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Abstract. We study the question of whether for each n there is an m 6= n with λ(m) =
λ(n), where λ is Carmichael’s function. We give a “near” proof of the fact that this is
the case unconditionally, and a complete conditional proof under the Extended Riemann
Hypothesis.

To Professor Carl Pomerance on his 65th birthday

1. Introduction

Let λ(n) be the Carmichael function, that is, λ(n) is the largest order of any number
modulo n. Recently, Banks et al [1] made the following conjecture:

Conjecture 1. For every positive integer n, there is an integer m 6= n with λ(m) = λ(n).

The analogous question for the Euler function φ(n) is known as Carmichael’s conjecture
and remains unsolved. If there are counterexamples to Conjecture 1, the authors of [1] proved
that all such counterexamples n are multiples of the smallest counterexample n0. Further,
they showed that if n0 exists, then n0 is divisible by every prime less than 30000. In this
note, we prove that Conjecture 1 follows from the Extended Riemann Hypothesis (ERH) for
Dirichlet L-functions, and also we come very close to proving the conjecture unconditionally.

If n has prime factorization n = pe11 · · · p
ek
k , then λ(n) = [λ(pe11 ), . . . , λ(pek

k )], where
[a1, . . . , ak] denotes the least common multiple of a1, . . . , ak, λ(pe) = pe−1(p − 1) when p
is odd or e ≤ 2, and λ(2e) = 2e−2 when e ≥ 3. The following is proved in §7 of [1].

Lemma 1.1. Suppose n0 exists, that is, Conjecture 1 is false. Then (i) 24|n0 and (ii) if
(p− 1)|λ(n0) for a prime p, then p2|n0.

Proof. Since λ(1) = λ(2) and λ(4) = λ(8), part (i) follows. If (p − 1)|λ(n0) and p - n0,
then λ(n0) = λ(pn0), which proves that p|n0. Assume that p2 - n0. By the minimality
of n0, λ(n0/p) = λ(m) for some m 6= n0/p. We have p - m, else (p − 1)|λ(n0/p) and
λ(n0) = λ(n0/p). Thus,

λ(n0) = [p− 1, λ(n0/p)] = [p− 1, λ(m)] = λ(pm),

a contradiction. Therefore, p2|n0, proving (ii). �
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With Lemma 1.1, it is easy to show that many primes must divide n0. For example, by (i)
and (ii) with p = 3 and p = 5, we immediately obtain 32|n0 and 52|n0. Thus, 22 · 3 · 5|λ(n0),
and by (ii) again, n0 is divisible by 72, 112, 132, 312 and 612. Subject to certain hypotheses,
we may continue this process and deduce that every prime must divide n0, which would
prove Conjecture 1.

Notation. Throughout, the letters p, q, r, s, with or without subscripts, will always denote
primes. By prime power we mean a number of the form pa where p is prime and a ≥ 1, and
a proper prime power is a prime power with a ≥ 2.

For a prime q, we construct a tree T (q) with q as the root node as follows. Below q form
links to each prime power pe with pe‖(q − 1). Now continue the process, linking each pe to
the prime powers rb with rb‖(p− 1), etc. The end result will be a tree with leaves which are
powers of 2. For example, here is the tree corresponding to q = 149.

149

22 37

22 32

2

Let f(q) denote the largest proper prime power occurring in the tree. Set f(q) = 1 if
there are no proper prime powers in the tree; this only happens when q ∈ {2, 3, 7, 43} (If q
is the smallest prime > 43 with f(q) = 1, then q− 1 is squarefree and q > 2 · 3 · 7 · 43 + 1 by
explicit calculation, so q − 1 has a prime divisor r other than 2, 3, 7, 43. By the minimality
of q, f(r) > 1 and therefore f(q) > 1, a contradiction). Alternatively, we may define f(q)
inductively by the formulas f(2) = 1 and if q ≥ 3 and q − 1 = pe11 · · · p

ek
k with e1 = · · · =

eh = 1 < eh+1 ≤ eh+2 ≤ · · · ≤ ek, then

f(q) = max(f(p1), . . . , f(ph), p
eh+1

h+1 , . . . , p
ek
k ).

For example, f(149) = 9. The tree T (q) is similar to the tree constructed for the Pratt
primality certificate [7].

Conjecture 2. For every prime power pa, there is a prime q with pa|(q−1) and f(q) < pa+1.

Note that we must have pa‖(q − 1).

Theorem 1. Conjecture 2 implies Conjecture 1.

Proof. Suppose Conjecture 2 is true and Conjecture 1 is false. Let pa+1 be the smallest prime
power not dividing λ(n0) (here a ≥ 0). Each prime power divisor of p − 1 is < pa+1 and
hence (p − 1)|λ(n0). Lemma 1.1 implies that p2|n0, thus p|λ(n0) and a ≥ 1. Let b = a + 1
if p > 2 and b = a + 2 if p = 2, so that λ(pb) = pa(p − 1). We have pb‖n0, since pb+1|n0

implies pa+1|λ(n0) and pb - n0 implies λ(n0) = λ(pn0). We next claim that every prime r
with f(r) < pa+1 satisfies r2|n0. Proceed by induction on r, noting that the case r = 2 is
taken care of by Lemma 1.1 (i). Suppose s > 2, f(s) < pa+1 and every prime r < s with
f(r) < pa+1 satisfies r2|n0. If r‖(s−1), then f(r) < pa+1 and hence r|λ(n0), and if rc‖(s−1)
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with c ≥ 2 then rc < pa+1 and hence rc|λ(n0). Consequently, (s − 1)|λ(n0), and applying
Lemma 1.1 once again we see that s2|n0. By hypothesis, there is a prime q with pa|(q − 1)
and f(q) < pa+1. In particular, q2|n0 and q|λ(n0). This means pa|λ(n0/p

b) and

λ(n0) = [λ(pb), λ(n0/p
b)] = [λ(pb−1), λ(n0/p

b)] = λ(n0/p),

a contradiction. �

We pose the following questions. (1) For each proper prime power pa, is there a prime
q with f(q) = pa ? (2) Is there a prime power pa so that there are infinitely many primes
q with f(q) = pa ? (3) Does f(q) → ∞ as q → ∞? Computations suggest that there are
infinitely many primes q with f(q) = 4, but this will be very difficult to prove.

It is clear that f(q) is at most the largest prime power dividing q − 1, thus

(1.1) pa‖(q − 1) and q < p2a+1 =⇒ f(q) < pa+1.

Hence, it is almost sufficient to find a prime q ≡ 1 (mod pa) with q < (pa)2+1/a. Let P (b,m)
denote the least prime which is ≡ b (mod m). Linnik proved that there is a constant L
such that P (b,m) � mL for all coprime b,m. The best constant known today is L = 5.5
and due to Heath-Brown. However, the Extended Riemann Hypothesis (ERH) for Dirichlet
L-functions implies that

(1.2)

∣∣∣∣π(x,m, b)− li(x)

φ(m)

∣∣∣∣ ≤ x1/2 log(xm2)

uniformly in x,m, b [6], where π(x,m, b) is the number of primes r ≤ x with r ≡ b (mod m)
and li(x) =

∫ x
2

dt
log t
∼ x

log x
. Consequently, we may take L = 2 + ε for any fixed ε. Using (1.2)

and a finer analysis of f(q), we prove the following.

Theorem 2. ERH implies Conjecture 2.

The main result of this paper is the following “near” proof of Conjecture 2.

Theorem 3. For an effective constant K, if pa > K then there is a prime q with pa|(q − 1)
and f(q) < pa+1.

Theorem 3 is proved in the next section. Next, the proof of Theorem 2 will be given in
Section 3.

2. Proof of Theorem 3

We need first an effective lower bound for the number of primes in an arithmetic progres-
sion with prime power modulus.

Lemma 2.1. There are positive, effective constants K1, K2, K3 so that if pa ≥ K1 and
x ≥ paK2, then

π(x; pa, 1)− π(x; pa+1, 1) ≥ K3
x/ log x

pa+1/2 log p
.
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Proof. This basically follows from an effective version of Linnik’s Theorem. For a modulus
q ≥ 3, let β = β(q) the largest real zero of an L-function (primitive or not) of a real character
of modulus q. If no such zero exists, set β = 1

2
. By Prop. 18.5 of [5], there are effective

constants c1, c2, c3 so that if x ≥ qc1 then

(2.1) Ψ(x; q, 1) =
x

φ(q)

[
1− xβ−1

β
+ θ

(
x−η +

log q

q

)]
,

where |θ| ≤ c2 and

η = η(q) =
c3 log(2 + 2

(1−β) log q
)

log q
.

If p > 2, then the real character modulo pa has conductor p, hence β(pa) = β(p). If p = 2
then any real character modulo pa has conductor 4 or 8 and β(2a) = 1

2
. By a classical

theorem [2, §14 (12)], there is an effective constant c > 0 so that we have

β(pa) ≤ 1− c

p1/2 log2 p
.

Fix a prime power pa ≥ 8 and let β = β(p), η = η(pa). By (2.1) with q = pa and with
q = pa+1, we have

(2.2) Ψ(x; pa, 1)−Ψ(x; pa+1, 1) =
x

pa

[
1− xβ(p)−1

β(p)
+ θ′

(
x−η +

log pa

pa

)]
,

where |θ′| ≤ c2
p+1
p−1
≤ 3c2. If β ≤ 1 − 1/ log pa, then the left side of (2.2) is ≥ x/(2pa) if pa

and K2 are sufficiently large. If β > 1− 1/ log pa, let δ = 1− β, so that

1− xβ−1

β
≥ β − x−δ ≥ 1− δ − e−δK2 log pa

≥ −δ +
δK2 log pa

1 + δK2 log pa
≥ δ

(
−1 +

K2 log pa

1 +K2

)
≥ K2

2 + 2K2

(δ log pa)

and

x−η ≤
(
δ log pa

2

)c3K2

≤ 2−K2c3(δ log pa).

Hence,

Ψ(x; pa, 1)−Ψ(x; pa+1, 1)� x

pa
(δ log pa)� x

pa+1/2 log p
.

Finally,

π(x; pa, 1)− π(x; pa+1, 1) ≥ Ψ(x; pa, 1)−Ψ(x; pa+1, 1)−O(
√
x)

log x
and the proof is complete. �

Our next tool is an upper bound for the number of prime chains of a certain type. A
prime chain is a sequence p1, . . . , pk of primes such that pi|(pi+1− 1) for 1 ≤ i ≤ k− 1. The
following is Theorem 2 in [4].
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Lemma 2.2. For every ε > 0 there is an effective constant C(ε) so that for any prime p,
the number of prime chains with p1 = p and pk ≤ x (varying k) is ≤ C(ε)(x/p)1+ε.

Remark. At the moment, the method of [4] gives

C(ε) = exp exp

(
(1 + o(1))

1

ε
log

1

ε

)
as ε→ 0+. We need a numerical value of C(ε) in one case. By the argument in §3 of [4], if
y < p, w is the product of the primes ≤ y, and s > 1, then the number of primes in question
is at most the largest column sum of

xs
∑

0≤k≤ log x
log 2

Mk, M =

( ∑
m≥1

am+1≡b(mod w)

m−s
)
b,a∈(Z/wZ)∗

.

If all the eigenvalues of M lie inside the unit circle, then
∑∞

k=0M
k = (I−M)−1. For example,

taking s = 5
4

and w = 210, so that M is a 48 × 48 matrix, we compute that the largest

column sum of (I −M)−1 is ≤ 7.37, so C(1
4
) = 7.37 is admissible.

Lemma 2.3. For 0 < ε ≤ 1 and y ≥ 1010, we have

#{q ≤ x : f(q) ≥ y} ≤ c(ε)x1+ε

y1/2+ε log y
,

where

c(ε) = C(ε)(2−1−ε − 6−1−ε)ζ(1 + ε)

(
0.44 +

2.43

1 + 2ε

)
.

Proof. For a prime power sb ≥ y with b ≥ 2, let q be a prime with f(q) = sb. Then there is
a prime r ≡ 1 (mod sb) and a prime chain with p1 = r and pk = q. Write r = ksb + 1. By
Lemma 2.2, the number of such q ≤ x is at most∑

r≤x
r≡1 (mod sb)

C(ε)
(x
r

)1+ε

≤ C(ε)
( x
sb

)1+ε ∑
k≥1

ksb+1 prime

k−1−ε.

If s > 3, we note that k is even and among any three consecutive even values of k, r is prime
for at most two of them. For such s, the sum on k is at most (2−1−ε − 6−1−ε)ζ(1 + ε). For
s ∈ {2, 3}, we bound the sum on k trivially as ζ(1 + ε). The number of q ≤ x is therefore at
most

(2.3) C(ε)x1+εζ(1 + ε)

∑
2b≥y

1

(2b)1+ε
+
∑
3b≥y

1

(3b)1+ε
+ (2−1−ε − 6−1−ε)

∑
sb≥y

1

(sb)1+ε

 .
The first two sums in (2.3) total ≤ 7

2
y−1−ε. To estimate the third sum, let S(t) denote the

number of proper prime powers ≤ t. By Theorem 1 and Corollay 1 of [8], we have

x

log x
≤ π(x) ≤ x

log x

(
1 +

3

2 log x

)
(x ≥ 17).
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If t ≥ 1010, then S(t) > π(t1/2) ≥ 2t1/2

log t
and

S(t) =
∑
k≥2

π(t1/k) ≤
7∑

k=2

π(t1/k) +

(
log t

log 2
− 7

)
π(t1/8)

≤
7∑

k=2

kt1/k

log t

(
1 +

3k

2 log t

)
+

(
log t

log 2
− 7

)
8t1/8

log t

(
1 +

12

log t

)
≤ 2.43

t1/2

log t
.

By partial summation,∑
sb≥y

1

(sb)1+ε
= −S(y−)

y1+ε
+ (1 + ε)

∫ ∞
y

S(t)

t2+ε
dt

≤ − 2

y1/2+ε log y
+

2.43(1 + ε)

log y

∫ ∞
y

dt

t3/2+ε

=
0.43 + 2.43

1+2ε

y1/2+ε log y
.

(2.4)

Combined with (2.3), this completes the proof. �

Lemma 2.4. Let p be a prime and pa+1 ≥ 1010. Then

#{q ≤ x : pa‖(q − 1), f(q) ≥ pa+1} ≤ x

p
3a+1

2 log(pa+1)

[
2.86 + c(ε)(1 + 1/ε)

xε

p(2a+1)ε

]
.

Proof. If pa‖(q − 1) and f(q) ≥ pa+1, then either pasb|(q − 1) for some proper prime power
sb with s 6= p and sb ≥ pa+1, or there is a prime r|(q − 1) with f(r) ≥ pa+1. The number of
such q ≤ x is, using Lemma 2.3, (2.4) and partial summation,

≤
∑

sb≥pa+1

x

pasb
+

∑
r≤x/pa

f(r)≥pa+1

x

par

≤ 2.86x

p(3a+1)/2 log(pa+1)
+ c(ε)

x

pa+(1/2+ε)(a+1) log(pa+1)

[(
x

pa

)ε
+

∫ x/pa

pa+1

u−1+ε du

]
.

This completes the proof of the lemma. �

Proof of Theorem 3. Let pa ≥ max(1010, K1), x = paK2 and ε = 1
2K2

. By Lemmas 2.1 and
2.4,

#{q ≤ x : pa‖(q − 1), f(q) < pa+1} = π(x; pa, 1)− π(x; pa+1, 1)

−#{q ≤ x : pa‖(q − 1), f(q) ≥ pa+1}

≥ K3
x/ log x

pa+1/2 log p
− c′(ε) x

p
3a+1

2 log(pa+1)
p(K2−2)aε

> 0
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if pa is large enough, where c′(ε) is a constant depending only on ε. �

3. Proof of Theorem 2

We first take care of small pa. If a = 1 and p ≤ 18000000 (1151367 primes) and when
a ≥ 2 and pa ≤ 1010 (10084 prime powers), we find a prime q with pa‖(q− 1) and q < p2a+1.
By (1.1), f(q) < pa+1 for such q. The calculations were performed using PARI/GP.

Next, suppose a = 1, p > 18000000 and put x = p3. By (1.2),

π(x; p, 1)− π(x; p2, 1) ≥ li(x)

p− 1
−
√
x log(xp2)− x

p2

≥ p2

log p

[
1

3
− 5

log2 p

p1/2
− log p

p

]
> 0,

as desired.
Lastly, suppose a ≥ 2 and pa > 1010, and put x = p3a. By (1.2),

π(x; pa, 1)− π(x; pa+1, 1) ≥ li(x)

pa
−
√
x log(x2p4a+2)

≥ p2a

log(pa)

[
1

3
− 11

log2(pa)

pa/2

]
≥ 0.275

p2a

log(pa)
.

(3.1)

Since we may take C(1
4
) = 7.37 in Lemma 2.2, we have c(1

4
) ≤ 22 for Lemma 2.3. By Lemma

2.4 and (3.1),

#{q ≤ x : pa‖(q − 1), f(q) < pa+1} ≥ 0.275
p2a

log(pa)
− p

3a−1
2

log(pa+1)

[
2.86 + 110p

a−1
4

]
≥ p2a

log(pa)

[
0.275− 2.03

pa/2
− 66

pa/4

]
> 0,

as desired.
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