_{s^b \ge y} \frac{1}{(s^b)^{1+\varepsilon}} = -\frac{S(y^-)}{y^{1+\varepsilon}} + (1+\varepsilon) \int_y^\infty \frac{S(t)}{t^{2+\varepsilon}} dt$$

$$\leq -\frac{2}{y^{1/2+\varepsilon} \log y} + \frac{2.43(1+\varepsilon)}{\log y} \int_y^\infty \frac{dt}{t^{3/2+\varepsilon}}$$

$$= \frac{0.43 + \frac{2.43}{1+2\varepsilon}}{y^{1/2+\varepsilon} \log y}.$$

Combined with (2.3), this completes the proof.

Lemma 2.4. Let p be a prime and $p^{a+1} \ge 10^{10}$. Then

$$\#\{q \le x : p^a \| (q-1), f(q) \ge p^{a+1}\} \le \frac{x}{p^{\frac{3a+1}{2}} \log(p^{a+1})} \left[2.86 + c(\varepsilon)(1+1/\varepsilon) \frac{x^{\varepsilon}}{p^{(2a+1)\varepsilon}} \right].$$

Proof. If $p^a || (q-1)$ and $f(q) \ge p^{a+1}$, then either $p^a s^b |(q-1)$ for some proper prime power s^b with $s \ne p$ and $s^b \ge p^{a+1}$, or there is a prime r|(q-1) with $f(r) \ge p^{a+1}$. The number of such $q \leq x$ is, using Lemma 2.3, (2.4) and partial summation,

$$\leq \sum_{s^b \geq p^{a+1}} \frac{x}{p^a s^b} + \sum_{\substack{r \leq x/p^a \\ f(r) \geq p^{a+1}}} \frac{x}{p^a r}$$

$$\leq \frac{2.86x}{p^{(3a+1)/2} \log(p^{a+1})} + c(\varepsilon) \frac{x}{p^{a+(1/2+\varepsilon)(a+1)} \log(p^{a+1})} \left[\left(\frac{x}{p^a}\right)^{\varepsilon} + \int_{p^{a+1}}^{x/p^a} u^{-1+\varepsilon} du \right].$$
completes the proof of the lemma. \Box

This completes the proof of the lemma.

Proof of Theorem 3. Let $p^a \ge \max(10^{10}, K_1)$, $x = p^{aK_2}$ and $\varepsilon = \frac{1}{2K_2}$. By Lemmas 2.1 and 2.4,

$$\begin{aligned} \#\{q \le x : p^a \| (q-1), f(q) < p^{a+1}\} &= \pi(x; p^a, 1) - \pi(x; p^{a+1}, 1) \\ &- \#\{q \le x : p^a \| (q-1), f(q) \ge p^{a+1}\} \\ &\ge K_3 \frac{x/\log x}{p^{a+1/2}\log p} - c'(\varepsilon) \frac{x}{p^{\frac{3a+1}{2}}\log(p^{a+1})} p^{(K_2-2)a\varepsilon} \\ &> 0 \end{aligned}$$

if p^a is large enough, where $c'(\varepsilon)$ is a constant depending only on ε .

3. Proof of Theorem 2

We first take care of small p^a . If a = 1 and $p \leq 18000000$ (1151367 primes) and when $a \geq 2$ and $p^a \leq 10^{10}$ (10084 prime powers), we find a prime q with $p^a ||(q-1)$ and $q < p^{2a+1}$. By (1.1), $f(q) < p^{a+1}$ for such q. The calculations were performed using PARI/GP.

Next, suppose a = 1, p > 1800000 and put $x = p^3$. By (1.2),

$$\pi(x; p, 1) - \pi(x; p^2, 1) \ge \frac{\operatorname{li}(x)}{p - 1} - \sqrt{x} \log(xp^2) - \frac{x}{p^2}$$
$$\ge \frac{p^2}{\log p} \left[\frac{1}{3} - 5 \frac{\log^2 p}{p^{1/2}} - \frac{\log p}{p} \right] > 0,$$

as desired.

Lastly, suppose $a \ge 2$ and $p^a > 10^{10}$, and put $x = p^{3a}$. By (1.2),

(3.1)
$$\pi(x; p^{a}, 1) - \pi(x; p^{a+1}, 1) \ge \frac{\operatorname{li}(x)}{p^{a}} - \sqrt{x} \log(x^{2} p^{4a+2}) \\ \ge \frac{p^{2a}}{\log(p^{a})} \left[\frac{1}{3} - 11 \frac{\log^{2}(p^{a})}{p^{a/2}}\right] \\ \ge 0.275 \frac{p^{2a}}{\log(p^{a})}.$$

Since we may take $C(\frac{1}{4}) = 7.37$ in Lemma 2.2, we have $c(\frac{1}{4}) \leq 22$ for Lemma 2.3. By Lemma 2.4 and (3.1),

$$\begin{aligned} \#\{q \le x : p^a \| (q-1), f(q) < p^{a+1}\} \ge 0.275 \frac{p^{2a}}{\log(p^a)} - \frac{p^{\frac{3a-1}{2}}}{\log(p^{a+1})} \left[2.86 + 110p^{\frac{a-1}{4}} \right] \\ \ge \frac{p^{2a}}{\log(p^a)} \left[0.275 - \frac{2.03}{p^{a/2}} - \frac{66}{p^{a/4}} \right] \\ > 0, \end{aligned}$$

as desired.

Acknowledgements. We thank the anonymous referee for useful suggestions. This work started during a visit of the second author at the Mathematics Department of the University of Illinois in Urbana-Champaign in January of 2007. He thanks the people of that department for their hospitality.

References

- W. D. Banks, J. Friedlander, F. Luca, F. Pappalardi and I. E. Shparlinski, Coincidences in the values of the Euler and Carmichael functions, Acta Arith. 122 (2006), 207–234.
- [2] H. Davenport, *Multiplicative number theory*, 3rd ed., Graduate Texts in Mathematics vol. 74, Springer-Verlag, New York, 2000.
- [3] K. Ford, S. Konyagin and F. Luca, Prime chains and Pratt trees, Geom. Funct. Anal. 20 (2010), 1231–1258.
- [4] H. Iwaniec and E. Kowalski, Analytic number theory, Amer. Math. Soc., Providence, RI, 2004.

KEVIN FORD AND FLORIAN LUCA

- [5] J. Oesterlé, Versions effective du théorème de Chebotarev sous l'hypothése de Riemann généralisée, Astérisque 61 (1979), 165–167. [French].
- [6] V. Pratt, Every prime has a succinct certificate, SIAM J. Comput. 4 (1975), no. 3, 214–220.
- [7] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 1962, 64–94.

KF: DEPARTMENT OF MATHEMATICS, 1409 WEST GREEN STREET, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801, USA

E-mail address: ford@math.uiuc.edu

 ${\rm FL}$: Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P. 58089, Morelia, Michoacán, México

E-mail address: fluca@matmor.unam.mx