ON GROUPS WITH PERFECT ORDER SUBSETS

KEVIN FORD, SERGEI KONYAGIN, AND FLORIAN LUCA

Abstract

A finite group G is said to have Perfect Order Subsets if for every d, the number of elements of G of order d (if there are any) divides $|G|$. Answering a question of Finch and Jones from 2002, we prove that if G is Abelian, then such a group has order divisible by 3 except in the case $G=\mathbb{Z} / 2 \mathbb{Z}$. We also place additional restrictions on the order of such groups.

1 Introduction

Consider the multiplicative function

$$
f(n)=\prod_{p^{a} \| n}\left(p^{a}-1\right)
$$

A finite group G is said to have Perfect Order Subsets if for every d, the number of elements of G of order d (if there are any) divides $|G|$. This notion was introduced in the paper [1] by C. Finch and L. Jones. In the case of finite Abelian groups, the authors reduced the problem of which groups have this property to the case of groups of the form $G=\prod_{i=1}^{k}\left(\mathbb{Z} / p_{i} \mathbb{Z}\right)^{a_{i}}$, where p_{i} are primes and $a_{i} \geqslant 1$. For these groups, it follows from results in [1] that G has Perfect Order Subsets if and only if $f(n) \mid n$. Only 11 examples of such n are known, given below, and only one of these is divisible by the square of an odd prime.

```
2
2 · 3
2}\mp@subsup{2}{}{2}\cdot
2}\mp@subsup{}{}{3}\cdot3\cdot
2
2
2}\mp@subsup{}{}{8}\cdot3\cdot5\cdot1
2 16}\cdot3\cdot5\cdot17\cdot25
2 17.3\cdot5\cdot17\cdot257\cdot131071
2 32}\cdot3\cdot5\cdot17\cdot257\cdot6553
2 11.3\cdot5\cdot11 2}\cdot23\cdot8
```

The authors of [1] asked several basic questions about such groups. One of which asks if $|G|$ is not a power of 2 , must 3 divide $|G|$? We prove that this is the case for Abelian groups.

Theorem 1. If $f(n) \mid n$ and $n>2$, then $3 \mid n$.
We also show that $f(n) \mid n$ implies that $n / f(n)$ is bounded. Note that the divergence of $\prod_{p}(1-1 / p)^{-1}$ implies that $n / f(n)$ is unbounded for general n. On the other hand, all of the known examples of n such that $n>6$ and $f(n) \mid n$ (given in [1]) satisfy $n=2 f(n)$.

Theorem 2. For any $n \in \mathbb{N}$, if $f(n) \mid n$, then $n / f(n) \leqslant 85$.
The most important property of numbers n with $f(n) \mid n$ is given by the following easy proposition.
Proposition 1. If $f(n) \mid n$, then for every prime $p \mid n$, every prime divisor of $p-1$ also divides n.

[^0]2000 Mathematics Subject Classification. 11N25 (20K01).

By Proposition 1, knowing that $3 \nmid n$ allows us to exclude many possible prime factors of n. Inductively, define a set \mathscr{P} or primes as follows: (i) $2 \in \mathscr{P}$, (ii) $3 \notin \mathscr{P}$, (iii) for every prime $p \geqslant 5, p \in \mathscr{P}$ if and only if all prime factors of $p-1$ are in \mathscr{P}. Thus,

$$
\begin{equation*}
\mathscr{P}=\{2,5,11,17,23,41,47,83,89,101,137,167,179,251,257,353,359,401,461,503, \ldots\} \tag{1.1}
\end{equation*}
$$

By Proposition 1, every prime dividing n must come from \mathscr{P}. The set \mathscr{P} has a alternative interpretation as the set of all primes whose Pratt tree (see [3]) does not contain a node labeled 3.

Our proof of Theorem 1 is primarily based on the lower bound in the following estimate:
Theorem 3. We have

$$
0.2512 \leqslant \prod_{p \in \mathscr{P}}\left(1-\frac{1}{p}\right) \leqslant 0.2793
$$

Since \mathscr{P} omits all primes $p \equiv 1(\bmod 3)$, and hence omits all primes q such that $q-1$ has a prime factor which is $1(\bmod 3)$, standard application of sieve methods yields the upper bound

$$
\mathscr{P}(x):=\#\{p \leqslant x: p \in \mathscr{P}\} \ll \frac{x}{(\log x)^{3 / 2}}
$$

From this one obtains immediately from partial summation that the product in Theorem 3 converges. Obtaining good numerical bounds requires more work.

2 Number theory tools

Our first result is an estimate of Rosser and Schoenfeld [4].
Lemma 2.1. For any $x>1$,

$$
\left(1+\frac{1}{\log ^{2} x}\right)^{-1} \leqslant e^{\gamma}(\log x) \prod_{p \leqslant x}\left(1-\frac{1}{p}\right) \leqslant\left(1+\frac{1}{\log ^{2} x}\right)
$$

The following general sieve estimate is Theorem 1 of [2].
Lemma 2.2. Let S be a set of primes containing 2, and put

$$
H(t)=\prod_{\substack{p \leqslant t \\ p \in S}}\left(1-\frac{1}{p}\right)
$$

Then $N(x)$, the number of primes $p \leqslant x$ such that all the prime factors of $p-1$ are in S, satisfies

$$
N(x) \leqslant \frac{x}{(1+1 / \log x) I(x)}, \quad I(x)=\int_{1}^{\sqrt{x}} \frac{\log t}{t} H(t) d t
$$

Lemma 2.3. Let S be any set of primes with the property that for all $p \in S$ and prime $q \mid(p-1), q \in S$. For any $x \geqslant 2$,

$$
\prod_{p \in S}\left(1-\frac{1}{p}\right) \geqslant \prod_{\substack{p \leqslant x \\ p \in S}}\left(1-\frac{1}{p}\right)-\frac{8}{\log x}
$$

Proof. We may assume S is nonempty, so $2 \in S$. Write $S(x)=\#\{p \in S: p \leqslant x\}$. For $j \geqslant 0$, let $y_{j}=x^{2^{j}}$ and

$$
H_{j}=\prod_{\substack{p \leqslant y_{j} \\ p \in S}}\left(1-\frac{1}{p}\right)
$$

Without loss of generality, suppose $H_{0}>8 / \log x$, so in particular $x \geqslant e^{16}$. We derive by induction lower estimates for H_{j}. By Lemma 2.2 , when $y_{j-1} \leqslant t \leqslant y_{j}$, we have

$$
S(t) \leqslant \frac{8 t}{(1+1 / \log t) H_{j-1} \log ^{2} t} .
$$

By partial summation and the inequality $\log \left(1-\frac{1}{t}\right) \geqslant-\frac{1}{t-1}$,

$$
\begin{aligned}
\log \left(\frac{H_{j}}{H_{j-1}}\right) & =\sum_{\substack{y_{j-1}<p \leqslant y_{j} \\
p \in S}} \log \left(1-\frac{1}{p}\right) \\
& =S\left(y_{j}\right) \log \left(1-\frac{1}{y_{j}}\right)-S\left(y_{j-1}\right) \log \left(1-\frac{1}{y_{j-1}}\right)-\int_{y_{j-1}}^{y_{j}} \frac{S(u)}{u^{2}-u} d u \\
& \geqslant-\frac{S\left(y_{j}\right)}{y_{j}-1}-\frac{y_{j}}{y_{j}-1} \int_{y_{j-1}}^{y_{j}} \frac{S(u)}{u^{2}} d u \\
& \geqslant-\frac{8}{H_{j-1}}\left(\frac{y_{j}}{y_{j}-1}\right)\left(\frac{1}{\log ^{2} y_{j}+\log y_{j}}+\int_{y_{j-1}}^{y_{j}} \frac{d u}{u\left(\log ^{2} u+\log u\right)}\right)
\end{aligned}
$$

Using the relation $y_{j}=y_{j-1}^{2}$, we find that the integral above equals $\log \left(1+\frac{1}{\log y_{j}+1}\right)$. Now $\log (1+\varepsilon) \leqslant$ $\varepsilon-\frac{1}{3} \varepsilon^{2}$ for $\varepsilon=\frac{1}{\log y_{j}+1} \leqslant \frac{1}{3}$. Thus,

$$
\begin{aligned}
\log \left(\frac{H_{j}}{H_{j-1}}\right) & \geqslant-\frac{8}{H_{j-1}}\left(\frac{y_{j}}{y_{j}-1}\right)\left(\frac{1}{\log ^{2} y_{j}+\log y_{j}}+\frac{1}{\log y_{j}+1}-\frac{1}{3\left(\log y_{j}+1\right)^{2}}\right) \\
& =-\frac{8}{H_{j-1} \log y_{j}}\left(\frac{y_{j}}{y_{j}-1}\right)\left(1-\frac{\log y_{j}}{3\left(\log y_{j}+1\right)^{2}}\right) .
\end{aligned}
$$

Since $y_{j} \geqslant y_{0} \geqslant e^{16}$, the right side above is $\geqslant-8 /\left(H_{j-1} \log y_{j}\right)$. Therefore,

$$
H_{j} \geqslant H_{j-1} \exp \left\{-\frac{8}{H_{j-1} \log y_{j}}\right\} \geqslant H_{j-1}-\frac{8}{\log y_{j}}=H_{j-1}-\frac{8 \cdot 2^{-j}}{\log x} .
$$

Iterating this inequality concludes the proof.

3 Proof of Theorem 1

Before describing these, we show how to deduce Theorem 1 from Theorem 3. Observe that

$$
\begin{equation*}
\frac{f(n)}{n}=\prod_{p^{a} \| n}\left(1-\frac{1}{p^{a}}\right) . \tag{3.1}
\end{equation*}
$$

Suppose that $f(n) \mid n$ and $3 \nmid n$. If $2^{9} \mid n$, then (3.1) and Theorem 3 imply

$$
\frac{f(n)}{n} \geqslant \frac{511}{512} \prod_{\substack{p \geqslant 5 \\ p \in \mathscr{P}}}\left(1-\frac{1}{p}\right) \geqslant \frac{511}{512}(0.5024)>\frac{1}{2} .
$$

Hence, $f(n) \nmid n$. Thus, $2^{k} \| n$, where $1 \leqslant k \leqslant 8$. If $k=1$, then $4 \nmid f(n)$, which means that $n=2 p^{a}$ for some odd prime p. But then (3.1) and $p \geqslant 5$ imply

$$
2<\frac{n}{f(n)}=\frac{2}{1-1 / p^{a}}<3,
$$

so that $f(n) \nmid n$. If k is even, then $3\left|\left(2^{k}-1\right)\right| f(n) \mid n$, a contradiction. Finally, if $k \in\{3,5,7\}$, then n has at most 7 odd prime factors, hence

$$
\frac{f(n)}{n} \geqslant \frac{7}{8} \prod_{\substack{5 \leqslant p \leqslant 83 \\ p \in \mathscr{M}}}\left(1-\frac{1}{p}\right)>\frac{1}{2},
$$

so $f(n) \nmid n$. Therefore, $f(n) \mid n$ implies $3 \mid n$.
Proof of Theorem 3. The proof has two parts. The first is a computer calculation of all of the elements of \mathscr{P} which are less than

$$
x_{0}=2^{44} \approx 1.76 \times 10^{13}
$$

consisting of 39479071 primes. This computation took about 120 hours on the first authors' desktop computer. Rather than compute the elements of \mathscr{P} one by one, the algorithm sieved a large interval of integers $(A, B]$ (size about 10^{8}), both sieving out the residue classes $0(\bmod p)$ for primes $\leqslant \sqrt{B}$, but also sieving the residue classes $1(\bmod p)$ for primes $p \in \mathscr{P}, p \leqslant B / 2$. Stopping the computation at a power of 2 was convenient for the second part of the proof - using the results of the computation to estimate $\mathscr{P}(x)$ for $x>x_{0}$.

Lemma 3.1. Let $x_{0}=2^{44}$. Then

$$
\prod_{\substack{p \in \mathscr{P} \\ p \leqslant x_{0}}}\left(1-\frac{1}{p}\right)=0.27923438887 \ldots
$$

Furthermore, with $s=0.6$ we have

$$
\mathscr{P}(x) \leqslant \begin{cases}\alpha x^{s}+2 & \left(2^{9} \leqslant x \leqslant x_{0}\right), \alpha=0.445836183 \\ \alpha^{\prime} x^{s}+2 & \left(x \leqslant x_{0}\right), \alpha^{\prime}=0.501761301\end{cases}
$$

Estimating accurately $\mathscr{P}(x)$ is likely a very hard problem. It appears that $\mathscr{P}(x) \approx x^{5 / 8}$.
Conjecture 1. For some $c>0, \mathscr{P}(x) \ll x^{1-c}$.
Note that if $p \in \mathscr{P}$, then $p \equiv 2(\bmod 3)$, hence $\Omega(p-1)$ is even. A second computer program was used to generate even numbers which are products of primes in \mathscr{P}. Specifically, let

$$
\begin{aligned}
\mathscr{N}^{-} & =\left\{n: 2 \mid n, P^{+}(n) \leqslant x_{0}, \Omega(n) \text { odd, } p \mid n \Longrightarrow p \in \mathscr{P}\right\}=\{2,8,20,32,44, \ldots\}, \\
\mathscr{N}^{+} & =\left\{n: 2 \mid n, P^{+}(n) \leqslant x_{0}, \Omega(n) \text { even }, p \mid n \Longrightarrow p \in \mathscr{P}\right\}=\{4,10,16,22,34, \ldots\},
\end{aligned}
$$

and, setting $\delta=\frac{1}{10}$, let

$$
h_{j}^{-}=\sum_{\substack{n \in \mathcal{N}^{-} \\ n<2^{j \delta}}} \frac{1}{n^{s}} .
$$

If $n \in \mathscr{N}^{ \pm}$and the odd part of n is given, then the parity of the exponent of 2 in the prime factorization of n is fixed. Thus,

$$
\begin{equation*}
\sum_{\substack{n \in \mathcal{N} \pm \\ P^{+}(n)<2^{j \delta}}} \frac{1}{n^{s}} \leqslant g_{j}:=\frac{2^{-s}}{1-4^{-s}} \prod_{\substack{p \in \mathscr{P} \\ 2<p<2^{j \delta}}}\left(1-p^{-s}\right)^{-1} . \tag{3.2}
\end{equation*}
$$

The elements of \mathscr{N}^{-}were computed exactly up to 2^{36}. Our next task is to use this data to obtain crude upper bounds on $\mathscr{P}(x)$ in the range $x_{0}<x \leqslant 2^{72}$:

Lemma 3.2. Let $\delta=\frac{1}{10}$ and $s=0.6$. For every integer j satisfying $44<j \delta \leqslant 72$, we have

$$
\mathscr{P}(x) \leqslant C_{j} x^{s} \quad\left(2^{(j-1) \delta}<x \leqslant 2^{j \delta}\right)
$$

where

$$
\begin{aligned}
C_{j}= & \frac{72}{2^{(j-1) \delta s}}+\min _{\max (9, j \delta-44) \leqslant t \delta \leqslant 44}\left[\alpha^{\prime}\left(g_{t}-h_{\min (t, j-1-t)}^{-}\right)+\alpha\left(h_{j-t}^{-}-h_{j-1-44 / \delta}^{-}\right)\right] \\
& +\sum_{i=1+44 / \delta}^{j-1} C_{i}\left(h_{j+1-i}^{-}-h_{j-i}^{-}\right)
\end{aligned}
$$

Moreover, the sequence $\left(C_{j}\right)$ is increasing.
Proof. We proceed by induction on j. Suppose $\delta j>44$ and the given bounds have been proved for $x_{0}<$ $x \leqslant 2^{(j-1) \delta}$. Let $\max (9, j \delta-44) \leqslant t \delta \leqslant 44$ and put $y=2^{t \delta}$. Suppose that $2^{(j-1) \delta}<x \leqslant 2^{j \delta}$. Suppose that $p \in \mathscr{P}$ with $p \leqslant x$, let $q=P^{+}(p-1)$ and $p-1=q n$. Then $P^{+}(n) \leqslant \min (q, x / q) \leqslant x_{0}$, so $n \in \mathscr{N}^{-}$. We have (i) $q \leqslant 5$, (ii) $q>5$ and $n \geqslant x / y$, (iii) $q>5$ and $x / x_{0} \leqslant n<x / y$, or (iv) $q>5$ and $n<x / x_{0}$. In case (i), $p-1$ is a power of two (there are exactly 4 such p) or $p-1=2^{a} 5^{b}$ with $a \geqslant 1, b \geqslant 1$ (there are 68 such primes $p \leqslant 2^{72}$). Now let $\mathscr{P}^{*}(x)=\mathscr{P}(x)-2$. Using (3.2), the number of primes counted in case (ii) is at most

$$
\begin{aligned}
\sum_{\substack{n \in \mathcal{N}^{-} \\
x y \leqslant n<x}} \mathscr{P}^{*}\left(\frac{x}{n}\right) & \leqslant \alpha^{\prime} x^{s} \sum_{\substack{n \in \mathcal{N}^{-}-x \\
x / y \leqslant n<x \\
P^{+}(n) \leqslant y}} \frac{1}{P^{s}} \\
& \leqslant \alpha^{\prime} x^{s}\left(\sum_{\substack{n \in \mathcal{N}-\\
P^{+}(n) \leqslant y}} \frac{1}{n^{s}}-\sum_{\substack{n \in \mathcal{N}^{-}-\\
n<\min (y, x / y)}} \frac{1}{n^{s}}\right) \\
& \leqslant \alpha^{\prime} x^{s}\left(g_{t}-h_{\min (t, j-1-t)}^{-}\right) .
\end{aligned}
$$

In case (iii), $q \leqslant x_{0}$, hence the number of such p is bounded above by

$$
\sum_{\substack{n \in \mathcal{N}_{-} \\ x / x_{0} \leqslant n<x / y}} \mathscr{P}^{*}\left(\frac{x}{n}\right) \leqslant \alpha x^{s} \sum_{\substack{n \in \mathcal{N}^{-} \\ x / x_{0} \leqslant n<x / y}} \frac{1}{n^{s}} \leqslant \alpha x^{s}\left(h_{j-t}^{-}-h_{j-1-44 / \delta}^{-}\right) .
$$

In the final case, we use the induction hypothesis, in particular the supposition that $C_{j-1}>C_{j-2}>\cdots$. Thus, the number of primes counted in case (iv) is at most

$$
\begin{aligned}
\sum_{\substack{n \in \mathscr{N}-\\
n<x / x_{0}}} \mathscr{P}^{*}\left(\frac{x}{n}\right) & \leqslant \sum_{\substack{n \in \mathcal{N}-\\
n<x / x_{0}}} C_{i}\left(\frac{x}{n}\right)^{s}, \quad i=\left\lceil\frac{\log x / n}{\delta \log 2}\right\rceil \\
& \leqslant \sum_{i=44 / \delta+1}^{j-1} x^{s} C_{i} \sum_{\substack{n \in \mathscr{N}-\\
2^{(j-i) \delta} \leqslant n<2^{(j-i+1) \delta}}} \frac{1}{n^{s}} \\
& \leqslant x^{s} \sum_{i=44 / \delta+1}^{j-1} C_{i}\left(h_{j+1-i}^{-}-h_{j-i}^{-}\right)
\end{aligned}
$$

Combining the estimates in cases (i)-(iv) proves the given assertion in the range $2^{(j-1) \delta}<x \leqslant 2^{j \delta}$. The monotonicity of the sequence $\left(C_{j}\right)$ follows by direct calculation.

We now develop bounds on $\mathscr{P}(x)$ for $x>2^{72}$. Let

$$
N^{-}=\sum_{n \in \mathscr{N}_{-}} \frac{1}{n}, \quad N^{+}=\sum_{n \in \mathscr{N}^{+}} \frac{1}{n}
$$

By direct application of the computed elements of \mathscr{P} which are $\leqslant x_{0}$, we obtain

$$
N^{+}+N^{-}=\frac{1}{2} \prod_{\substack{p \leqslant x_{0} \\ p \in \mathscr{P}}}\left(1-\frac{1}{p}\right)^{-1}=1.790610 \ldots
$$

and

$$
N^{+}-N^{-}=\sum_{n \in \mathscr{N}+\cup \mathscr{N}-} \frac{(-1)^{\Omega(n)}}{n}=-\frac{1}{2} \prod_{\substack{p \leqslant x_{0} \\ p \in \mathscr{P}}}\left(1+\frac{1}{p}\right)^{-1}=-0.1968977 \ldots
$$

Thus,

$$
\begin{equation*}
N^{-} \leqslant 0.993755, \quad N^{+} \leqslant 0.796857 \tag{3.3}
\end{equation*}
$$

Primarily due to the fact that N^{-}is so close to 1 , our bounds from now on take the shape

$$
\begin{equation*}
\mathscr{P}(x) \leqslant K_{i} x \quad\left(2^{i-1}<x \leqslant 2^{i}\right) \tag{3.4}
\end{equation*}
$$

First, using the values of C_{j} from Lemma 3.2, we obtain (3.4) for $45 \leqslant i \leqslant 72$, where

$$
K_{i}=\max _{(i-1) / \delta<j \leqslant i / \delta} C_{j}\left(2^{(j-1) \delta}\right)^{s-1}
$$

For convenience, define

$$
K_{i}^{*}=\max \left(K_{45}, \ldots, K_{i}\right)
$$

Lemma 3.3. For $i \geqslant 73$, we have (3.4), where

$$
\begin{aligned}
K_{i}= & \left(2^{i-1}\right)^{s-1} g_{44 / \delta}+\frac{1}{x_{0}}+\frac{K_{i-1}}{2}+\frac{K_{i-3}}{8}+\left(N^{-}-5 / 8\right) K_{i-4}^{*} \\
& +\sum_{2 \leqslant k \leqslant(i-2) / 44} \frac{\left(K_{i-44(k-1)}^{*}\right)^{k}}{k!} N_{k}(1+(i-44 k) \log 2)^{k-1}
\end{aligned}
$$

where

$$
N_{k}= \begin{cases}N^{+} & k \text { even } \\ N^{-} & k \text { odd }\end{cases}
$$

Proof. Again, we use induction on i. Suppose that $2^{i-1}<x \leqslant 2^{i}$. If $p \in \mathscr{P}$, then $p \equiv 2(\bmod 3)$. Thus, if $P^{+}(p-1) \leqslant x_{0}$ then $p-1 \in \mathscr{N}^{+}$. Hence, the number of $p \leqslant x$ with $p \in \mathscr{P}$ and $P^{+}(p-1) \leqslant x_{0}$ is at most

$$
\sum_{\substack{n \leqslant x-1 \\ n \in \mathscr{N}^{+}}}\left(\frac{x}{n}\right)^{s} \leqslant x^{s} g_{44 / \delta}
$$

The number of $p-1$ divisible by the square of a prime $>x_{0}$ is trivially at most

$$
\sum_{q>x_{0}} \frac{x}{q^{2}} \leqslant \frac{x}{x_{0}}
$$

If $P^{+}(p-1)>x_{0}$ and $p-1$ is not divisible by the square of any prime $>x_{0}$, let k be the number of prime factors of $p-1$ which are $>x_{0}$. Using the fact that the smallest 3 elements of \mathscr{N}^{-}are $2,8,20$, the number of p with $k=1$ is at most

$$
\begin{aligned}
\sum_{\substack{n \in \mathscr{N}-\\
n<x / x_{0}}} \mathscr{P}\left(\frac{x}{n}\right) & \leqslant \mathscr{P}\left(\frac{x}{2}\right)+\mathscr{P}\left(\frac{x}{8}\right)+\sum_{\substack{n \in \mathscr{N}-\\
20 \leqslant n \leqslant x / x_{0}}} \mathscr{P}\left(\frac{x}{n}\right) \\
& \leqslant \frac{x}{2} K_{i-1}+\frac{x}{8} K_{i-3}+\left(N^{-}-5 / 8\right) K_{i-4}^{*} .
\end{aligned}
$$

Now suppose $k \geqslant 2$ and put $\mathscr{N}_{k}=\mathscr{N}^{-}$if k is odd and $\mathscr{N}_{k}=\mathscr{N}^{+}$if k is even. Observe that $i \geqslant 44 k$. As there are k ! was to order the prime factors of $p-1$ which are $>x_{0}$, the number of $p \leqslant x$ corresponding to this value of k is at most

$$
\begin{aligned}
& \frac{1}{k!} \sum_{\substack{n \in \mathscr{N}_{k} \\
n<x / x_{0}^{k}}} \sum_{\substack{x_{0}<q_{1} \leqslant x /\left(n x_{0}^{k-1}\right) \\
q_{1} \in \mathscr{P}}} \cdots \sum_{\substack{x_{0}<q_{k-1} \leqslant x /\left(n x_{0}^{k-1}\right) \\
q_{k-1} \in \mathscr{P}}} \mathscr{P}\left(\frac{x}{n q_{1} \cdots q_{k-1}}\right) \\
& \leqslant \frac{K_{i-44(k-1)}^{*} x \sum_{n \in \mathscr{N}_{k}} \frac{1}{n}\left(\sum_{\substack{x_{0}<q \leqslant x / x_{0}^{k-1} \\
q \in \mathscr{P}}} \frac{1}{q}\right)^{k-1}}{} \\
& \quad \leqslant \frac{K_{i-44(k-1)}^{*} x N_{k}\left(\frac{\mathscr{P}\left(x / x_{0}^{k-1}\right)}{k!}+\int_{x_{0}}^{x / x_{0}^{k-1}} \frac{\mathscr{P}(u)}{u^{2}} d u\right)^{k-1}}{} \quad \leqslant\left(x_{0}^{k-1}\right. \\
&\quad \leqslant)^{k} \frac{x}{k!} N_{k}\left(1+\log \left(x / x_{0}^{k}\right)\right)^{k-1} .
\end{aligned}
$$

Heuristically, the terms in the sum corresponding to $k=1$ dominate the others. These terms total at most $K_{i-1}^{*} N^{-}<K_{i-1}^{*}$, which means that the sequence $\left(K_{i}\right)$ changes very slowly with i. In fact, $K_{i} \leqslant 0.0001407$ for $45 \leqslant i \leqslant 640$. Using computed values of K_{i} for $i \leqslant 640$, we obtain, with $x_{1}=2^{640}$,

$$
\begin{align*}
\prod_{\substack{p \leqslant x_{1} \\
p \in \mathscr{P}}}\left(1-\frac{1}{p}\right) & \geqslant \prod_{\substack{p \leqslant x_{0} \\
p \in \mathscr{P}}}\left(1-\frac{1}{p}\right) \exp \left\{-\sum_{p>x_{0}} \frac{1}{p^{2}}-\sum_{\substack{x_{0}<p \leqslant x_{1} \\
p \in \mathscr{P}}} \frac{1}{p}\right\} \\
& \geqslant \prod_{\substack{p \leqslant x_{0} \\
p \in \mathscr{P}}}\left(1-\frac{1}{p}\right) \exp \left\{-\frac{1}{x_{0}}-\frac{\mathscr{P}\left(x_{1}\right)}{x_{1}}+\frac{\mathscr{P}\left(x_{0}\right)}{x_{0}}-\int_{x_{0}}^{x_{1}} \frac{\mathscr{P}(u)}{u^{2}} d u\right\} \tag{3.5}\\
& \geqslant \prod_{\substack{p \leqslant x_{0} \\
p \in \mathscr{P}}}\left(1-\frac{1}{p}\right) \exp \left\{\frac{39479070}{x_{0}}-K_{640}-\sum_{i=45}^{640} K_{i} \log 2\right\} \\
& \geqslant 0.2693
\end{align*}
$$

To finish the proof of Theorem 3, take $S=\mathscr{P}$ and $x=x_{1}=2^{640}$ in Lemma 2.3, and use (3.5).

4 Proof of Theorem 2

Proposition 2. Suppose $f(n) \mid n$ and $n / f(n) \geqslant 5$. Then $\omega(n) \geqslant 46$ and $2^{45} \mid n$.
Proof. If $2 \| n$ and $n>2$, then $n=2 p^{b}$ for a prime p, so $\left(p^{b}-1\right) \mid\left(2 p^{b}\right)$ and hence $\left(p^{b}-1\right) \mid 2$. This implies $p=3$ and $n=6$. If $2^{2} \mid n$ and $2^{6} \nmid n$, then n has at most 6 odd prime factors and

$$
\frac{n}{f(n)} \leqslant \frac{4}{3} \prod_{3 \leqslant p \leqslant 13} \frac{p}{p-1}<4
$$

Now assume $2^{6} \mid n$. If $\omega(n) \leqslant 45$, then

$$
\frac{f(n)}{n} \geqslant \frac{63}{64} \prod_{3 \leqslant p \leqslant 200}\left(1-\frac{1}{p}\right)>\frac{1}{5}
$$

Hence, $\omega(n) \geqslant 46$, and thus n has at least 45 odd prime factors. This implies that $2^{45}|f(n)| n$.
We first prove the following result about primes dividing n to a small power.
Theorem 4. If $f(n) \mid n$ and $Q=\left\{p \mid n: p^{40} \nmid n\right\}$, then

$$
\prod_{q \in Q}\left(1-\frac{1}{q}\right)^{-1} \leqslant 85.32
$$

Proof. By Proposition 2, we may assume $2^{45} \mid n$, so that $2 \notin Q$. Let t_{0} be the smallest prime that

$$
\begin{equation*}
\prod_{\substack{p \leqslant t_{0} \\ p \in Q}}\left(1-\frac{1}{p}\right)^{-1} \geqslant 16.016 e^{\gamma} \tag{4.1}
\end{equation*}
$$

If no such t_{0} exists, then the theorem follows, since $16.016 e^{\gamma}<30$. Next, Lemma 2.1 implies

$$
\frac{1}{32.032 e^{\gamma}} \geqslant \prod_{p \leqslant t_{0}}\left(1-\frac{1}{p}\right) \geqslant\left(1+\frac{1}{\log ^{2} t_{0}}\right)^{-1} \frac{e^{-\gamma}}{\log t_{0}}
$$

which implies that $t_{0} \geqslant e^{32}$.
Let $S=\{p: p \mid n\}$ and $S(x)=\#\{p \leqslant x: p \in S\}$. For any prime q with $q^{b} \| n$, there are at most b primes $p \mid n$ with $p \equiv 1(\bmod q)$. Hence, by Lemma 2.2, for $x \geqslant t_{0}$ we have

$$
\begin{aligned}
S(x) & \leqslant S(\sqrt{x})+\sum_{\substack{q \in Q \\
q \leqslant \sqrt{x}}} \sum_{\substack{p \equiv 1 \\
p \equiv \bmod q)}} 1+\#\{\sqrt{x}<p \leqslant x: \forall q \leqslant \sqrt{x} \text { with } q \in Q, q \nmid(p-1)\} \\
& \leqslant 40 S(\sqrt{x})+\#\{\sqrt{x}<p \leqslant x: \forall q \leqslant \sqrt{x} \text { with } q \in Q, q \nmid(p-1)\} \\
& \leqslant 20 \sqrt{x}+\frac{x}{(1+1 / \log x) I(x)}
\end{aligned}
$$

where

$$
I(x)=\int_{1}^{\sqrt{x}} H(t) \frac{\log t}{t} d t, \quad H(t)=\prod_{\substack{p \leqslant t \\ p^{40} \mid n}}\left(1-\frac{1}{p}\right)
$$

By Lemma 2.1 and (4.1),

$$
H(t) \geqslant \prod_{p \leqslant \max \left(t_{0}, t\right)}\left(1-\frac{1}{p}\right) \prod_{\substack{p \leqslant t_{0} \\ p \in Q}}\left(1-\frac{1}{p}\right)^{-1} \geqslant \frac{16.016}{\log \max \left(t, t_{0}\right)}\left(1+\frac{1}{\log ^{2} t_{0}}\right)^{-1} \geqslant \frac{16}{\log \max \left(t, t_{0}\right)}
$$

Hence,

$$
I(x) \geqslant \begin{cases}\frac{2 \log ^{2} x}{\log t_{0}} & \left(x \leqslant t_{0}^{2}\right) \\ 8 \log \left(x / t_{0}\right) & \left(x>t_{0}^{2}\right)\end{cases}
$$

Since $\sqrt{x} \leqslant \frac{x}{8000 \log ^{2} x}$ for $x \geqslant t_{0}$, we obtain

$$
S(x) \leqslant \begin{cases}\frac{x \log t_{0}}{2 \log ^{2} x} & \left(t_{0} \leqslant x \leqslant t_{0}^{2}\right) \tag{4.2}\\ \frac{x}{8 \log \left(x / t_{0}\right)} & \left(x>t_{0}^{2}\right)\end{cases}
$$

Note that by (4.1), $S\left(t_{0}\right) \geqslant 1$. By (4.2) and partial summation, if $t=t_{0}^{C+1} \geqslant t_{0}^{2}$ then

$$
\begin{aligned}
\prod_{\substack{p \in S \\
t_{0}<p \leqslant t}}\left(1-\frac{1}{p}\right) & \geqslant \exp \left\{-\sum_{\substack{p \in S \\
t_{0}<p \leqslant t}} \frac{1}{p}-\sum_{p>t_{0}} \frac{1}{p^{2}}\right\} \\
& \geqslant \exp \left\{-\frac{1}{t_{0}}+\frac{S\left(t_{0}\right)}{t_{0}}-\frac{S(t)}{t}-\int_{t_{0}}^{t} \frac{S(u)}{u^{2}} d u\right\} \\
& \geqslant \exp \left\{-\frac{1}{8 C \log t_{0}}-\frac{1}{4}-\frac{1}{8} \log C\right\}
\end{aligned}
$$

Applying Lemma 2.3 gives

$$
\begin{aligned}
\prod_{p \in S}\left(1-\frac{1}{p}\right) & \geqslant \prod_{\substack{p \in S \\
p \leqslant t}}\left(1-\frac{1}{p}\right)-\frac{8}{\log t} \\
& \geqslant \prod_{\substack{p \in S \\
p \leqslant t_{0}}}\left(1-\frac{1}{p}\right) \cdot \exp \left\{-\frac{1}{8 C \log t_{0}}-\frac{1}{4}-\frac{1}{8} \log C\right\}-\frac{8}{(C+1) \log t_{0}} .
\end{aligned}
$$

By Lemma 2.1, we obtain the bound

$$
\begin{aligned}
\prod_{\substack{p \in Q \\
p>t_{0}}}\left(1-\frac{1}{p}\right) & \geqslant \prod_{\substack{p \in S \\
p>t_{0}}}\left(1-\frac{1}{p}\right) \\
& \geqslant \exp \left\{-\frac{1}{8 C \log t_{0}}-\frac{1}{4}-\frac{1}{8} \log C\right\}-\frac{8}{(C+1) \log t_{0}} \prod_{p \leqslant t_{0}}\left(1-\frac{1}{p}\right)^{-1} \\
& \geqslant \exp \left\{-\frac{1}{8 C \log t_{0}}-\frac{1}{4}-\frac{1}{8} \log C\right\}-\frac{8 e^{\gamma}\left(1+1 / \log ^{2} t_{0}\right)}{C+1} \\
& \geqslant \exp \left\{-\frac{1}{256 C}-\frac{1}{4}-\frac{1}{8} \log C\right\}-\frac{8 e^{\gamma}(1+1 / 1024)}{C+1}
\end{aligned}
$$

Taking $C=296$ produces a lower bound for the above product of 0.33437 . Therefore,

$$
\prod_{p \in Q}\left(1-\frac{1}{p}\right) \geqslant \frac{1}{16.016 e^{\gamma}}\left(1-\frac{1}{t_{0}}\right) 0.33437 \geqslant \frac{1}{85.32}
$$

and the proof of Theorem 4 is complete.
Proof of Theorem 2. By Theorem 4,

$$
\frac{n}{f(n)}=\prod_{p^{a} \| n} \frac{1}{1-p^{-a}} \leqslant \prod_{p \in Q} \frac{1}{1-p^{-1}} \prod_{p} \frac{1}{1-p^{-40}} \leqslant 85.4 .
$$

5 Acknowledgements

The research of K. F. was partially supported by National Science Foundation grant DMS-0901339.
The research of S. K. was partially supported by Russian Fund for Basic Research, Grant N. 11-01-00329. and by the Grant of the President of Russian Federation Nsh-6003.2012.1.
F. L. was supported in part by Project PAPIIT IN104512 and a Marcos Moshinsky Fellowship.

References

[1] C. Finch and L. Jones, A Curious Connection Between Fermat Numbers and Finite Groups, Amer. Math. Monthly 109 (2002), 517-524.
[2] K. Ford, An explicit sieve bound and small values of $\sigma(\phi(n)) / n$, Period. Math. Hungarica 43 (2001), 15-29.
[3] K. Ford, F. Luca and S. Konyagin, Prime chains and Pratt trees, Geom. Funct. Anal. 20 (2010), 1231-1258.
[4] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
Department of Mathematics, 1409 West Green Street, University of Illinois at Urbana-Champaign, URBANA, IL 61801, USA

E-mail address: ford@math.uiuc.edu
Steklov Mathematical Institute, 8, Gubkin Street, Moscow, 119991, Russia
E-mail address: konyagin@mi.ras.ru
Centro de Ciencias Matemáticas, Universidad Nacional Autonoma de México, C.P. 58089, Morelia, MiCHOACÁN, MÉXICO

E-mail address: fluca@matmor.unam.mx

[^0]: Date: September 20, 2012.

