THE IMAGE OF CARMICHAEL'S λ-FUNCTION

KEVIN FORD, FLORIAN LUCA, AND CARL POMERANCE

Abstract

In this paper, we show that the counting function of the set of values of the Carmichael λ-function is $x /(\log x)^{\eta+o(1)}$, where $\eta=1-(1+\log \log 2) /(\log 2)=$ 0.08607

1 Introduction

Euler's function φ assigns to a natural number n the order of the group of units of the ring of integers modulo n. It is of course ubiquitous in number theory, as is its close cousin λ, which gives the exponent of the same group. Already appearing in Gauss's Disquisitiones Arithmeticae, λ is commonly referred to as Carmichael's function after R. D. Carmichael, who studied it about a century ago. (A Carmichael number n is composite but nevertheless satisfies $a^{n} \equiv a(\bmod n)$ for all integers a, just as primes do. Carmichael discovered these numbers which are characterized by the property that $\lambda(n) \mid n-1$.)

It is interesting to study φ and λ as functions. For example, how easy is it to compute $\varphi(n)$ or $\lambda(n)$ given n ? It is indeed easy if we know the prime factorization of n. Interestingly, we know the converse. After work of Miller [15], given either $\varphi(n)$ or $\lambda(n)$, it is easy to find the prime factorization of n.

Within the realm of "arithmetic statistics" one can also ask for the behavior of φ and λ on typical inputs n, and ask how far this varies from their values on average. For φ, this type of question goes back to the dawn of the field of probabilistic number theory with the seminal paper of Schoenberg [18], while some results in this vein for λ are found in [6].

One can also ask about the value sets of φ and λ. That is, what can one say about the integers which appear as the order or exponent of the groups $(\mathbb{Z} / n \mathbb{Z})^{*}$?

These are not new questions. Let $V_{\varphi}(x)$ denote the number of positive integers $n \leqslant x$ for which $n=\varphi(m)$ for some m. Pillai [16] showed in 1929 that $V_{\varphi}(x) \leqslant x /(\log x)^{c+o(1)}$ as $x \rightarrow \infty$, where $c=(\log 2) / \mathrm{e}$. On the other hand, since $\varphi(p)=p-1, V_{\varphi}(x)$ is at least $\pi(x+1)$, the number of primes in $[1, x+1]$, and so $V_{\varphi}(x) \geqslant(1+o(1)) x / \log x$. In one of his earliest papers, Erdős [4] showed that the lower bound is closer to the truth: we have $V_{\varphi}(x)=x /(\log x)^{1+o(1)}$ as $x \rightarrow \infty$. This result has since been refined by a number of

[^0]authors, including Erdős and Hall, Maier and Pomerance, and Ford, see [7] for the current state of the art.

Essentially the same results hold for the sum-of-divisors function σ, but only recently [10] were we able to show that there are infinitely many numbers that are simultaneously values of φ and of σ, thus settling an old problem of Erdős.

In this paper, we address the range problem for Carmichael's function λ. From the definition of $\lambda(n)$ as the exponent of the group $(\mathbb{Z} / n \mathbb{Z})^{*}$, it is immediate that $\lambda(n) \mid \varphi(n)$ and that $\lambda(n)$ is divisible by the same primes as $\varphi(n)$. In addition, we have

$$
\lambda(n)=\operatorname{lcm}\left[\lambda\left(p^{a}\right): p^{a} \| n\right],
$$

where $\lambda\left(p^{a}\right)=p^{a-1}(p-1)$ for odd primes p with $a \geqslant 1$ or $p=2$ and $a \in\{1,2\}$. Further, $\lambda\left(2^{a}\right)=2^{a-2}$ for $a \geqslant 3$. Put $V_{\lambda}(x)$ for the number of integers $n \leqslant x$ with $n=\lambda(m)$ for some m. Note that since $p-1=\lambda(p)$ for all primes p, it follows that

$$
\begin{equation*}
V_{\lambda}(x) \geqslant \pi(x+1)=(1+o(1)) \frac{x}{\log x} \quad(x \rightarrow \infty) \tag{1.1}
\end{equation*}
$$

as with φ. In fact, one might suspect that the story for λ is completely analogous to that of φ. As it turns out, this is not the case.

It is fairly easy to see that $V_{\varphi}(x)=o(x)$ as $x \rightarrow \infty$, since most numbers n are divisible by many different primes, so most values of $\varphi(n)$ are divisible by a high power of 2 . This argument fails for λ and in fact it is not immediately obvious that $V_{\lambda}(x)=o(x)$ as $x \rightarrow \infty$. Such a result was first shown in [6], where it was established that there is a positive constant c with $V_{\lambda}(x) \ll x /(\log x)^{c}$. In [12], a value of c in this result was computed. It was shown there that, as $x \rightarrow \infty$,

$$
\begin{equation*}
V_{\lambda}(x) \leqslant \frac{x}{(\log x)^{\alpha+o(1)}} \quad \text { holds with } \quad \alpha=1-\mathrm{e}(\log 2) / 2=0.057913 \ldots \tag{1.2}
\end{equation*}
$$

The exponents on the logarithms in the lower and upper bounds (1.1) and (1.2) were brought closer in the recent paper [14], where it was shown that, as $x \rightarrow \infty$,

$$
\frac{x}{(\log x)^{0.359052}}<V_{\lambda}(x) \leqslant \frac{x}{(\log x)^{\eta+o(1)}} \quad \text { with } \quad \eta=1-\frac{1+\log \log 2}{\log 2}=0.08607 \ldots
$$

In Section 2.1 of that paper, a heuristic was presented suggesting that the correct exponent of the logarithm should be the number η. In the present paper, we confirm the heuristic from [14] by proving the following theorem.
Theorem 1. We have $V_{\lambda}(x)=x(\log x)^{-\eta+o(1)}$, as $x \rightarrow \infty$.
Just as results on $V_{\varphi}(x)$ can be generalized to similar multiplicative functions, such as σ, we would expect our result to be generalizable to functions similar to λ enjoying the property $f(m n)=\operatorname{lcm}[f(m), f(n)]$ when m, n are coprime.

Since the upper bound in Theorem 1 was proved in [14], we need only show that $V_{\lambda}(x) \geqslant$ $x /(\log x)^{\eta+o(1)}$ as $x \rightarrow \infty$. We remark that in our lower bound argument we will count only squarefree values of λ.

The same number η in Theorem 1 appears in an unrelated problem. As shown by Erdős [5], the number of distinct entries in the multiplication table for the numbers up to n is $n^{2} /(\log n)^{\eta+o(1)}$ as $n \rightarrow \infty$. Similarly, the asymptotic density of the integers with a divisor in $[n, 2 n]$ is $1 /(\log n)^{\eta+o(1)}$ as $n \rightarrow \infty$. See [8] and [9] for more on these kinds of results. As explained in the heuristic argument presented in [14], the source of η in the λ-range problem comes from the distribution of integers n with about $(1 / \log 2) \log \log n$ prime divisors: the number of these numbers $n \in[2, x]$ is $x /(\log x)^{\eta+o(1)}$ as $x \rightarrow \infty$. Curiously, the number η arises in the same way in the multiplication table problem: most entries in an n by n multiplication table have about $(1 / \log 2) \log \log n$ prime divisors (a heuristic for this is given in the introduction of [8]).

We mention two related unsolved problems. Several papers ([1, 2, 11, 17]) have discussed the distribution of numbers n such that n^{2} is a value of φ; in the recent paper [17] it was shown that the number of such $n \leqslant x$ is between $x /(\log x)^{c_{1}}$ and $x /(\log x)^{c_{2}}$, where $c_{1}>c_{2}>0$ are explicit constants. Is the count of the shape $x /(\log x)^{c+o(1)}$ for some number c ? The numbers c_{1}, c_{2} in [17] are not especially close. The analogous problem for λ is wide open. In fact, it seems that a reasonable conjecture (from [17]) is that asymptotically all even numbers n have n^{2} in the range of λ. On the other hand, it has not been proved that there is a lower bound of the shape $x /(\log x)^{c}$ with some positive constant c for the number of such numbers $n \leqslant x$.

2 Lemmas

Here we present some estimates that will be useful in our argument. To fix notation, for a positive integer q and an integer a, we let $\pi(x ; q, a)$ be the number of primes $p \leqslant x$ in the progression $p \equiv a(\bmod q)$, and put

$$
E^{*}(x ; q)=\max _{y \leqslant x}\left|\pi(y ; q, 1)-\frac{\operatorname{li}(y)}{\varphi(q)}\right|,
$$

where $\operatorname{li}(y)=\int_{2}^{y} \mathrm{~d} t / \log t$.
We also let $P^{+}(n)$ and $P^{-}(n)$ denote the largest prime factor of n and the smallest prime factor of n, respectively, with the convention that $P^{-}(1)=\infty$ and $P^{+}(1)=0$. Let $\omega(m)$ be the number of distinct prime factors of m, and let $\tau_{k}(n)$ be the k-th divisor function; that is, the number of ways to write $n=d_{1} \cdots d_{k}$ with d_{1}, \ldots, d_{k} positive integers. Let μ denote the Möbius function.

First we present an estimate for the sum of reciprocals of integers with a given number of prime factors.

Lemma 2.1. Suppose x is large. Uniformly for $1 \leqslant h \leqslant 2 \log \log x$,

$$
\sum_{\substack{P^{+}(b) \leqslant x \\ \omega(b)=h}} \frac{\mu^{2}(b)}{b} \asymp \frac{(\log \log x)^{h}}{h!} .
$$

Proof. The upper bound follows very easily from

$$
\sum_{\substack{P^{+}(b) \leqslant x \\ \omega(b)=h}} \frac{\mu^{2}(b)}{b} \leqslant \frac{1}{h!}\left(\sum_{p \leqslant x} \frac{1}{p}\right)^{h}=\frac{(\log \log x+O(1))^{h}}{h!} \asymp \frac{(\log \log x)^{h}}{h!}
$$

upon using Mertens' theorem and the given upper bound on h. For the lower bound we have

$$
\sum_{\substack{P^{+}(b) \leqslant x \\ \omega(b)=h}} \frac{\mu^{2}(b)}{b} \geqslant \frac{1}{h!}\left(\sum_{p \leqslant x} \frac{1}{p}\right)^{h}\left[1-\binom{h}{2}\left(\sum_{p \leqslant x} \frac{1}{p}\right)^{-2} \sum_{p} \frac{1}{p^{2}}\right] .
$$

Again, the sums of $1 / p$ are each $\log \log x+O(1)$. The sum of $1 / p^{2}$ is smaller than 0.46 , hence for large enough x the bracketed expression is at least 0.08 , and the desired lower bound follows.

Next, we recall (see e.g., [3, Ch. 28]) the well-known theorem of Bombieri and Vinogradov, and then we prove a useful corollary.

Lemma 2.2. For any number $A>0$ there is a number $B>0$ so that for $x \geqslant 2$,

$$
\sum_{q \leqslant \sqrt{x}(\log x)^{-B}} E^{*}(x ; q) \lll A \frac{x}{(\log x)^{A}} .
$$

Corollary 1. For any integer $k \geqslant 1$ and number $A>0$ we have for all $x \geqslant 2$,

$$
\sum_{q \leqslant x^{1 / 3}} \tau_{k}(q) E^{*}(x ; q) \lll k, A \frac{x}{(\log x)^{A}}
$$

Proof. Apply Lemma 2.2 with A replaced by $2 A+k^{2}$, Cauchy's inequality, the trivial bound $\left|E^{*}(x ; q)\right| \ll x / q$ and the easy bound

$$
\begin{equation*}
\sum_{q \leqslant y} \frac{\tau_{k}^{2}(q)}{q} \ll_{k}(\log y)^{k^{2}} \tag{2.1}
\end{equation*}
$$

to get

$$
\begin{aligned}
\left(\sum_{q \leqslant x^{1 / 3}} \tau_{k}(q) E^{*}(x ; q)\right)^{2} & \leqslant\left(\sum_{q \leqslant x^{1 / 3}} \tau_{k}(q)^{2}\left|E^{*}(x ; q)\right|\right)\left(\sum_{q \leqslant x^{1 / 3}}\left|E^{*}(x ; q)\right|\right) \\
& \ll k, A x\left(\sum_{q \leqslant x^{1 / 3}} \frac{\tau_{k}(q)^{2}}{q}\right) \frac{x}{(\log x)^{2 A+k^{2}}} \\
& \ll k, A^{\frac{x^{2}}{(\log x)^{2 A}},}
\end{aligned}
$$

which leads to the desired conclusion.
Finally, we need a lower bound from sieve theory.

Lemma 2.3. There are absolute constants $c_{1}>0$ and $c_{2} \geqslant 2$ so that for $y \geqslant c_{2}, y^{3} \leqslant x$, and any even positive integer b, we have

$$
\sum_{\substack{n \in(x, 2 x] \\ \text { an+1 prime } \\ P^{-}(n)>y}} 1 \geqslant \frac{c_{1} b x}{\varphi(b) \log (b x) \log y}-2 \sum_{m \leqslant y^{3}} 3^{\omega(m)} E^{*}(2 b x ; b m) .
$$

Proof. We apply a standard lower bound sieve to the set

$$
\mathcal{A}=\left\{\frac{\ell-1}{b}: \ell \text { prime, } \ell \in(b x+1,2 b x], \ell \equiv 1(\bmod b)\right\}
$$

With \mathcal{A}_{d} the set of elements of \mathcal{A} divisible by a squarefree integer d, we have $\left|\mathcal{A}_{d}\right|=$ $X g(d) / d+r_{d}$, where

$$
X=\frac{\operatorname{li}(2 b x)-\operatorname{li}(b x+1)}{\varphi(b)}, \quad g(d)=\prod_{\substack{p \mid d \\ p \nmid b}} \frac{p}{p-1}, \quad\left|r_{d}\right| \leqslant 2 E^{*}(2 b x ; d b) .
$$

It follows that for $2 \leqslant v<w$,

$$
\sum_{v \leqslant p<w} \frac{g(p)}{p} \log p=\log \frac{w}{v}+O(1)
$$

the implied constant being absolute. Apply [13, Theorem 8.3] with $q=1, \xi=y^{3 / 2}$ and $z=y$, observing that the condition $\Omega_{2}(1, L)$ of [13, p. 142] holds with an absolute constant L. With the function $f(u)$ as defined in [13, pp. 225-227], we have $f(3)=\frac{2}{3} e^{\gamma} \log 2>\frac{4}{5}$. Then with B_{19} the absolute constant in [13, Theorem 8.3], we have

$$
f(3)-B_{19} \frac{L}{(\log \xi)^{1 / 14}} \geqslant \frac{1}{2}
$$

for large enough c_{2}. We obtain the bound

$$
\begin{gathered}
\#\left\{x<n \leqslant 2 x: b n+1 \text { prime, } P^{-}(n)>y\right\} \geqslant \frac{X}{2} \prod_{p \leqslant y}\left(1-\frac{g(p)}{p}\right)-\sum_{m \leqslant \xi^{2}} 3^{\omega(m)}\left|r_{m}\right| \\
\geqslant \frac{c_{1} b x}{\varphi(b) \log (b x) \log y}-2 \sum_{m \leqslant y^{3}} 3^{\omega(m)} E^{*}(2 b x ; b m) .
\end{gathered}
$$

This completes the proof.

3 The set-up

If $n=\lambda\left(p_{1} p_{2} \ldots p_{k}\right)$, where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes, then we have $n=$ $\operatorname{lcm}\left[p_{1}-1, p_{2}-1, \ldots, p_{k}-1\right]$. If we further assume that n is squarefree and consider the Venn diagram with the sets S_{1}, \ldots, S_{k} of the prime factors of $p_{1}-1, \ldots, p_{k}-1$, respectively, then this equation gives an ordered factorization of n into $2^{k}-1$ factors (some of which may be the trivial factor 1). Here we "see" the shifted primes $p_{i}-1$ as products of
certain subsequences of 2^{k-1} of these factors. Conversely, given n and an ordered factorization of n into $2^{k}-1$ factors, we can ask how likely it is for those k products of 2^{k-1} factors to all be shifted primes. Of course, this is not likely at all, but if n has many prime factors, and so many factorizations, our odds improve that there is at least one such "good" factorization. For example, when $k=2$, we factor a squarefree number n as $a_{1} a_{2} a_{3}$, and we ask for $a_{1} a_{2}+1=p_{1}$ and $a_{2} a_{3}+1=p_{2}$ to both be prime. If so, we would have $n=\lambda\left(p_{1} p_{2}\right)$. The heuristic argument from [14] was based on this idea. In particular, if a squarefree n is even and has at least $\theta_{k} \log \log n$ odd prime factors (where $\theta_{k}>k / \log \left(2^{k}-1\right)$ is fixed and $\theta_{k} \rightarrow 1 / \log 2$ as $\left.k \rightarrow \infty\right)$ then there are so many factorizations of n into $2^{k}-1$ factors, that it becomes likely that n is a λ-value. The lower bound proof from [14] concentrated just on the case $k=2$, but here we attack the general case. As in [14], we let $r(n)$ be the number of representations of n as the λ of a number with k primes. To see that $r(n)$ is often positive, we show that it's average value is large, and that the average value of $r(n)^{2}$ is not much larger. Our conclusion will follow from Cauchy's inequality.

Let $k \geqslant 2$ be a fixed integer, let x be sufficiently large (in terms of k), and put

$$
\begin{equation*}
y=\exp \left\{\frac{\log x}{200 k \log \log x}\right\}, \quad l=\left\lfloor\frac{k}{\left(2^{k}-1\right) \log \left(2^{k}-1\right)} \log \log y\right\rfloor . \tag{3.1}
\end{equation*}
$$

For $n \leqslant x$, let $r(n)$ be the number of representations of n in the form

$$
\begin{equation*}
n=\prod_{i=0}^{k-1} a_{i} \prod_{j=1}^{2^{k}-1} b_{j}, \tag{3.2}
\end{equation*}
$$

where $P^{+}\left(b_{j}\right) \leqslant y<P^{-}\left(a_{i}\right)$ for all i and $j, 2 \mid b_{2^{k}-1}, \omega\left(b_{j}\right)=l$ for each $j, a_{i}>1$ for all i, and furthermore that $a_{i} B_{i}+1$ is prime for all i, where

$$
\begin{equation*}
B_{i}=\prod_{\left\lfloor j / 2^{i}\right\rfloor \text { odd }} b_{j} . \tag{3.3}
\end{equation*}
$$

Observe that each B_{i} is even since it is a multiple of $b_{2^{k}-1}$ (because $\left\lfloor\left(2^{k}-1\right) / 2^{i}\right\rfloor=$ $2^{k-i}-1$ is odd), each B_{i} is the product of 2^{k-1} of the numbers b_{j}, and that every b_{j} divides $B_{0} \cdots B_{k-1}$. Also, if n is squarefree and $r(n)>0$, then the primes $a_{i} B_{i}+1$ are all distinct and it follows that

$$
n=\lambda\left(\prod_{i=0}^{k-1}\left(a_{i} B_{i}+1\right)\right)
$$

therefore such $n \leqslant x$ are counted by $V_{\lambda}(x)$. We count how often $r(n)>0$ using Cauchy's inequality in the following standard way:

$$
\begin{equation*}
\#\left\{2^{-2 k} x<n \leqslant x: \mu^{2}(n)=1, r(n)>0\right\} \geqslant \frac{S_{1}^{2}}{S_{2}} \tag{3.4}
\end{equation*}
$$

where

$$
S_{1}=\sum_{2^{-2 k} x<n \leqslant x} \mu^{2}(n) r(n), \quad S_{2}=\sum_{2^{-2 k} x<n \leqslant x} \mu^{2}(n) r^{2}(n) .
$$

Our application of Cauchy's inequality is rather sharp, as we will show below that $r(n)$ is approximately 1 on average over the kind of integers we are interested in, both in mean and in mean-square. More precisely, in the next section, we prove

$$
\begin{equation*}
S_{1} \gg \frac{x}{(\log x)^{\beta_{k}}(\log \log x)^{O_{k}(1)}}, \tag{3.5}
\end{equation*}
$$

and in the final section, we prove

$$
\begin{equation*}
S_{2} \ll \frac{x(\log \log x)^{O_{k}(1)}}{(\log x)^{\beta_{k}}} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{k}=1-\frac{k}{\log \left(2^{k}-1\right)}\left(1+\log \log \left(2^{k}-1\right)-\log k\right) \tag{3.7}
\end{equation*}
$$

Together, the inequalities (3.4), (3.5) and (3.6) imply that

$$
V_{\lambda}(x) \gg \frac{x}{(\log x)^{\beta_{k}}(\log \log x)^{O_{k}(1)}}
$$

We deduce the lower bound of Theorem 1 by noting that $\lim _{k \rightarrow \infty} \beta_{k}=\eta$.
Throughout, constants implied by the symbols O, \ll, \gg, and \asymp may depend on k, but not on any other variable.

4 The lower bound for S_{1}

For convenience, when using the sieve bound in Lemma 2.3, we consider a slightly larger sum S_{1}^{\prime} than S_{1}, namely

$$
S_{1}^{\prime}:=\sum_{n \in \mathcal{N}} r(n),
$$

where \mathcal{N} is the set of $n \in\left(2^{-2 k} x, x\right]$ of the form $n=n_{0} n_{1}$ with $P^{+}\left(n_{0}\right) \leqslant y<P^{-}\left(n_{1}\right)$ and n_{0} squarefree. That is, in S_{1}^{\prime} we no longer require the numbers a_{0}, \ldots, a_{k-1} in (3.2) to be squarefree. The difference between S_{1} and S_{1}^{\prime} is very small; indeed, putting $h=2^{k}+k-1$, note that $r(n) \leqslant \tau_{h}(n)$, so that we have by (3.2) the estimate

$$
\begin{align*}
S_{1}^{\prime}-S_{1} & \leqslant \sum_{\substack{n \leqslant x \\
\exists n>y: p^{2} \mid n}} \tau_{h}(n) \leqslant \sum_{p>y} \sum_{\substack{n \leqslant x \\
p^{2} \mid n}} \tau_{h}(n) \leqslant \sum_{p>y} \tau_{h}\left(p^{2}\right) \sum_{m \leqslant x / p^{2}} \tau_{h}(m) \tag{4.1}\\
& \leqslant \sum_{p>y} \tau_{h}\left(p^{2}\right) \frac{x}{p^{2}} \sum_{m \leqslant x} \frac{\tau_{h}(m)}{m} \ll \frac{x(\log x)^{h}}{y} .
\end{align*}
$$

Here we have used the inequality $\tau_{h}(u v) \leqslant \tau_{h}(u) \tau_{h}(v)$ as well as the easy bound

$$
\begin{equation*}
\sum_{m \leqslant x} \frac{\tau_{h}(m)}{m} \ll(\log x)^{h} \tag{4.2}
\end{equation*}
$$

which is similar to (2.1). By (3.2), the sum S_{1}^{\prime} counts the number of $\left(2^{k}-1+k\right)$-tuples $\left(a_{0}, \ldots, a_{k-1}, b_{1}, \ldots, b_{2^{k}-1}\right)$ satisfying

$$
\begin{equation*}
2^{-2 k} x<a_{0} \cdots a_{k-1} b_{1} \cdots b_{2^{k}-1} \leqslant x \tag{4.3}
\end{equation*}
$$

and with $P^{+}\left(b_{j}\right) \leqslant y<P^{+}\left(a_{i}\right)$ for every i and $j, b_{1} \cdots b_{2^{k}-1}$ squarefree, $2 \mid b_{2^{k}-1}$, $\omega\left(b_{j}\right)=l$ for every $j, a_{i}>1$ for every i, and $a_{i} B_{i}+1$ prime for every i, where B_{i} is defined in (3.3). Fix numbers $b_{1}, \ldots, b_{2^{k}-1}$. Then

$$
\begin{equation*}
b_{1} \cdots b_{2^{k}-1} \leqslant y^{\left(2^{k}-1\right) l} \leqslant y^{2 \log \log x}=x^{1 / 100 k} . \tag{4.4}
\end{equation*}
$$

In the above, we used the fact that $k \leqslant 2 \log \left(2^{k}-1\right)$. Fix also A_{0}, \ldots, A_{k-1}, each a power of 2 exceeding $x^{1 / 2 k}$, and such that

$$
\begin{equation*}
\frac{x}{2 b_{1} \cdots b_{2^{k}-1}}<A_{0} \cdots A_{k-1} \leqslant \frac{x}{b_{1} \cdots b_{2^{k}-1}} . \tag{4.5}
\end{equation*}
$$

Then (4.3) holds whenever $A_{i} / 2<a_{i} \leqslant A_{i}$ for each i. By Lemma 2.3, using the facts that $B_{i} / \varphi\left(B_{i}\right) \geqslant 2$ (because B_{i} is even) and $A_{i} B_{i} \leqslant x$ (a consequence of (4.5)), we deduce that the number of choices for each a_{i} is at least

$$
\frac{c_{1} A_{i}}{\log x \log y}-2 \sum_{m \leqslant y^{3}} 3^{\omega(m)} E^{*}\left(A_{i} B_{i} ; m B_{i}\right)
$$

Using the elementary inequality

$$
\prod_{j=1}^{k} \max \left(0, x_{j}-y_{j}\right) \geqslant \prod_{j=1}^{k} x_{j}-\sum_{i=1}^{k} y_{i} \prod_{j \neq i} x_{j}
$$

valid for any non-negative real numbers x_{j}, y_{j}, we find that the number of admissible k tuples $\left(a_{0}, \ldots, a_{k-1}\right)$ is at least

$$
\begin{aligned}
\frac{c_{1}^{k} A_{0} \cdots A_{k-1}}{(\log x \log y)^{k}} & -\frac{2 c_{1}^{k-1} A_{0} \cdots A_{k-1}}{(\log x \log y)^{k-1}} \sum_{i=0}^{k-1} \frac{1}{A_{i}} \sum_{m \leqslant y^{3}} 3^{\omega(m)} E^{*}\left(A_{i} B_{i} ; m B_{i}\right) \\
& =M(\mathbf{A}, \mathbf{b})-R(\mathbf{A}, \mathbf{b}),
\end{aligned}
$$

say. By symmetry and (4.5),

$$
\begin{equation*}
\sum_{\mathbf{A}, \mathbf{b}} R(\mathbf{A}, \mathbf{b}) \ll \frac{x}{(\log x \log y)^{k-1}} \sum_{\mathbf{b}} \frac{1}{b_{1} \cdots b_{2^{k}-1}} \sum_{\mathbf{A}} \frac{1}{A_{0}} \sum_{m \leqslant y^{3}} 3^{\omega(m)} E^{*}\left(A_{0} B_{0} ; m B_{0}\right) \tag{4.6}
\end{equation*}
$$

where the sum on \mathbf{b} is over all $\left(2^{k}-1\right)$-tuples satisfying $b_{1} \cdots b_{2^{k}-1} \leqslant x^{1 / 100 k}$. Write $b_{1} \cdots b_{2^{k}-1}=B_{0} B_{0}^{\prime}$, where $B_{0}^{\prime}=b_{2} b_{4} \cdots b_{2^{k}-2}$. Given B_{0} and B_{0}^{\prime}, the number of corresponding tuples $\left(b_{1}, \ldots, b_{2^{k-1}}\right)$ is at most $\tau_{2^{k-1}}\left(B_{0}\right) \tau_{2^{k-1}-1}\left(B_{0}^{\prime}\right)$. Suppose $D / 2<B_{0} \leqslant D$, where D is a power of 2 . Since $E^{*}(x ; q)$ is an increasing function of $x, E^{*}\left(A_{0} B_{0} ; m B_{0}\right) \leqslant$
$E^{*}\left(A_{0} D ; m B_{0}\right)$. Also, $3^{\omega(m)} \leqslant \tau_{3}(m)$ and

$$
\sum_{B_{0}^{\prime} \leqslant x} \frac{\tau_{2^{k-1}-1}\left(B_{0}^{\prime}\right)}{B_{0}^{\prime}} \ll(\log x)^{2^{k-1}-1}
$$

(this is (4.2) with h replaced by $2^{k-1}-1$). We therefore deduce that

$$
\sum_{\mathbf{A}, \mathbf{b}} R(\mathbf{A}, \mathbf{b}) \ll \frac{x(\log x)^{2^{k-1}-1}}{(\log x \log y)^{k-1}} \sum_{\mathbf{A}} \frac{1}{A_{0}} \sum_{D} \frac{1}{D} \sum_{\substack{D / 2<B_{0} \leqslant D \\ m \leqslant y^{3}}} \tau_{3}(m) \tau_{2^{k-1}}\left(B_{0}\right) E^{*}\left(A_{0} D ; m B_{0}\right)
$$

the sum being over $\left(A_{0}, \ldots, A_{k-1}, D\right)$, each a power of 2 , $D \leqslant x^{1 / 100 k}, A_{i} \geqslant x^{1 / 2 k}$ for each i and $A_{0} \cdots A_{k-1} D \leqslant x$. With A_{0} and D fixed, the number of choices for $\left(A_{1}, \ldots, A_{k-1}\right)$ is $\ll(\log x)^{k-1}$. Writing $q=m B_{0}$, we obtain

$$
\begin{array}{rl}
\sum_{\mathbf{A}, \mathbf{b}} & R(\mathbf{A}, \mathbf{b}) \\
& \ll x \frac{(\log x)^{2^{k-1}-1}}{(\log y)^{k-1}} \sum_{D \leqslant x^{1 / 100 k}} \sum_{x^{1 / 2 k}<A_{0} \leqslant x / D} \frac{1}{A_{0} D} \sum_{q \leqslant y^{3} x^{1 / 100 k}} \tau_{2^{k-1}+3}(q) E^{*}\left(A_{0} D ; q\right) \\
& \ll \frac{x}{(\log x)^{\beta_{k}+1}},
\end{array}
$$

where we used Corollary 1 in the last step with $A=2^{k-1}-k+4+\beta_{k}$.
For the main term, by (4.5), given any $b_{1}, \ldots, b_{2^{k-1}}$, the product $A_{0} \cdots A_{k-1}$ is determined (and larger than $\frac{1}{2} x^{1-1 / 100 k}$ by (4.4)), so there are $\gg(\log x)^{k-1}$ choices for the k-tuple A_{0}, \ldots, A_{k-1}. Hence,

$$
\sum_{\mathbf{A}, \mathbf{b}} M(\mathbf{A}, \mathbf{b}) \gg \frac{x}{(\log y)^{k} \log x} \sum_{\mathbf{b}} \frac{1}{b_{1} \cdots b_{2^{k}-1}}
$$

Let $b=b_{1} \cdots b_{2^{k}-1}$. Given an even, squarefree integer b, the number of ordered factorizations of b as $b=b_{1} \cdots b_{2^{k}-1}$, where each $\omega\left(b_{i}\right)=l$ and $b_{2^{k}-1}$ is even, is equal to
$\frac{\left(\left(2^{k}-1\right) l\right)!}{\left(2^{k}-1\right)(l!)^{2^{k}-1}}$. Let $b^{\prime}=b / 2$, so $h:=\omega\left(b^{\prime}\right)=\left(2^{k}-1\right) l-1=\frac{k \log \log y}{\log \left(2^{k}-1\right)}+O(1)$. Applying Lemma 2.1, Stirling's formula and the fact that $\left(2^{k}-1\right) l=h+O(1)$, produces

$$
\begin{aligned}
\sum_{\mathbf{b}} \frac{1}{b_{1} \ldots b_{2^{k}-1}} & \geqslant \frac{\left(\left(2^{k}-1\right) l\right)!}{2\left(2^{k}-1\right)(l!)^{2^{k}-1}} \sum_{\begin{array}{c}
P^{+}\left(b^{\prime}\right) \leq y \\
\omega\left(b^{\prime}\right)=h, 2 b^{\prime}
\end{array}} \frac{\mu^{2}\left(b^{\prime}\right)}{b^{\prime}} \\
& \gg \frac{\left(\left(2^{k}-1\right) l\right)!(\log \log y)^{h}}{h!}=\frac{(l \log \log y)^{h}}{(l!)^{2^{k}-1}}(\log \log x)^{O(1)} \\
& =\left[\frac{\left[\left(2^{k}-1\right) \mathrm{e} \log \left(2^{k}-1\right)\right.}{k}\right]^{\left(2^{k}-1\right) l}(\log \log x)^{O(1)} \\
& \left.=(\log y)^{\frac{k}{\log \left(2^{k}-1\right)} \log \left[\frac{\left(2^{k}-1\right) \operatorname{eog}\left(2^{k}-1\right)}{k}\right.}\right](\log \log x)^{O(1)} \\
& =(\log y)^{k-\beta_{k}+1}(\log \log x)^{O(1)} .
\end{aligned}
$$

Invoking (3.1), we obtain that

$$
\begin{equation*}
\sum_{\mathbf{A}, \mathbf{b}} M(\mathbf{A}, \mathbf{b}) \geqslant \frac{x}{(\log x)^{\beta_{k}}(\log \log x)^{O(1)}} \tag{4.7}
\end{equation*}
$$

Inequality (3.5) now follows from the above estimate (4.7) and our earlier estimates (4.1) of $S_{1}^{\prime}-S_{1}$ and (4.6) of $\sum_{\mathbf{A}, \mathbf{b}} R(\mathbf{A}, \mathbf{b})$.

5 A multivariable sieve upper bound

Here we prove an estimate from sieve theory that will be useful in our treatment of the upper bound for S_{2}.

Lemma 5.1. Suppose that

- y, x_{1}, \ldots, x_{h} are reals with $3<y \leqslant 2 \min \left\{x_{1}, \ldots, x_{h}\right\}$;
- I_{1}, \ldots, I_{k} are nonempty subsets of $\{1, \ldots, h\}$;
- b_{1}, \ldots, b_{k} are positive integers such that if $I_{i}=I_{j}$ for distinct indices i and j, then $b_{i} \neq b_{j}$.
For $\mathbf{n}=\left(n_{1}, \ldots, n_{h}\right)$, a vector of positive integers and for $1 \leqslant j \leqslant k$, let $N_{j}=N_{j}(\mathbf{n})=$ $\prod_{i \in I_{j}} n_{i}$. Then

$$
\begin{array}{r}
\#\left\{\mathbf{n}: x_{i}<n_{i} \leqslant 2 x_{i}(1 \leqslant i \leqslant h), P^{-}\left(n_{1} \cdots n_{h}\right)>y, b_{j} N_{j}+1 \text { prime }(1 \leqslant j \leqslant k)\right\} \\
<_{h, k} \frac{x_{1} \cdots x_{h}}{(\log y)^{h+k}}\left(\log \log \left(3 b_{1} \cdots b_{k}\right)\right)^{k} .
\end{array}
$$

Proof. Throughout this proof, all Vinogradov symbols \ll and \gg as well as the Landau symbol O depend on both h and k. Without loss of generality, suppose that $y \leqslant$
$\left(\min \left(x_{i}\right)\right)^{1 /(h+k+10)}$. Since $n_{i}>x_{i} \geqslant y^{h+k+10}$ for every i, we see that the number of h-tuples in question does not exceed

$$
S:=\#\left\{\mathbf{n}: x_{i}<n_{i} \leqslant 2 x_{i}(1 \leqslant i \leqslant h), P^{-}\left(n_{1} \cdots n_{h}\left(b_{1} N_{1}+1\right) \cdots\left(b_{k} N_{k}+1\right)\right)>y\right\} .
$$

We estimate S in the usual way with sieve methods, although this is a bit more general than the standard applications and we give the proof in some detail (the case $h=1$ being completely standard). Let \mathcal{A} denote the multiset

$$
\mathcal{A}=\left\{n_{1} \cdots n_{h} \prod_{j=1}^{k}\left(b_{j} N_{j}+1\right): x_{j}<n_{j} \leqslant 2 x_{j}(1 \leqslant j \leqslant h)\right\} .
$$

For squarefree $d \leqslant y^{2}$ composed of primes $\leqslant y$, we have by a simple counting argument

$$
\left|\mathcal{A}_{d}\right|:=\#\{a \in \mathcal{A}: d \mid a\}=\frac{\nu(d)}{d^{h}} X+r_{d}
$$

where $X=x_{1} \cdots x_{h}, \nu(d)$ is the number of solution vectors \mathbf{n} modulo d of the congruence

$$
n_{1} \cdots n_{h} \prod_{j=1}^{k}\left(b_{j} N_{j}+1\right) \equiv 0(\bmod d)
$$

and the remainder term satisfies, for $d \leqslant \min \left(x_{1}, \ldots, x_{h}\right)$,

$$
\begin{aligned}
\left|r_{d}\right| & \leqslant \nu(d) \sum_{i=1}^{h} \prod_{\substack{\leqslant l \leqslant h \\
l \neq i}}\left(\left\lfloor\frac{x_{l}}{d}\right\rfloor+1\right) \leqslant \nu(d) \sum_{i=1}^{h} \frac{\left(x_{1}+d\right) \cdots\left(x_{h}+d\right)}{\left(x_{i}+d\right) d^{h-1}} \\
& \ll \frac{\nu(d) X}{d^{h-1} \min \left(x_{i}\right)} .
\end{aligned}
$$

The function $\nu(d)$ is clearly multiplicative and satisfies the global upper bound $\nu(p) \leqslant$ $(h+k) p^{h-1}$ for every p. If $\nu(p)=p^{h}$ for some $p \leqslant y$, then clearly $S=0$. Otherwise, the hypotheses of [13, Theorem 6.2] (Selberg's sieve) are clearly satisfied, with $\kappa=h+k$, and we deduce that

$$
S \ll X \prod_{p \leqslant y}\left(1-\frac{\nu(p)}{p^{h}}\right)+\sum_{\substack{d \leqslant y^{2} \\ P^{+}(d) \leqslant y}} \mu^{2}(d) 3^{\omega(d)}\left|r_{d}\right| .
$$

By our initial assumption about the size of y,

$$
\sum_{d \leqslant y^{2}} \mu^{2}(d) 3^{\omega(d)}\left|r_{d}\right| \ll \frac{X}{\min \left(x_{i}\right)} \sum_{d \leqslant y^{2}}(3 k+3 h)^{\omega(d)} \ll \frac{X y^{3}}{\min \left(x_{i}\right)} \ll \frac{X}{y}
$$

For the main term, consideration only of the congruence $n_{1} \cdots n_{h} \equiv 0(\bmod p)$ shows that

$$
\nu(p) \geqslant h(p-1)^{h-1}=h p^{h-1}+O\left(p^{h-2}\right)
$$

for all p. On the other hand, suppose that $p \nmid b_{1} \cdots b_{k}$ and furthermore that $p \nmid\left(b_{i}-b_{j}\right)$ whenever $I_{i}=I_{j}$. Each congruence $b_{j} N_{j}+1 \equiv 0(\bmod p)$ has $p^{h-1}+O\left(p^{h-2}\right)$ solutions
with $n_{1} \ldots n_{h} \not \equiv 0(\bmod p)$, and any two of these congruences have $O\left(p^{h-2}\right)$ common solutions. Hence, $\nu(p)=(h+k) p^{h-1}+O\left(p^{h-2}\right)$. In particular,

$$
\begin{equation*}
\frac{h}{p}+O\left(\frac{1}{p^{2}}\right) \leqslant \frac{\nu(p)}{p^{h}} \leqslant \frac{h+k}{p}+O\left(\frac{1}{p^{2}}\right) . \tag{5.1}
\end{equation*}
$$

Further, writing $E=b_{1} \cdots b_{k} \prod_{i \neq j}\left|b_{i}-b_{j}\right|$, the upper bound (5.1) above is in fact an equality except when $p \mid E$. We obtain

$$
\prod_{p \leqslant y}\left(1-\frac{\nu(p)}{p^{h}}\right) \ll \prod_{p \leqslant y}\left(1-\frac{1}{p}\right)^{k+h} \prod_{p \mid E}\left(1-\frac{1}{p}\right)^{-k} \ll \frac{(E / \varphi(E))^{k}}{(\log y)^{h+k}} \ll \frac{(\log \log 3 E)^{k}}{(\log y)^{h+k}}
$$

and the desired bound follows.

6 The upper bound for S_{2}

Here S_{2} is the number of solutions of

$$
\begin{equation*}
n=\prod_{i=0}^{k-1} a_{i} \prod_{j=1}^{2^{k}-1} b_{j}=\prod_{i=0}^{k-1} a_{i}^{\prime} \prod_{j=1}^{2^{k}-1} b_{j}^{\prime}, \tag{6.1}
\end{equation*}
$$

with $2^{-2 k} x<n \leqslant x, n$ squarefree,

$$
P^{+}\left(b_{1} b_{1}^{\prime} \cdots b_{2^{k}-1} b_{2^{k}-1}^{\prime}\right) \leqslant y<P^{-}\left(a_{0} a_{0}^{\prime} \cdots a_{k-1} a_{k-1}^{\prime}\right),
$$

$\omega\left(b_{j}\right)=\omega\left(b_{j}^{\prime}\right)=l$ for every $j, a_{i}>1$ for every $i, 2\left|b_{2^{k}-1}, 2\right| b_{2^{k}-1}^{\prime}$, and $a_{i} B_{i}+1$ and $a_{i}^{\prime} B_{i}^{\prime}+1$ prime for $0 \leqslant i \leqslant k-1$, where B_{i}^{\prime} is defined analogously to B_{i} (see (3.3)). Trivially, we have

$$
\begin{equation*}
a:=\prod_{i=0}^{k-1} a_{i}=\prod_{i=0}^{k-1} a_{i}^{\prime}, \quad b:=\prod_{j=1}^{2^{k}-1} b_{j}=\prod_{j=1}^{2^{k}-1} b_{j}^{\prime} \tag{6.2}
\end{equation*}
$$

We partition the solutions of (6.1) according to the number of the primes $a_{i} B_{i}+1$ that are equal to one of the primes $a_{j}^{\prime} B_{j}^{\prime}+1$, a number which we denote by m. By symmetry (that is, by appropriate permutation of the vectors $\left(a_{0}, \ldots, a_{k-1}\right),\left(a_{0}^{\prime}, \ldots, a_{k-1}^{\prime}\right),\left(b_{1}, \ldots, b_{2^{k}-1}\right)$ and $\left(b_{1}^{\prime}, \ldots, b_{2^{k}-1}^{\prime}\right)^{1}$), without loss of generality we may suppose that $a_{i} B_{i}=a_{i}^{\prime} B_{i}^{\prime}$ for $0 \leqslant i \leqslant m-1$ and that

$$
\begin{equation*}
a_{i} B_{i} \neq a_{j} B_{j} \quad(i \geqslant m, j \geqslant m) . \tag{6.3}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
a_{i}=a_{i}^{\prime}(0 \leqslant i \leqslant m-1), \quad B_{i}=B_{i}^{\prime}(0 \leqslant i \leqslant m-1) . \tag{6.4}
\end{equation*}
$$

[^1]Now fix m and all the b_{j} and b_{j}^{\prime}. For $0 \leqslant i \leqslant m-1$, place a_{i} into a dyadic interval $\left(A_{i} / 2, A_{i}\right.$], where A_{i} is a power of 2 . The primality conditions on the remaining variables are now coupled with the condition

$$
a_{m} \cdots a_{k-1}=a_{m}^{\prime} \cdots a_{k-1}^{\prime}
$$

To aid the bookkeeping, let $\alpha_{i, j}=\operatorname{gcd}\left(a_{i}, a_{j}^{\prime}\right)$ for $m \leqslant i, j \leqslant k-1$. Then

$$
\begin{equation*}
a_{i}=\prod_{j=m}^{k-1} \alpha_{i, j}, \quad a_{j}^{\prime}=\prod_{i=m}^{k-1} \alpha_{i, j} \tag{6.5}
\end{equation*}
$$

As each $a_{i}>1, a_{j}^{\prime}>1$, each product above contains at least one factor that is greater than 1. Let I denote the set of pairs of indices (i, j) such that $\alpha_{i, j}>1$, and fix I. For $(i, j) \in I$, place $\alpha_{i, j}$ into a dyadic interval $\left(A_{i, j} / 2, A_{i, j}\right]$, where $A_{i, j}$ is a power of 2 and $A_{i, j} \geqslant y$. By the assumption on the range of n, we have

$$
\begin{equation*}
A_{0} \cdots A_{m-1} \prod_{(i, j) \in I} A_{i, j} \asymp \frac{x}{b} . \tag{6.6}
\end{equation*}
$$

For $0 \leqslant i \leqslant m-1$, we use Lemma 5.1 (with $h=1$) to deduce that the number of a_{i} with $A_{i} / 2<a_{i} \leqslant A_{i}, P^{-}\left(a_{i}\right)>y$ and $a_{i} B_{i}+1$ prime is

$$
\begin{equation*}
\ll \frac{A_{i} \log \log B_{i}}{\log ^{2} y} \ll \frac{A_{i}(\log \log x)^{3}}{\log ^{2} x} \tag{6.7}
\end{equation*}
$$

Counting the vectors $\left(\alpha_{i, j}\right)_{(i, j) \in I}$ subject to the conditions:

- $A_{i, j} / 2<\alpha_{i, j} \leqslant A_{i, j}$ and $P^{-}\left(\alpha_{i, j}\right)>y$ for $(i, j) \in I$;
- $a_{i} B_{i}+1$ prime $(m \leqslant i \leqslant k-1)$;
- $a_{j}^{\prime} B_{j}^{\prime}+1$ prime $(m \leqslant j \leqslant k-1)$;
- condition (6.5)
is also accomplished with Lemma 5.1, this time with $h=|I|$ and with $2(k-m)$ primality conditions. The hypothesis in the lemma concerning identical sets I_{i}, which may occur if $\alpha_{i, j}=a_{i}=a_{j}^{\prime}$ for some i and j, is satisfied by our assumption (6.3), which implies in this case that $B_{i} \neq B_{j}^{\prime}$. The number of such vectors is at most

$$
\begin{equation*}
\ll \frac{\prod_{(i, j) \in I} A_{i, j}(\log \log x)^{2 k-2 m}}{(\log y)^{|I|+2 k-2 m}} \ll \frac{\prod_{(i, j) \in I} A_{i, j}(\log \log x)^{|I|+4 k-4 m}}{(\log x)^{|I|+2 k-2 m}} . \tag{6.8}
\end{equation*}
$$

Combining the bounds (6.7) and (6.8), and recalling (6.6), we see that the number of possibilities for the $2 k$-tuple $\left(a_{0}, \ldots, a_{k-1}, a_{0}^{\prime} \ldots, a_{k-1}^{\prime}\right)$ is at most

$$
\ll \frac{x(\log \log x)^{O(1)}}{b(\log x)^{I I \mid+2 k}} .
$$

With I fixed, there are $O\left((\log x)^{|I|+m-1}\right)$ choices for the numbers A_{0}, \ldots, A_{m-1} and the numbers $A_{i, j}$ subject to (6.6), and there are $O(1)$ possibilities for I. We infer that with m
and all of the b_{j}, b_{j}^{\prime} fixed, the number of possible $\left(a_{0}, \ldots, a_{k-1}, a_{0}^{\prime} \ldots, a_{k-1}^{\prime}\right)$ is bounded by

$$
\ll \frac{x(\log \log x)^{O(1)}}{b(\log x)^{2 k+1-m}} .
$$

We next prove that the identities in (6.4) imply that

$$
\begin{equation*}
B_{\mathbf{v}}=B_{\mathbf{v}}^{\prime} \quad\left(\mathbf{v} \in\{0,1\}^{m}\right) \tag{6.9}
\end{equation*}
$$

where $B_{\mathbf{v}}$ is the product of all b_{j} where the m least significant base- 2 digits of j are given by the vector \mathbf{v}, and $B_{\mathbf{v}}^{\prime}$ is defined analogously. Fix $\mathbf{v}=\left(v_{0}, \ldots, v_{m-1}\right)$. For $0 \leqslant i \leqslant m-1$ let $C_{i}=B_{i}$ if $v_{i}=1$ and $C_{i}=b / B_{i}$ if $v_{i}=0$, and define C_{i}^{\prime} analogously. By (3.3), each number b_{j}, where the last m base-2 digits of j are equal to \mathbf{v}, divides every C_{i}, and no other b_{j} has this property. By (6.4), $C_{i}=C_{i}^{\prime}$ for each i and thus

$$
C_{0} \cdots C_{m-1}=C_{0}^{\prime} \cdots C_{m-1}^{\prime} .
$$

As the numbers b_{j} are pairwise coprime, in the above equality the primes having exponent m on the left are exactly those dividing $B_{\mathbf{v}}$, and similarly the primes on the right side having exponent m are exactly those dividing $B_{\mathbf{v}}^{\prime}$. This proves (6.9).

Say b is squarefree. We count the number of dual factorizations of b compatible with both (6.2) and (6.9). Each prime dividing b first "chooses" which $B_{\mathbf{v}}=B_{\mathbf{v}}^{\prime}$ to divide. Once this choice is made, there is the choice of which b_{j} to divide and also which b_{j}^{\prime}. For the $2^{m}-1$ vectors $\mathbf{v} \neq \mathbf{0}, B_{\mathbf{v}}=B_{\mathbf{v}}^{\prime}$ is the product of 2^{k-m} numbers b_{j} and also the product of 2^{k-m} numbers b_{j}^{\prime}. Similarly, $B_{\mathbf{0}}$ is the product of $2^{k-m}-1$ numbers b_{j} and $2^{k-m}-1$ numbers b_{j}^{\prime}. Thus, ignoring that $\omega\left(b_{j}\right)=\omega\left(b_{j}^{\prime}\right)=l$ for each j and that $b_{2^{k}-1}$ and $b_{2^{k}-1}^{\prime}$ are even, the number of dual factorizations of b is at most

$$
\begin{equation*}
\left(\left(2^{m}-1\right)\left(2^{k-m}\right)^{2}+\left(2^{k-m}-1\right)^{2}\right)^{\omega(b)}=\left(2^{2 k-m}-2^{k+1-m}+1\right)^{\omega(b)} . \tag{6.10}
\end{equation*}
$$

Let again

$$
h=\omega(b)=\left(2^{k}-1\right) l=\frac{k}{\log \left(2^{k}-1\right)} \log \log y+O(1),
$$

as in Section 4. Lemma 2.1 and Stirling's formula give

$$
\sum_{\substack{P^{+}(b) \leqslant y \\ \omega(b)=h}} \frac{\mu^{2}(b)}{b} \ll \frac{(\log \log y)^{h}}{h!} \ll\left(\frac{\mathrm{e} \log \left(2^{k}-1\right)}{k}\right)^{h} .
$$

Combined with our earlier bound (6.10) for the number of admissible ways to dual factor each b, we obtain

$$
\begin{equation*}
S_{2} \ll \frac{x(\log \log x)^{O(1)}}{\log x}\left(\frac{\mathrm{e} \log \left(2^{k}-1\right)}{k}\right)^{h} \sum_{m=0}^{k}(\log y)^{m-2 k+\frac{k}{\log \left(2^{k}-1\right)} \log \left(2^{2 k-m}-2^{k+1-m}+1\right)} . \tag{6.11}
\end{equation*}
$$

For real $t \in[0, k]$, let $f(t)=k \log \left(2^{2 k-t}-2^{k+1-t}+1\right)-(2 k-t) \log \left(2^{k}-1\right)$. We have $f(0)=f(k)=0$ and

$$
f^{\prime \prime}(t)=\frac{k(\log 2)^{2}\left(2^{2 k}-2^{k+1}\right) 2^{-t}}{\left(2^{2 k-t}-2^{k+1-t}+1\right)^{2}}>0
$$

Hence, $f(t)<0$ for $0<t<k$. Thus, the sum on m in (6.11) is $O(1)$, and (3.6) follows.
Theorem 1 is therefore proved.

References

[1] W. D. Banks, J. B. Friedlander, C. Pomerance, and I. E. Shparlinski, Multiplicative structure of values of the Euler function, in High primes and misdemeanours: Lectures in honour of the sixtieth birthday of Hugh Cowie Williams, A. J. van der Poorten, ed., Fields Inst. Comm. 41 (2004), 29-47.
[2] W. D. Banks and F. Luca, Power totients with almost primes, Integers 11 (2011), 307-313.
[3] H. Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics vol. 74, SpringerVerlag, New York, 2000.
[4] P. Erdős, On the normal number of prime factors of p-1 and some related problems concerning Euler's φ-function, Quart. J. Math. Oxford Ser. 6 (1935), 205-213.
[5] P. Erdős, Ob odnom asimptoticheskom neravenstve v teorii tschisel (An asymptotic inequality in the theory of numbers, in Russian), Vestnik Leningrad. Univ. 15 (1960) no. 13, 41-49.
[6] P. Erdős, C. Pomerance, and E. Schmutz, Carmichael's lambda function, Acta Arith. 58 (1991), 363385.
[7] K. Ford, The distribution of totients, Ramanujan J. 2 (1998), 67-151. (Updated version on the author's web page.)
[8] K. Ford, The distribution of integers with a divisor in a given interval, Annals of Math. (2) 168 (2008), 367-433.
[9] K. Ford, Integers with a divisor in ($y, 2 y$], Anatomy of integers, 65-80, CRM Proc. Lecture Notes 46, Amer. Math. Soc., Providence, RI, 2008.
[10] K. Ford, F. Luca, and C. Pomerance, Common values of the arithmetic functions ϕ and σ, Bull. Lond. Math. Soc. 42 (2010), 478-488.
[11] T. Freiberg, Products of shifted primes simultaneously taking perfect power values, J. Aust. Math. Soc. (special issue dedicated to Alf van der Poorten) 92 (2012), 145-154.
[12] J. B. Friedlander and F. Luca, On the value set of the Carmichael λ-function, J. Australian Math. Soc. 82 (2007), 123-131.
[13] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London , 1974.
[14] F. Luca and C. Pomerance, On the range of Carmichael's universal exponent function, Acta Arith. 162 (2014), 289-308.
[15] G. Miller, Riemann's hypothesis and tests for primality, J. Comp. System. Sci. 13 (1976), 300-317.
[16] S. S. Pillai, On some functions connected with $\varphi(n)$, Bull. Amer. Math. Soc. 35 (1929), 832-836.
[17] P. Pollack and C. Pomerance, Square values of Euler's function, Bull. London Math. Soc. doi: 10.1112/blms/bdt097.
[18] I. Schoenberg, Über die asymptotische Verteilung reelle Zahlen mod 1, Math. Z. 28 (1928), 171-199.

KF: Department of Mathematics, 1409 West Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

E-mail address: ford@math.uiuc.edu

FL: Instituto de Matématicas, UNAM Juriquilla, Santiago de Querétaro, 76230 Querétaro de Arteaga, México and School of Mathematics, University of the Witwatersrand, P. O. Box Wits 2050, South Africa

E-mail address: fluca@matmor.unam.mx
CP: Mathematics Department, Dartmouth College, Hanover, NH 03755, USA
E-mail address: carl. pomerance@dartmouth.edu

[^0]: 2010 Mathematics Subject Classification. 11A25, 11N25, 11N64.
 KF was supported in part by National Science Foundation grant DMS-1201442. CP was supported in part by NSF grant DMS-1001180. Part of this work was done while KF and FL visited Dartmouth College in Spring, 2013. They thank the people there for their hospitality. CP gratefully acknowledges a helpful conversation with Andrew Granville in which the heuristic argument behind our proof first arose. The authors also thank one of the referees for constructive comments which improved the paper.

[^1]: ${ }^{1}$ The permutations may be described explicitly. Suppose that $m \leqslant k-1$ and that we wish to permute $\left(b_{1}, \ldots, b_{2^{k}-1}\right)$ in order that $B_{i_{1}}, \ldots, B_{i_{m}}$ become B_{0}, \ldots, B_{m-1}, respectively. Let $S_{i}=\left\{1 \leqslant j \leqslant 2^{k}-1\right.$: $\left\lfloor j / 2^{i}\right\rfloor$ odd $\}$. The Venn diagram for the sets $S_{i_{1}}, \cdots, S_{i_{m}}$ has $2^{m}-1$ components of size 2^{k-m-1} and one component of size $2^{k-m-1}-1$, and we map the variables b_{j} with j in a given component to the variables whose indices are in the corresponding component of the Venn diagram for S_{0}, \ldots, S_{m-1}.

