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ABSTRACT. Answering a question of Paul Erdős, we determine asymptotically how many positive
integers n ď x satisfy n - P pnq!, where P pnq is the largest prime factor of n.

1. INTRODUCTION

Let Spnq be the smallest integer k so that n|k!. This function was first considered by Lucas
in 1883 [8] and rediscovered many times since, and sometimes bears the name “the Kempner
function” or the “Smarandache function”. If P pnq denotes the largest prime factor of n, then
usually Spnq “ P pnq, see sequence A057109 in the On-Line Enclyclopedia of Integer Sequences
[9]. LetNpxq be the number of n ď x for which Spnq ‰ P pnq. In this paper we give an asymptotic
formula for Npxq. Before that, we reveal the history of the problem and attempts to solve it.

In 1991, Paul Erdős [3] proposed the problem of showing that Npxq “ opxq to the American
Mathematical Monthly. The problem proposal did not contain a solution, however. At the request
of Paul Batemen, the Problems Editor of the Monthly at that time, a solution was prepared by the
author, who showed that Npxq ! xe´c

?
log x for some positive c. Only one other solution was

received, that of I. Katsanas, which was published in the Monthly in February 1994 [7].
In 1998, Steven Finch asked the author to provide him with details of his argument (hinted at in

[7]), and in October 1998 he sent a draft to Finch containing a proof of a full asymptotic formula
for Npxq. A few months later, the draft appeared in the “Smarandache Notions Journal” (rather
bizarrely, the minus signs in all exponents were replaced with blank space). The “paper” was
neither submitted to, nor refereed by, this publication. However, it was reviewed by Mathematical
Reviews [4].

Meanwhile, S. Akbik [1] proved the upper boundNpxq ! xe´p1{4q
?
log x. In 2003, J.-M. De Kon-

inck and N. Doyon [2] claimed the rough bound Npxq “ x expt´p2` op1qq
a

log x log2 xu, which
is incorrect (the constant 2 should be

?
2). Two years later, A. Ivić [6] published an asymptotic

formula, which corrected a mistake in the first author’s manuscript and differed by a multiplicative
constant. In this article we present the author’s 1998 argument, including the correction of Ivić.
The author thanks Aleksandar Ivić for helpful conversations.

We begin by introducing the Dickman-de Bruijn function ρpuq, defined recursively by

ρpuq “ 1 p0 ď u ď 1q, ρpuq “ 1´

ż u

1

ρpv ´ 1q

v
dv pu ą 1q.

For u ą 1 let ξ “ ξpuq be defined by

u “
eξ ´ 1

ξ
.

1



2 KEVIN FORD

It can be easily shown that ξpuq is increasing and that

(1.1) ξpuq “ log u` log2 u`O

ˆ

log2 u

log u

˙

.

Finally, let u0 “ u0pxq be defined by the equation

(1.2) log x “ u20ξpu0q.

The function u0pxq may also be defined directly by

log x “ u0

´

x1{u
2
0 ´ 1

¯

.

It is straightforward to show that

(1.3) u0 “

ˆ

2 log x

log2 x

˙
1
2

˜

1´
log3 x

2 log2 x
`

log 2

2 log2 x
`O

˜

ˆ

log3 x

log2 x

˙2
¸¸

.

We can now state our main result.

Theorem 1. We have

Npxq „ 21{4π1{2
plog x log2 xq

3{4x1´1{u0ρpu0q pxÑ 8q.

One cannot write the asymptotic formula in terms of “simple” functions, but there is an easily
digestible corollary.

Corollary 2. We have

Npxq “ x exp

"

´
a

2 log x log2 x`O
´´ log x

log2 x

¯1{2

log3 x
¯

*

.

The asymptotic formula can be made a bit simpler, without reference to the function ρ and
written only in terms of u0.

Corollary 3. We have

Npxq „
eγ
?

2
plog xq

1
2 plog2 xqx

1´2{u0 exp

#

ż
log x

u20

0

ev ´ 1

v
dv

+

pxÑ 8q,

where γ “ 0.5772 . . . is the Euler-Mascheroni constant.

2. THE DISTRIBUTION OF INTEGERS WITHOUT LARGE PRIME FACTORS

We list standard estimates of the function Ψpx, yq, which denotes the number of integers n ď x
with P pnq ď y. These may be found in [5] or [10, Ch. III.5].

Lemma 2.1 (Hildebrand). For every ε P p0, 3{5q,

Ψpx, yq “ xρpuq

ˆ

1`O

ˆ

logpu` 1q

log y

˙˙

, u “
log x

log y
,

uniformly in 1 ď u ď exptplog yq3{5´εu.
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Lemma 2.2. For u ě 1,

ρpuq “

ˆ

1`O

ˆ

1

u

˙˙

c

ξ1puq

2π
exp

"

γ ´

ż u

1

ξptq dt

*

“ exp

"

´u

ˆ

log u` log2 u´ 1`O

ˆ

log2 u

log u

˙˙*

.

Lemma 2.3. If u ą 2, |v| ď u{2, then

ρpu´ vq “ ρpuq exptvξpuq `Opp1` v2q{uqu.

3. THE PROOF OF THEOREM 1 AND COROLLARIES

We begin with a characterization of most of the n counted by Npxq. For brevity write

Lpxq “ exp
!

a

log x log2 x
)

, Epxq “
log3 x

log2 x
.

Roughly speaking, we are aiming to show that Npxq “ xLpxq´
?
2`OpEpxqq. The next Proposition

shows that most of the integers counted by Npxq have P pnq « Lpxq1{
?
2, and also n is divisible by

the square of a prime very close to P pnq.

Proposition 1. Define

Y “ Lpxq1{
?
2´2Epxq1{3 , Z “ Lpxq1{

?
2`2Epxq1{3 .

Let T pxq be the number of n ď x with Y ď P pnq ď Z and such that there is a prime q ą P pnq{2
with q2}n. Then

Npxq “ T pxq `OpxLpxq´
?
2´Epxq2{3

q.

Proof. Let
U “ Lpxq1{4, V “ Lpxq2.

Let N1 be the number of n counted by Npxq with P pnq ď U , let N2 be the number of n with
P pnq ě V , and let N3 “ Npxq ´N1 ´N2. By Lemmas 2.1 and 2.2,

N1 ď Ψpx, Uq “ xLpxq´2`op1q.

Now consider n ď x with P pnq ą U and n - P pnq!. Denoting p “ P pnq, we have either p2|n
or for some prime q ă p and b ě 2 we have qb}n and qb - p!. Since p! is divisible by qtp{qu and
b ď 2 log x, it follows that q ą p{b ą p1{2. In all cases n is divisible by the square of a prime
ě p{p2 log xq and therefore

N2 ď
ÿ

pě V
2 log x

x

p2
!
x log x

V
! xLpxq´2`op1q.

Since q ą p1{2 it follows that qtp{qu}p!. If n is counted by N3, there is a number b ě 2 and prime
q P pp{b, ps so that qb}n. For each b ě 2, letN3,b be the number of n counted inN3 such that qb ‖ n
for some prime q ą p{b. We have

ÿ

bě9

N3,b !
ÿ

9ďbď2 log x

ÿ

qěU{b

x

qb
!

x

U8
“ xLpxq´2.
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Next, let N3,bpSq denote the number of integers counted in N3,b for which p “ P pnq P S. By
Lemma 2.1 and the fact that ρ is decreasing, for 2 ď b ď 8 and S Ă pU, V q,

N3,bpSq ď
ÿ

pPS

¨

˝Ψ

ˆ

x

pb
, p

˙

`
ÿ

p{bďqăp

Ψ

ˆ

x

pqb
, p

˙

˛

‚

! x
ÿ

pPS

¨

˝

1

pb
ρ

ˆ

log x

log p
´ b

˙

`
ÿ

p{bďqăp

1

pqb
ρ

ˆ

log x´ log p´ b log q

log p

˙

˛

‚

! x
ÿ

pPS

p´bρ

ˆ

log x

log p
´ pb` 1q

˙

! x
ÿ

mPS

m´b exp

"

´
log x

2 logm
log2 x`O

ˆ

d

log x

log2 x
log3 x

˙*

,

using Lemma 2.2 in the last step and replacing the sum over primes in S with a sum over all
integers in S.

Now let S “ rLpxqα, Lpxqβs, where 1
4
ď α ď β ď 2. Uniformly in α, β we have

N3,bpSq ! xLpxqOpEpxqq
ż Lpxqβ

Lpxqα

exp
!

´
log x log2 x

2 log t

)

tb
dt

“ xLpxqOpEpxqq
ż β

α

Lpxq´
1
2w
´wpb´1q dw.(3.1)

Since the minimum of 1
2w
` wpb´ 1q is

a

2pb´ 1q, occurring at w “ 1{
a

2pb´ 1q,

N3,b ! xLpxq´
?

2pb´1q`op1q
! xLpxq´2`op1q p3 ď b ď 8q.

Combining this bound with our earlier bounds for N1 and N2 we conclude that

(3.2) Npxq “ N3,2 `OpxLpxq
´2`op1q

q.

Now if w ď 1{
?

2´ 2Epxq1{3 or w ě 1{
?

2` 2Epxq1{3 then 1
2w
`w ě

?
2`Epxq2{3. Using (3.1)

we then have
N3,bprU, Y q Y pZ, V sq ! xLpxq´

?
2´Epxq2{3 .

Thus, by (3.2) we have

(3.3) Npxq “ N3,2prY, Zsq `OpxLpxq
´
?
2´Epxq2{3

q.

Finally, if there is a prime q ą P pnq{2 for which q2}n, then n - P pnq! since q}P pnq!. Thus,
N3,2prY, Zsq “ T pxq and the proof is complete. �

The function T pxq counts two types of integers, (i) those with P pnq2}n and (ii) those with q2}n
for some q P pP pnq{2, P pnqq. Both papers [4] and [6] correctly estimate the count of integers in
(i), but both contain mistakes in the count of integers of type (ii). In fact, as we shall show, the
count of integers of type (ii) is asymptotically half the size of the count of integers of type (i)



ON INTEGERS n FOR WHICH n - P pnq! 5

Proof of Theorem 1. Again let p “ P pnq. For n counted by T pxq, either p2}n or q2}n for some
prime q P pp{2, pq. In the latter case, P pn{pq2q ă p and also q - n{pq2. Thus,

T pxq “
ÿ

YăpăZ

˜

Ψ

ˆ

x

p2
, p´ 1

˙

`
ÿ

p
2
ďqăp

Ψ

ˆ

x

pq2
, p´ 1

˙

`O

ˆ

Ψ
´ x

pq3
, p
¯

˙

¸

“ S1 `OpS2q,

say. The sum S2 is part of the expression used in the estimate for N3,3 in Proposition 1 and hence

(3.4) S2 ! xLpxq´2`op1q.

Using Lemma 2.1 we obtain

S1 „ x
ÿ

YăpăZ

¨

˝

ρ
´

log x
log p

´ 2
¯

p2
`

ÿ

p{2ďqăp

ρ
´

log x´2 log q
log p

´ 1
¯

pq2

˛

‚.

We apply Lemma 2.3 with u “ log x
log p

´ 3 and v “ 2 logpq{pq
log p

, noting that by (1.1), we have

vξpuq !

d

log2 x

log x
.

It follows that

ρ

ˆ

log x´ 2 log q

log p
´ 1

˙

„ ρ

ˆ

log x

log p
´ 3

˙

.

Thus, by the prime number theorem,

S1 „ x
ÿ

YăpăZ

1

p2

ˆ

ρ

ˆ

log x

log p
´ 2

˙

`
1

log p
ρ

ˆ

log x

log p
´ 3

˙˙

.

By partial summation, the Prime Number Theorem with error term, and the change of variable
u “ log x{ log p,

S1 „ x

ż u2

u1

ˆ

ρpu´ 2q

u
`
ρpu´ 3q

log x

˙

x´1{udu,

where

u1 “
log x

logZ
, u2 “

log x

log Y
.

By the definition of Y and Z, we have u „ u0 for u1 ď u ď u2. Hence, by Lemma 2.3,

ρpu´ 2q „ ρpuqpu0 log u0q
2, ρpu´ 3q „ ρpuqpu0 log u0q

3.

Thus, recalling (1.3), we obtain

S1 „

?
2

2
xplog xq1{2plog2 xq

3{2I, I :“

ż u2

u1

ρpuqx´1{u du.

Combine this with our bound (3.4) on S2 and Proposition 1 and we see that

(3.5) Npxq “ p1` op1qq

?
2

2
xplog xq1{2plog2 xq

3{2I `OpxLpxq´
?
2´cplog2 xq

´2{3

q.
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Entending the range of integration to r1,8q has a negligible effect on I by the above analysis,
and after the change of variable u “ log x

log t
we arrive at [6, Theorem 2]:

(3.6) Npxq „ 2x

ż x

2

ρ

ˆ

log x

log t

˙

log t

t2
dt.

To obtain Theorem 1, we need to analyze the integral I more carefully. Letting u “ u0 ´ v, we
will show that most of the contribution comes from very small v. In fact, u0 was chosen in order to
maximize x´1{uρpuq. Using Lemma 2.3 and the relation ξpu0q “ log x

u20
, we see that the integrand is

ρpuqx´1{u “ ρpu0qx
´1{u0 exp

"

v log x

u20
`

log x

u0
´

log x

u0 ´ v
`O

´v2 ` 1

u0

¯

*

“ ρpu0qx
´1{u0 exp

"

´
v2 log x

u20pu0 ´ vq
`O

´v2 ` 1

u0

¯

*

.

As log x
u20
„

log2 x
2

, the main term in the exponential has larger order than the error term. Let I1 be the

part of the integral corresponding to |v| ě v0 :“ plog xq1{4plog2 xq
´1{2, and let I2 “ I ´ I1. Then

I1 ! ρpu0qx
´1{u0

ż 8

v0

exp

"

´0.3
v2plog2 xq

3{2

plog xq1{2

*

dv

“ ρpu0qx
´1{u0plog xq1{4plog2 xq

´3{4

ż 8

plog2 xq
1{4

e´0.3w
2

dw

“ o
´

ρpu0qx
´1{u0plog xq1{4plog2 xq

´3{4
¯

as xÑ 8. If |v| ď v0 then v2`1
u0

“ op1q and v2 log x
u20pu0´vq

“
v2 log x
u30

` op1q. Hence

I2 „ ρpu0qx
´1{u0

ż v0

´v0

exp

"

´
v2 log x

u30

*

dv

“
ρpu0qx

´1{u0u
3{2
0

plog xq1{2

ż

|w|ďv0plog xq1{2u
´3{2
0

e´w
2

dw

„
ρpu0qx

´1{u0u
3{2
0

plog xq1{2

ż 8

´8

e´w
2

dw

„
23{4π1{2plog xq1{4

plog2 xq
3{4

ρpu0qx
´1{u0 ,

and it follows that

I „
23{4π1{2plog xq1{4

plog2 xq
3{4

ρpu0qx
´1{u0 .

We insert this last bound into (3.5), and this provides the desired asymptotic for Theorem 1, pro-
vided that the error term is of smaller order than the main term. We use (1.3) and Lemma 2.2,
together with the computation

log x

u0
` u0plog u0 ` log2 u0q “

a

2 log x log2 x
´

1`OpEpxqq
¯
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and we see that
ρpu0qx

´1{u0 “ Lpxq´
?
2`OpEpxqq.

This completes the proof of Theorem 1, and gives Corollary 2 as well. �

Proof of Corollary 3. First observe that ξ1puq „ u´1 and next use Lemma 2.2 to write

ρpu0q „
eγ

?
2πu0

exp

"

´

ż u0

1

ξptq dt

*

.

By the definitions of ξ and u0, the change of variables ξptq “ v, and the derivative formula

ξptq dt “ v dt “ ev ´
ev ´ 1

v
dv,

we then obtain
ż u0

1

ξptq dt “

ż ξpu0q

0

ev ´
ev ´ 1

v
dv

“ eξpu0q ´ 1´

ż ξpu0q

0

ev ´ 1

v
dv.

Corollary 3 now follows from (1.2). In particular, eξpu0q ´ 1 “ u0ξpu0q “
log x
u0

.
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