THE NUMBER OF SOLUTIONS OF $\lambda(x)=n$

KEVIN FORD AND FLORIAN LUCA

Abstract

We study the question of whether for each n there is an $m \neq n$ with $\lambda(m)=$ $\lambda(n)$, where λ is Carmichael's function. We give a "near" proof of the fact that this is the case unconditionally, and a complete conditional proof under the Extended Riemann Hypothesis.

To Professor Carl Pomerance on his 65th birthday

1. Introduction

Let $\lambda(n)$ be the Carmichael function, that is, $\lambda(n)$ is the largest order of any number modulo n. Recently, Banks et al [1] made the following conjecture:

Conjecture 1. For every positive integer n, there is an integer $m \neq n$ with $\lambda(m)=\lambda(n)$.
The analogous question for the Euler function $\phi(n)$ is known as Carmichael's conjecture and remains unsolved. If there are counterexamples to Conjecture 1, the authors of [1] proved that all such counterexamples n are multiples of the smallest counterexample n_{0}. Further, they showed that if n_{0} exists, then n_{0} is divisible by every prime less than 30000 . In this note, we prove that Conjecture 1 follows from the Extended Riemann Hypothesis (ERH) for Dirichlet L-functions, and also we come very close to proving the conjecture unconditionally.

If n has prime factorization $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$, then $\lambda(n)=\left[\lambda\left(p_{1}^{e_{1}}\right), \ldots, \lambda\left(p_{k}^{e_{k}}\right)\right]$, where $\left[a_{1}, \ldots, a_{k}\right]$ denotes the least common multiple of $a_{1}, \ldots, a_{k}, \lambda\left(p^{e}\right)=p^{e-1}(p-1)$ when p is odd or $e \leq 2$, and $\lambda\left(2^{e}\right)=2^{e-2}$ when $e \geq 3$. The following is proved in $\S 7$ of [1].

Lemma 1.1. Suppose n_{0} exists, that is, Conjecture 1 is false. Then (i) $2^{4} \mid n_{0}$ and (ii) if $(p-1) \mid \lambda\left(n_{0}\right)$ for a prime p, then $p^{2} \mid n_{0}$.

Proof. Since $\lambda(1)=\lambda(2)$ and $\lambda(4)=\lambda(8)$, part (i) follows. If $(p-1) \mid \lambda\left(n_{0}\right)$ and $p \nmid n_{0}$, then $\lambda\left(n_{0}\right)=\lambda\left(p n_{0}\right)$, which proves that $p \mid n_{0}$. Assume that $p^{2} \nmid n_{0}$. By the minimality of $n_{0}, \lambda\left(n_{0} / p\right)=\lambda(m)$ for some $m \neq n_{0} / p$. We have $p \nmid m$, else $(p-1) \mid \lambda\left(n_{0} / p\right)$ and $\lambda\left(n_{0}\right)=\lambda\left(n_{0} / p\right)$. Thus,

$$
\lambda\left(n_{0}\right)=\left[p-1, \lambda\left(n_{0} / p\right)\right]=[p-1, \lambda(m)]=\lambda(p m),
$$

a contradiction. Therefore, $p^{2} \mid n_{0}$, proving (ii).

[^0]With Lemma 1.1, it is easy to show that many primes must divide n_{0}. For example, by (i) and (ii) with $p=3$ and $p=5$, we immediately obtain $3^{2} \mid n_{0}$ and $5^{2} \mid n_{0}$. Thus, $2^{2} \cdot 3 \cdot 5 \mid \lambda\left(n_{0}\right)$, and by (ii) again, n_{0} is divisible by $7^{2}, 11^{2}, 13^{2}, 31^{2}$ and 61^{2}. Subject to certain hypotheses, we may continue this process and deduce that every prime must divide n_{0}, which would prove Conjecture 1.

Notation. Throughout, the letters p, q, r, s, with or without subscripts, will always denote primes. By prime power we mean a number of the form p^{a} where p is prime and $a \geq 1$, and a proper prime power is a prime power with $a \geq 2$.

For a prime q, we construct a tree $T(q)$ with q as the root node as follows. Below q form links to each prime power p^{e} with $p^{e} \|(q-1)$. Now continue the process, linking each p^{e} to the prime powers r^{b} with $r^{b} \|(p-1)$, etc. The end result will be a tree with leaves which are powers of 2 . For example, here is the tree corresponding to $q=149$.

Let $f(q)$ denote the largest proper prime power occurring in the tree. Set $f(q)=1$ if there are no proper prime powers in the tree; this only happens when $q \in\{2,3,7,43\}$ (If q is the smallest prime >43 with $f(q)=1$, then $q-1$ is squarefree and $q>2 \cdot 3 \cdot 7 \cdot 43+1$ by explicit calculation, so $q-1$ has a prime divisor r other than $2,3,7,43$. By the minimality of $q, f(r)>1$ and therefore $f(q)>1$, a contradiction). Alternatively, we may define $f(q)$ inductively by the formulas $f(2)=1$ and if $q \geq 3$ and $q-1=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ with $e_{1}=\cdots=$ $e_{h}=1<e_{h+1} \leq e_{h+2} \leq \cdots \leq e_{k}$, then

$$
f(q)=\max \left(f\left(p_{1}\right), \ldots, f\left(p_{h}\right), p_{h+1}^{e_{h+1}}, \ldots, p_{k}^{e_{k}}\right)
$$

For example, $f(149)=9$. The tree $T(q)$ is similar to the tree constructed for the Pratt primality certificate [7].
Conjecture 2. For every prime power p^{a}, there is a prime q with $p^{a} \mid(q-1)$ and $f(q)<p^{a+1}$.
Note that we must have $p^{a} \|(q-1)$.
Theorem 1. Conjecture 2 implies Conjecture 1.
Proof. Suppose Conjecture 2 is true and Conjecture 1 is false. Let p^{a+1} be the smallest prime power not dividing $\lambda\left(n_{0}\right)$ (here $a \geq 0$). Each prime power divisor of $p-1$ is $<p^{a+1}$ and hence $(p-1) \mid \lambda\left(n_{0}\right)$. Lemma 1.1 implies that $p^{2} \mid n_{0}$, thus $p \mid \lambda\left(n_{0}\right)$ and $a \geq 1$. Let $b=a+1$ if $p>2$ and $b=a+2$ if $p=2$, so that $\lambda\left(p^{b}\right)=p^{a}(p-1)$. We have $p^{b} \| n_{0}$, since $p^{b+1} \mid n_{0}$ implies $p^{a+1} \mid \lambda\left(n_{0}\right)$ and $p^{b} \nmid n_{0}$ implies $\lambda\left(n_{0}\right)=\lambda\left(p n_{0}\right)$. We next claim that every prime r with $f(r)<p^{a+1}$ satisfies $r^{2} \mid n_{0}$. Proceed by induction on r, noting that the case $r=2$ is taken care of by Lemma 1.1 (i). Suppose $s>2, f(s)<p^{a+1}$ and every prime $r<s$ with $f(r)<p^{a+1}$ satisfies $r^{2} \mid n_{0}$. If $r \|(s-1)$, then $f(r)<p^{a+1}$ and hence $r \mid \lambda\left(n_{0}\right)$, and if $r^{c} \|(s-1)$
with $c \geq 2$ then $r^{c}<p^{a+1}$ and hence $r^{c} \mid \lambda\left(n_{0}\right)$. Consequently, $(s-1) \mid \lambda\left(n_{0}\right)$, and applying Lemma 1.1 once again we see that $s^{2} \mid n_{0}$. By hypothesis, there is a prime q with $p^{a} \mid(q-1)$ and $f(q)<p^{a+1}$. In particular, $q^{2} \mid n_{0}$ and $q \mid \lambda\left(n_{0}\right)$. This means $p^{a} \mid \lambda\left(n_{0} / p^{b}\right)$ and

$$
\lambda\left(n_{0}\right)=\left[\lambda\left(p^{b}\right), \lambda\left(n_{0} / p^{b}\right)\right]=\left[\lambda\left(p^{b-1}\right), \lambda\left(n_{0} / p^{b}\right)\right]=\lambda\left(n_{0} / p\right),
$$

a contradiction.

We pose the following questions. (1) For each proper prime power p^{a}, is there a prime q with $f(q)=p^{a}$? (2) Is there a prime power p^{a} so that there are infinitely many primes q with $f(q)=p^{a}$? (3) Does $f(q) \rightarrow \infty$ as $q \rightarrow \infty$? Computations suggest that there are infinitely many primes q with $f(q)=4$, but this will be very difficult to prove.

It is clear that $f(q)$ is at most the largest prime power dividing $q-1$, thus

$$
\begin{equation*}
p^{a} \|(q-1) \text { and } q<p^{2 a+1} \Longrightarrow f(q)<p^{a+1} \tag{1.1}
\end{equation*}
$$

Hence, it is almost sufficient to find a prime $q \equiv 1\left(\bmod p^{a}\right)$ with $q<\left(p^{a}\right)^{2+1 / a}$. Let $P(b, m)$ denote the least prime which is $\equiv b(\bmod m)$. Linnik proved that there is a constant L such that $P(b, m) \ll m^{L}$ for all coprime b, m. The best constant known today is $L=5.5$ and due to Heath-Brown. However, the Extended Riemann Hypothesis (ERH) for Dirichlet L-functions implies that

$$
\begin{equation*}
\left|\pi(x, m, b)-\frac{\operatorname{li}(x)}{\phi(m)}\right| \leq x^{1 / 2} \log \left(x m^{2}\right) \tag{1.2}
\end{equation*}
$$

uniformly in $x, m, b[6]$, where $\pi(x, m, b)$ is the number of primes $r \leq x$ with $r \equiv b(\bmod m)$ and $\operatorname{li}(x)=\int_{2}^{x} \frac{d t}{\log t} \sim \frac{x}{\log x}$. Consequently, we may take $L=2+\varepsilon$ for any fixed ε. Using (1.2) and a finer analysis of $f(q)$, we prove the following.
Theorem 2. ERH implies Conjecture 2.
The main result of this paper is the following "near" proof of Conjecture 2.
Theorem 3. For an effective constant K, if $p^{a}>K$ then there is a prime q with $p^{a} \mid(q-1)$ and $f(q)<p^{a+1}$.

Theorem 3 is proved in the next section. Next, the proof of Theorem 2 will be given in Section 3.

2. Proof of Theorem 3

We need first an effective lower bound for the number of primes in an arithmetic progression with prime power modulus.

Lemma 2.1. There are positive, effective constants K_{1}, K_{2}, K_{3} so that if $p^{a} \geq K_{1}$ and $x \geq p^{a K_{2}}$, then

$$
\pi\left(x ; p^{a}, 1\right)-\pi\left(x ; p^{a+1}, 1\right) \geq K_{3} \frac{x / \log x}{p^{a+1 / 2} \log p}
$$

Proof. This basically follows from an effective version of Linnik's Theorem. For a modulus $q \geq 3$, let $\beta=\beta(q)$ the largest real zero of an L-function (primitive or not) of a real character of modulus q. If no such zero exists, set $\beta=\frac{1}{2}$. By Prop. 18.5 of [5], there are effective constants c_{1}, c_{2}, c_{3} so that if $x \geq q^{c_{1}}$ then

$$
\begin{equation*}
\Psi(x ; q, 1)=\frac{x}{\phi(q)}\left[1-\frac{x^{\beta-1}}{\beta}+\theta\left(x^{-\eta}+\frac{\log q}{q}\right)\right] \tag{2.1}
\end{equation*}
$$

where $|\theta| \leq c_{2}$ and

$$
\eta=\eta(q)=\frac{c_{3} \log \left(2+\frac{2}{(1-\beta) \log q}\right)}{\log q} .
$$

If $p>2$, then the real character modulo p^{a} has conductor p, hence $\beta\left(p^{a}\right)=\beta(p)$. If $p=2$ then any real character modulo p^{a} has conductor 4 or 8 and $\beta\left(2^{a}\right)=\frac{1}{2}$. By a classical theorem $[2, \S 14(12)]$, there is an effective constant $c>0$ so that we have

$$
\beta\left(p^{a}\right) \leq 1-\frac{c}{p^{1 / 2} \log ^{2} p} .
$$

Fix a prime power $p^{a} \geq 8$ and let $\beta=\beta(p), \eta=\eta\left(p^{a}\right)$. By (2.1) with $q=p^{a}$ and with $q=p^{a+1}$, we have

$$
\begin{equation*}
\Psi\left(x ; p^{a}, 1\right)-\Psi\left(x ; p^{a+1}, 1\right)=\frac{x}{p^{a}}\left[1-\frac{x^{\beta(p)-1}}{\beta(p)}+\theta^{\prime}\left(x^{-\eta}+\frac{\log p^{a}}{p^{a}}\right)\right] \tag{2.2}
\end{equation*}
$$

where $\left|\theta^{\prime}\right| \leq c_{2} \frac{p+1}{p-1} \leq 3 c_{2}$. If $\beta \leq 1-1 / \log p^{a}$, then the left side of (2.2) is $\geq x /\left(2 p^{a}\right)$ if p^{a} and K_{2} are sufficiently large. If $\beta>1-1 / \log p^{a}$, let $\delta=1-\beta$, so that

$$
\begin{aligned}
1-\frac{x^{\beta-1}}{\beta} \geq \beta-x^{-\delta} & \geq 1-\delta-e^{-\delta K_{2} \log p^{a}} \\
& \geq-\delta+\frac{\delta K_{2} \log p^{a}}{1+\delta K_{2} \log p^{a}} \geq \delta\left(-1+\frac{K_{2} \log p^{a}}{1+K_{2}}\right) \\
& \geq \frac{K_{2}}{2+2 K_{2}}\left(\delta \log p^{a}\right)
\end{aligned}
$$

and

$$
x^{-\eta} \leq\left(\frac{\delta \log p^{a}}{2}\right)^{c_{3} K_{2}} \leq 2^{-K_{2} c_{3}}\left(\delta \log p^{a}\right)
$$

Hence,

$$
\Psi\left(x ; p^{a}, 1\right)-\Psi\left(x ; p^{a+1}, 1\right) \gg \frac{x}{p^{a}}\left(\delta \log p^{a}\right) \gg \frac{x}{p^{a+1 / 2} \log p} .
$$

Finally,

$$
\pi\left(x ; p^{a}, 1\right)-\pi\left(x ; p^{a+1}, 1\right) \geq \frac{\Psi\left(x ; p^{a}, 1\right)-\Psi\left(x ; p^{a+1}, 1\right)-O(\sqrt{x})}{\log x}
$$

and the proof is complete.
Our next tool is an upper bound for the number of prime chains of a certain type. A prime chain is a sequence p_{1}, \ldots, p_{k} of primes such that $p_{i} \mid\left(p_{i+1}-1\right)$ for $1 \leq i \leq k-1$. The following is Theorem 2 in [4].

Lemma 2.2. For every $\varepsilon>0$ there is an effective constant $C(\varepsilon)$ so that for any prime p, the number of prime chains with $p_{1}=p$ and $p_{k} \leq x$ (varying k) is $\leq C(\varepsilon)(x / p)^{1+\varepsilon}$.

Remark. At the moment, the method of [4] gives

$$
C(\varepsilon)=\exp \exp \left((1+o(1)) \frac{1}{\varepsilon} \log \frac{1}{\varepsilon}\right)
$$

as $\varepsilon \rightarrow 0^{+}$. We need a numerical value of $C(\varepsilon)$ in one case. By the argument in $\S 3$ of [4], if $y<p, w$ is the product of the primes $\leq y$, and $s>1$, then the number of primes in question is at most the largest column sum of

$$
x^{s} \sum_{0 \leq k \leq \frac{\log x}{\log 2}} M^{k}, \quad M=\left(\sum_{\substack{m \geq 1 \\ a m+1 \equiv b(\bmod w)}} m^{-s}\right)_{b, a \in(\mathbb{Z} / w \mathbb{Z})^{*}} .
$$

If all the eigenvalues of M lie inside the unit circle, then $\sum_{k=0}^{\infty} M^{k}=(I-M)^{-1}$. For example, taking $s=\frac{5}{4}$ and $w=210$, so that M is a 48×48 matrix, we compute that the largest column sum of $(I-M)^{-1}$ is ≤ 7.37, so $C\left(\frac{1}{4}\right)=7.37$ is admissible.
Lemma 2.3. For $0<\varepsilon \leq 1$ and $y \geq 10^{10}$, we have

$$
\#\{q \leq x: f(q) \geq y\} \leq \frac{c(\varepsilon) x^{1+\varepsilon}}{y^{1 / 2+\varepsilon} \log y}
$$

where

$$
c(\varepsilon)=C(\varepsilon)\left(2^{-1-\varepsilon}-6^{-1-\varepsilon}\right) \zeta(1+\varepsilon)\left(0.44+\frac{2.43}{1+2 \varepsilon}\right)
$$

Proof. For a prime power $s^{b} \geq y$ with $b \geq 2$, let q be a prime with $f(q)=s^{b}$. Then there is a prime $r \equiv 1\left(\bmod s^{b}\right)$ and a prime chain with $p_{1}=r$ and $p_{k}=q$. Write $r=k s^{b}+1$. By Lemma 2.2, the number of such $q \leq x$ is at most

$$
\sum_{\substack{r \leq x \\ r \equiv 1 \\\left(\bmod s^{b}\right)}} C(\varepsilon)\left(\frac{x}{r}\right)^{1+\varepsilon} \leq C(\varepsilon)\left(\frac{x}{s^{b}}\right)^{1+\varepsilon} \sum_{\substack{k \geq 1 \\ k s^{b}+1 \text { prime }}} k^{-1-\varepsilon} .
$$

If $s>3$, we note that k is even and among any three consecutive even values of k, r is prime for at most two of them. For such s, the sum on k is at most $\left(2^{-1-\varepsilon}-6^{-1-\varepsilon}\right) \zeta(1+\varepsilon)$. For $s \in\{2,3\}$, we bound the sum on k trivially as $\zeta(1+\varepsilon)$. The number of $q \leq x$ is therefore at most

$$
\begin{equation*}
C(\varepsilon) x^{1+\varepsilon} \zeta(1+\varepsilon)\left[\sum_{2^{b} \geq y} \frac{1}{\left(2^{b}\right)^{1+\varepsilon}}+\sum_{3^{b} \geq y} \frac{1}{\left(3^{b}\right)^{1+\varepsilon}}+\left(2^{-1-\varepsilon}-6^{-1-\varepsilon}\right) \sum_{s^{b} \geq y} \frac{1}{\left(s^{b}\right)^{1+\varepsilon}}\right] . \tag{2.3}
\end{equation*}
$$

The first two sums in (2.3) total $\leq \frac{7}{2} y^{-1-\varepsilon}$. To estimate the third sum, let $S(t)$ denote the number of proper prime powers $\leq t$. By Theorem 1 and Corollay 1 of [8], we have

$$
\frac{x}{\log x} \leq \pi(x) \leq \frac{x}{\log x}\left(1+\frac{3}{2 \log x}\right) \quad(x \geq 17)
$$

If $t \geq 10^{10}$, then $S(t)>\pi\left(t^{1 / 2}\right) \geq \frac{2 t^{1 / 2}}{\log t}$ and

$$
\begin{aligned}
S(t) & =\sum_{k \geq 2} \pi\left(t^{1 / k}\right) \leq \sum_{k=2}^{7} \pi\left(t^{1 / k}\right)+\left(\frac{\log t}{\log 2}-7\right) \pi\left(t^{1 / 8}\right) \\
& \leq \sum_{k=2}^{7} \frac{k t^{1 / k}}{\log t}\left(1+\frac{3 k}{2 \log t}\right)+\left(\frac{\log t}{\log 2}-7\right) \frac{8 t^{1 / 8}}{\log t}\left(1+\frac{12}{\log t}\right) \\
& \leq 2.43 \frac{t^{1 / 2}}{\log t}
\end{aligned}
$$

By partial summation,

$$
\begin{align*}
\sum_{s^{b} \geq y} \frac{1}{\left(s^{b}\right)^{1+\varepsilon}} & =-\frac{S\left(y^{-}\right)}{y^{1+\varepsilon}}+(1+\varepsilon) \int_{y}^{\infty} \frac{S(t)}{t^{2+\varepsilon}} d t \\
& \leq-\frac{2}{y^{1 / 2+\varepsilon} \log y}+\frac{2.43(1+\varepsilon)}{\log y} \int_{y}^{\infty} \frac{d t}{t^{3 / 2+\varepsilon}} \tag{2.4}\\
& =\frac{0.43+\frac{2.43}{1+2 \varepsilon}}{y^{1 / 2+\varepsilon} \log y}
\end{align*}
$$

Combined with (2.3), this completes the proof.
Lemma 2.4. Let p be a prime and $p^{a+1} \geq 10^{10}$. Then

$$
\#\left\{q \leq x: p^{a} \|(q-1), f(q) \geq p^{a+1}\right\} \leq \frac{x}{p^{\frac{3 a+1}{2}} \log \left(p^{a+1}\right)}\left[2.86+c(\varepsilon)(1+1 / \varepsilon) \frac{x^{\varepsilon}}{p^{(2 a+1) \varepsilon}}\right]
$$

Proof. If $p^{a} \|(q-1)$ and $f(q) \geq p^{a+1}$, then either $p^{a} s^{b} \mid(q-1)$ for some proper prime power s^{b} with $s \neq p$ and $s^{b} \geq p^{a+1}$, or there is a prime $r \mid(q-1)$ with $f(r) \geq p^{a+1}$. The number of such $q \leq x$ is, using Lemma 2.3, (2.4) and partial summation,

$$
\begin{aligned}
& \leq \sum_{s^{b} \geq p^{a+1}} \frac{x}{p^{a} s^{b}}+\sum_{\substack{r \leq x / p^{a} \\
f(r) \geq p^{a+1}}} \frac{x}{p^{a} r} \\
& \leq \frac{2.86 x}{p^{(3 a+1) / 2} \log \left(p^{a+1}\right)}+c(\varepsilon) \frac{x}{p^{a+(1 / 2+\varepsilon)(a+1)} \log \left(p^{a+1}\right)}\left[\left(\frac{x}{p^{a}}\right)^{\varepsilon}+\int_{p^{a+1}}^{x / p^{a}} u^{-1+\varepsilon} d u\right] .
\end{aligned}
$$

This completes the proof of the lemma.
Proof of Theorem 3. Let $p^{a} \geq \max \left(10^{10}, K_{1}\right), x=p^{a K_{2}}$ and $\varepsilon=\frac{1}{2 K_{2}}$. By Lemmas 2.1 and 2.4,

$$
\begin{aligned}
& \#\left\{q \leq x: p^{a} \|(q-1), f(q)<p^{a+1}\right\}=\pi\left(x ; p^{a}, 1\right)-\pi\left(x ; p^{a+1}, 1\right) \\
& \quad-\#\left\{q \leq x: p^{a} \|(q-1), f(q) \geq p^{a+1}\right\} \\
& \geq K_{3} \frac{x / \log x}{p^{a+1 / 2} \log p}-c^{\prime}(\varepsilon) \frac{x}{p^{\frac{3 a+1}{2} \log \left(p^{a+1}\right)} p^{\left(K_{2}-2\right) a \varepsilon}} \\
&>0
\end{aligned}
$$

if p^{a} is large enough, where $c^{\prime}(\varepsilon)$ is a constant depending only on ε.

3. Proof of Theorem 2

We first take care of small p^{a}. If $a=1$ and $p \leq 18000000$ (1151367 primes) and when $a \geq 2$ and $p^{a} \leq 10^{10}$ (10084 prime powers), we find a prime q with $p^{a} \|(q-1)$ and $q<p^{2 a+1}$. By (1.1), $f(q)<p^{a+1}$ for such q. The calculations were performed using PARI/GP.

Next, suppose $a=1, p>18000000$ and put $x=p^{3}$. By (1.2),

$$
\begin{aligned}
\pi(x ; p, 1)-\pi\left(x ; p^{2}, 1\right) & \geq \frac{\operatorname{li}(x)}{p-1}-\sqrt{x} \log \left(x p^{2}\right)-\frac{x}{p^{2}} \\
& \geq \frac{p^{2}}{\log p}\left[\frac{1}{3}-5 \frac{\log ^{2} p}{p^{1 / 2}}-\frac{\log p}{p}\right]>0
\end{aligned}
$$

as desired.
Lastly, suppose $a \geq 2$ and $p^{a}>10^{10}$, and put $x=p^{3 a}$. By (1.2),

$$
\begin{align*}
\pi\left(x ; p^{a}, 1\right)-\pi\left(x ; p^{a+1}, 1\right) & \geq \frac{\operatorname{li}(x)}{p^{a}}-\sqrt{x} \log \left(x^{2} p^{4 a+2}\right) \\
& \geq \frac{p^{2 a}}{\log \left(p^{a}\right)}\left[\frac{1}{3}-11 \frac{\log ^{2}\left(p^{a}\right)}{p^{a / 2}}\right] \tag{3.1}\\
& \geq 0.275 \frac{p^{2 a}}{\log \left(p^{a}\right)} .
\end{align*}
$$

Since we may take $C\left(\frac{1}{4}\right)=7.37$ in Lemma 2.2, we have $c\left(\frac{1}{4}\right) \leq 22$ for Lemma 2.3. By Lemma 2.4 and (3.1),

$$
\begin{aligned}
\#\left\{q \leq x: p^{a} \|(q-1), f(q)<p^{a+1}\right\} & \geq 0.275 \frac{p^{2 a}}{\log \left(p^{a}\right)}-\frac{p^{\frac{3 a-1}{2}}}{\log \left(p^{a+1}\right)}\left[2.86+110 p^{\frac{a-1}{4}}\right] \\
& \geq \frac{p^{2 a}}{\log \left(p^{a}\right)}\left[0.275-\frac{2.03}{p^{a / 2}}-\frac{66}{p^{a / 4}}\right] \\
& >0,
\end{aligned}
$$

as desired.
Acknowledgements. We thank the anonymous referee for useful suggestions. This work started during a visit of the second author at the Mathematics Department of the University of Illinois in Urbana-Champaign in January of 2007. He thanks the people of that department for their hospitality.

References

[1] W. D. Banks, J. Friedlander, F. Luca, F. Pappalardi and I. E. Shparlinski, Coincidences in the values of the Euler and Carmichael functions, Acta Arith. 122 (2006), 207-234.
[2] H. Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics vol. 74, Springer-Verlag, New York, 2000.
[3] K. Ford, S. Konyagin and F. Luca, Prime chains and Pratt trees, Geom. Funct. Anal. 20 (2010), 1231-1258.
[4] H. Iwaniec and E. Kowalski, Analytic number theory, Amer. Math. Soc., Providence, RI, 2004.
[5] J. Oesterlé, Versions effective du théorème de Chebotarev sous l'hypothése de Riemann généralisée, Astérisque 61 (1979), 165-167. [French].
[6] V. Pratt, Every prime has a succinct certificate, SIAM J. Comput. 4 (1975), no. 3, 214-220.
[7] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 1962, 64-94.

KF: Department of Mathematics, 1409 West Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

E-mail address: ford@math.uiuc.edu
FL: Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P. 58089, Morelia, Michoacán, México

E-mail address: fluca@matmor.unam.mx

[^0]: Date: April 3, 2011.
 Research of the first author supported by National Science Foundation grants DMS-0555367 and DMS0901339. Research of the second author was supported in part by Grants SEP-CONACyT 79685 and PAPIIT 100508.

