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ABSTRACT. A finite group G is said to have Perfect Order Subsets if for every d, the number of elements of G
of order d (if there are any) divides |G|. Answering a question of Finch and Jones from 2002, we prove that if

G is Abelian, then such a group has order divisible by 3 except in the case G = Z/2Z. We also place additional

restrictions on the order of such groups.

1 Introduction

Consider the multiplicative function

f(n) =
∏

pa‖n
(pa − 1).

A finite group G is said to have Perfect Order Subsets if for every d, the number of elements of G of order

d (if there are any) divides |G|. This notion was introduced in the paper [1] by C. Finch and L. Jones. In

the case of finite Abelian groups, the authors reduced the problem of which groups have this property to

the case of groups of the form G =
∏k

i=1(Z/piZ)
ai , where pi are primes and ai > 1. For these groups, it

follows from results in [1] that G has Perfect Order Subsets if and only if f(n)|n. Only 11 examples of such

n are known, given below, and only one of these is divisible by the square of an odd prime.

2
2 · 3
22 · 3
23 · 3 · 7
24 · 3 · 5
25 · 3 · 5 · 31
28 · 3 · 5 · 17
216 · 3 · 5 · 17 · 257
217 · 3 · 5 · 17 · 257 · 131071
232 · 3 · 5 · 17 · 257 · 65537
211 · 3 · 5 · 112 · 23 · 89

The authors of [1] asked several basic questions about such groups. One of which asks if |G| is not a

power of 2, must 3 divide |G|? We prove that this is the case for Abelian groups.

Theorem 1. If f(n)|n and n > 2, then 3|n.

We also show that f(n)|n implies that n/f(n) is bounded. Note that the divergence of
∏

p(1 − 1/p)−1

implies that n/f(n) is unbounded for general n. On the other hand, all of the known examples of n such

that n > 6 and f(n)|n (given in [1]) satisfy n = 2f(n).

Theorem 2. For any n ∈ N, if f(n)|n, then n/f(n) 6 85.

The most important property of numbers n with f(n)|n is given by the following easy proposition.

Proposition 1. If f(n)|n, then for every prime p|n, every prime divisor of p− 1 also divides n.
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By Proposition 1, knowing that 3 ∤ n allows us to exclude many possible prime factors of n. Inductively,

define a set P or primes as follows: (i) 2 ∈ P , (ii) 3 6∈ P , (iii) for every prime p > 5, p ∈ P if and only

if all prime factors of p− 1 are in P . Thus,

(1.1) P = {2, 5, 11, 17, 23, 41, 47, 83, 89, 101, 137, 167, 179, 251, 257, 353, 359, 401, 461, 503, . . .}.
By Proposition 1, every prime dividing n must come from P . The set P has a alternative interpretation as

the set of all primes whose Pratt tree (see [3]) does not contain a node labeled 3.

Our proof of Theorem 1 is primarily based on the lower bound in the following estimate:

Theorem 3. We have

0.2512 6
∏

p∈P

(

1− 1

p

)

6 0.2793.

Since P omits all primes p ≡ 1 (mod 3), and hence omits all primes q such that q−1 has a prime factor

which is 1 (mod 3), standard application of sieve methods yields the upper bound

P(x) := #{p 6 x : p ∈ P} ≪ x

(log x)3/2
.

From this one obtains immediately from partial summation that the product in Theorem 3 converges. Ob-

taining good numerical bounds requires more work.

2 Number theory tools

Our first result is an estimate of Rosser and Schoenfeld [4].

Lemma 2.1. For any x > 1,

(

1 +
1

log2 x

)−1

6 eγ(log x)
∏

p6x

(

1− 1

p

)

6

(

1 +
1

log2 x

)

.

The following general sieve estimate is Theorem 1 of [2].

Lemma 2.2. Let S be a set of primes containing 2, and put

H(t) =
∏

p6t
p∈S

(

1− 1

p

)

.

Then N(x), the number of primes p 6 x such that all the prime factors of p− 1 are in S, satisfies

N(x) 6
x

(1 + 1/ log x)I(x)
, I(x) =

∫

√
x

1

log t

t
H(t) dt.

Lemma 2.3. Let S be any set of primes with the property that for all p ∈ S and prime q|(p− 1), q ∈ S. For

any x > 2,
∏

p∈S

(

1− 1

p

)

>
∏

p6x
p∈S

(

1− 1

p

)

− 8

log x
.

Proof. We may assume S is nonempty, so 2 ∈ S. Write S(x) = #{p ∈ S : p 6 x}. For j > 0, let yj = x2
j

and

Hj =
∏

p6yj
p∈S

(

1− 1

p

)

.
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Without loss of generality, suppose H0 > 8/ log x, so in particular x > e16. We derive by induction lower

estimates for Hj . By Lemma 2.2, when yj−1 6 t 6 yj , we have

S(t) 6
8t

(1 + 1/ log t)Hj−1 log
2 t

.

By partial summation and the inequality log(1− 1
t ) > − 1

t−1 ,

log

(

Hj

Hj−1

)

=
∑

yj−1<p6yj
p∈S

log

(

1− 1

p

)

= S(yj) log

(

1− 1

yj

)

− S(yj−1) log

(

1− 1

yj−1

)

−
∫ yj

yj−1

S(u)

u2 − u
du

> − S(yj)

yj − 1
− yj

yj − 1

∫ yj

yj−1

S(u)

u2
du

> − 8

Hj−1

(

yj
yj − 1

)

(

1

log2 yj + log yj
+

∫ yj

yj−1

du

u(log2 u+ log u)

)

.

Using the relation yj = y2j−1, we find that the integral above equals log(1 + 1
log yj+1). Now log(1 + ε) 6

ε− 1
3ε

2 for ε = 1
log yj+1 6 1

3 . Thus,

log

(

Hj

Hj−1

)

> − 8

Hj−1

(

yj
yj − 1

)(

1

log2 yj + log yj
+

1

log yj + 1
− 1

3(log yj + 1)2

)

= − 8

Hj−1 log yj

(

yj
yj − 1

)(

1− log yj
3(log yj + 1)2

)

.

Since yj > y0 > e16, the right side above is > −8/(Hj−1 log yj). Therefore,

Hj > Hj−1 exp

{

− 8

Hj−1 log yj

}

> Hj−1 −
8

log yj
= Hj−1 −

8 · 2−j

log x
.

Iterating this inequality concludes the proof. �

3 Proof of Theorem 1

Before describing these, we show how to deduce Theorem 1 from Theorem 3. Observe that

(3.1)
f(n)

n
=
∏

pa‖n

(

1− 1

pa

)

.

Suppose that f(n)|n and 3 ∤ n. If 29|n, then (3.1) and Theorem 3 imply

f(n)

n
>

511

512

∏

p>5
p∈P

(

1− 1

p

)

>
511

512
(0.5024) >

1

2
.

Hence, f(n) ∤ n. Thus, 2k‖n, where 1 6 k 6 8. If k = 1, then 4 ∤ f(n), which means that n = 2pa for

some odd prime p. But then (3.1) and p > 5 imply

2 <
n

f(n)
=

2

1− 1/pa
< 3,
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so that f(n) ∤ n. If k is even, then 3|(2k − 1)|f(n)|n, a contradiction. Finally, if k ∈ {3, 5, 7}, then n has

at most 7 odd prime factors, hence

f(n)

n
>

7

8

∏

56p683
p∈P

(

1− 1

p

)

>
1

2
,

so f(n) ∤ n. Therefore, f(n)|n implies 3|n.

Proof of Theorem 3. The proof has two parts. The first is a computer calculation of all of the elements of

P which are less than

x0 = 244 ≈ 1.76× 1013,

consisting of 39479071 primes. This computation took about 120 hours on the first authors’ desktop com-

puter. Rather than compute the elements of P one by one, the algorithm sieved a large interval of integers

(A,B] (size about 108), both sieving out the residue classes 0 (mod p) for primes 6
√
B, but also sieving

the residue classes 1 (mod p) for primes p ∈ P , p 6 B/2. Stopping the computation at a power of 2

was convenient for the second part of the proof – using the results of the computation to estimate P(x) for

x > x0.

Lemma 3.1. Let x0 = 244. Then

∏

p∈P

p6x0

(

1− 1

p

)

= 0.27923438887 . . .

Furthermore, with s = 0.6 we have

P(x) 6

{

αxs + 2 (29 6 x 6 x0), α = 0.445836183,

α′xs + 2 (x 6 x0), α
′ = 0.501761301.

Estimating accurately P(x) is likely a very hard problem. It appears that P(x) ≈ x5/8.

Conjecture 1. For some c > 0, P(x) ≪ x1−c.

Note that if p ∈ P , then p ≡ 2 (mod 3), hence Ω(p− 1) is even. A second computer program was used

to generate even numbers which are products of primes in P . Specifically, let

N
− = {n : 2|n, P+(n) 6 x0,Ω(n) odd, p|n =⇒ p ∈ P} = {2, 8, 20, 32, 44, . . .},

N
+ = {n : 2|n, P+(n) 6 x0,Ω(n) even, p|n =⇒ p ∈ P} = {4, 10, 16, 22, 34, . . .},

and, setting δ = 1
10 , let

h−j =
∑

n∈N −

n<2jδ

1

ns
.

If n ∈ N ± and the odd part of n is given, then the parity of the exponent of 2 in the prime factorization of

n is fixed. Thus,

(3.2)
∑

n∈N ±

P+(n)<2jδ

1

ns
6 gj :=

2−s

1− 4−s

∏

p∈P

2<p<2jδ

(

1− p−s
)−1

.

The elements of N − were computed exactly up to 236. Our next task is to use this data to obtain crude

upper bounds on P(x) in the range x0 < x 6 272:
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Lemma 3.2. Let δ = 1
10 and s = 0.6. For every integer j satisfying 44 < jδ 6 72, we have

P(x) 6 Cjx
s (2(j−1)δ < x 6 2jδ),

where

Cj =
72

2(j−1)δs
+ min

max(9,jδ−44)6tδ644

[

α′
(

gt − h−min(t,j−1−t)

)

+ α
(

h−j−t − h−j−1−44/δ

) ]

+

j−1
∑

i=1+44/δ

Ci

(

h−j+1−i − h−j−i

)

.

Moreover, the sequence (Cj) is increasing.

Proof. We proceed by induction on j. Suppose δj > 44 and the given bounds have been proved for x0 <
x 6 2(j−1)δ. Let max(9, jδ − 44) 6 tδ 6 44 and put y = 2tδ. Suppose that 2(j−1)δ < x 6 2jδ. Suppose

that p ∈ P with p 6 x, let q = P+(p−1) and p−1 = qn. Then P+(n) 6 min(q, x/q) 6 x0, so n ∈ N −.

We have (i) q 6 5, (ii) q > 5 and n > x/y, (iii) q > 5 and x/x0 6 n < x/y, or (iv) q > 5 and n < x/x0.

In case (i), p− 1 is a power of two (there are exactly 4 such p) or p− 1 = 2a5b with a > 1, b > 1 (there are

68 such primes p 6 272). Now let P∗(x) = P(x)− 2. Using (3.2), the number of primes counted in case

(ii) is at most
∑

n∈N −

x/y6n<x
P+(n)6y

P
∗
(x

n

)

6 α′xs
∑

n∈N −

x/y6n<x
P+(n)6y

1

ns

6 α′xs
(

∑

n∈N −

P+(n)6y

1

ns
−

∑

n∈N −

n<min(y,x/y)

1

ns

)

6 α′xs
(

gt − h−min(t,j−1−t)

)

.

In case (iii), q 6 x0, hence the number of such p is bounded above by

∑

n∈N −

x/x06n<x/y

P
∗
(x

n

)

6 αxs
∑

n∈N −

x/x06n<x/y

1

ns
6 αxs

(

h−j−t − h−j−1−44/δ

)

.

In the final case, we use the induction hypothesis, in particular the supposition that Cj−1 > Cj−2 > · · · .

Thus, the number of primes counted in case (iv) is at most

∑

n∈N −

n<x/x0

P
∗
(x

n

)

6
∑

n∈N −

n<x/x0

Ci

(x

n

)s
, i =

⌈

log x/n

δ log 2

⌉

6

j−1
∑

i=44/δ+1

xsCi

∑

n∈N −

2(j−i)δ6n<2(j−i+1)δ

1

ns

6 xs
j−1
∑

i=44/δ+1

Ci

(

h−j+1−i − h−j−i

)

.

Combining the estimates in cases (i)–(iv) proves the given assertion in the range 2(j−1)δ < x 6 2jδ. The

monotonicity of the sequence (Cj) follows by direct calculation. �
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We now develop bounds on P(x) for x > 272. Let

N− =
∑

n∈N −

1

n
, N+ =

∑

n∈N +

1

n
.

By direct application of the computed elements of P which are 6 x0, we obtain

N+ +N− =
1

2

∏

p6x0
p∈P

(

1− 1

p

)−1

= 1.790610 . . .

and

N+ −N− =
∑

n∈N +∪N −

(−1)Ω(n)

n
= −1

2

∏

p6x0
p∈P

(

1 +
1

p

)−1

= −0.1968977 . . . .

Thus,

(3.3) N−
6 0.993755, N+

6 0.796857.

Primarily due to the fact that N− is so close to 1, our bounds from now on take the shape

(3.4) P(x) 6 Kix (2i−1 < x 6 2i).

First, using the values of Cj from Lemma 3.2, we obtain (3.4) for 45 6 i 6 72, where

Ki = max
(i−1)/δ<j6i/δ

Cj

(

2(j−1)δ
)s−1

.

For convenience, define

K∗
i = max (K45, . . . ,Ki) .

Lemma 3.3. For i > 73, we have (3.4), where

Ki = (2i−1)s−1g44/δ +
1

x0
+

Ki−1

2
+

Ki−3

8
+
(

N− − 5/8
)

K∗
i−4

+
∑

26k6(i−2)/44

(

K∗
i−44(k−1)

)k

k!
Nk (1 + (i− 44k) log 2)k−1 ,

where

Nk =

{

N+ k even

N− k odd.

Proof. Again, we use induction on i. Suppose that 2i−1 < x 6 2i. If p ∈ P , then p ≡ 2 (mod 3). Thus, if

P+(p − 1) 6 x0 then p − 1 ∈ N +. Hence, the number of p 6 x with p ∈ P and P+(p − 1) 6 x0 is at

most
∑

n6x−1
n∈N +

(x

n

)s
6 xsg44/δ.

The number of p− 1 divisible by the square of a prime > x0 is trivially at most

∑

q>x0

x

q2
6

x

x0
.
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If P+(p− 1) > x0 and p− 1 is not divisible by the square of any prime > x0, let k be the number of prime

factors of p− 1 which are > x0. Using the fact that the smallest 3 elements of N − are 2, 8, 20, the number

of p with k = 1 is at most
∑

n∈N −

n<x/x0

P

(x

n

)

6 P

(x

2

)

+ P

(x

8

)

+
∑

n∈N −

206n6x/x0

P

(x

n

)

6
x

2
Ki−1 +

x

8
Ki−3 + (N− − 5/8)K∗

i−4.

Now suppose k > 2 and put Nk = N − if k is odd and Nk = N + if k is even. Observe that i > 44k. As

there are k! was to order the prime factors of p− 1 which are > x0, the number of p 6 x corresponding to

this value of k is at most

1

k!

∑

n∈Nk

n<x/xk
0

∑

x0<q16x/(nxk−1
0 )

q1∈P

· · ·
∑

x0<qk−16x/(nxk−1
0 )

qk−1∈P

P

(

x

nq1 · · · qk−1

)

6
K∗

i−44(k−1)

k!
x
∑

n∈Nk

1

n

(

∑

x0<q6x/xk−1
0

q∈P

1

q

)k−1

6
K∗

i−44(k−1)

k!
xNk

(

P(x/xk−1
0 )

x/xk−1
0

+

∫ x/xk−1
0

x0

P(u)

u2
du
)k−1

6

(

K∗
i−44(k−1)

)k x

k!
Nk

(

1 + log(x/xk0)
)k−1

. �

Heuristically, the terms in the sum corresponding to k = 1 dominate the others. These terms total at most

K∗
i−1N

− < K∗
i−1, which means that the sequence (Ki) changes very slowly with i. In fact, Ki 6 0.0001407

for 45 6 i 6 640. Using computed values of Ki for i 6 640, we obtain, with x1 = 2640,

∏

p6x1
p∈P

(

1− 1

p

)

>
∏

p6x0
p∈P

(

1− 1

p

)

exp

{

−
∑

p>x0

1

p2
−

∑

x0<p6x1
p∈P

1

p

}

>
∏

p6x0
p∈P

(

1− 1

p

)

exp

{

− 1

x0
− P(x1)

x1
+

P(x0)

x0
−
∫ x1

x0

P(u)

u2
du

}

>
∏

p6x0
p∈P

(

1− 1

p

)

exp

{

39479070

x0
−K640 −

640
∑

i=45

Ki log 2

}

> 0.2693.

(3.5)

To finish the proof of Theorem 3, take S = P and x = x1 = 2640 in Lemma 2.3, and use (3.5). �

4 Proof of Theorem 2

Proposition 2. Suppose f(n)|n and n/f(n) > 5. Then ω(n) > 46 and 245|n.

Proof. If 2‖n and n > 2, then n = 2pb for a prime p, so (pb − 1)|(2pb) and hence (pb − 1)|2. This implies

p = 3 and n = 6. If 22|n and 26 ∤ n, then n has at most 6 odd prime factors and

n

f(n)
6

4

3

∏

36p613

p

p− 1
< 4.
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Now assume 26|n. If ω(n) 6 45, then

f(n)

n
>

63

64

∏

36p6200

(

1− 1

p

)

>
1

5
.

Hence, ω(n) > 46, and thus n has at least 45 odd prime factors. This implies that 245|f(n)|n. �

We first prove the following result about primes dividing n to a small power.

Theorem 4. If f(n)|n and Q = {p|n : p40 ∤ n}, then

∏

q∈Q

(

1− 1

q

)−1

6 85.32.

Proof. By Proposition 2, we may assume 245|n, so that 2 6∈ Q. Let t0 be the smallest prime that

(4.1)
∏

p6t0
p∈Q

(

1− 1

p

)−1

> 16.016eγ .

If no such t0 exists, then the theorem follows, since 16.016eγ < 30. Next, Lemma 2.1 implies

1

32.032eγ
>
∏

p6t0

(

1− 1

p

)

>

(

1 +
1

log2 t0

)−1 e−γ

log t0
,

which implies that t0 > e32.

Let S = {p : p|n} and S(x) = #{p 6 x : p ∈ S}. For any prime q with qb‖n, there are at most b primes

p|n with p ≡ 1 (mod q). Hence, by Lemma 2.2, for x > t0 we have

S(x) 6 S(
√
x) +

∑

q∈Q
q6

√
x

∑

p|n
p≡1 (mod q)

1 + #{
√
x < p 6 x : ∀q 6

√
x with q ∈ Q, q ∤ (p− 1)}

6 40S(
√
x) + #{

√
x < p 6 x : ∀q 6

√
x with q ∈ Q, q ∤ (p− 1)}

6 20
√
x+

x

(1 + 1/ log x)I(x)
,

where

I(x) =

∫

√
x

1
H(t)

log t

t
dt, H(t) =

∏

p6t
p40|n

(

1− 1

p

)

.

By Lemma 2.1 and (4.1),

H(t) >
∏

p6max(t0,t)

(

1− 1

p

)

∏

p6t0
p∈Q

(

1− 1

p

)−1

>
16.016

logmax(t, t0)

(

1 +
1

log2 t0

)−1

>
16

logmax(t, t0)
.

Hence,

I(x) >

{

2 log2 x
log t0

(x 6 t20)

8 log(x/t0) (x > t20).

Since
√
x 6 x

8000 log2 x
for x > t0, we obtain

(4.2) S(x) 6

{

x log t0
2 log2 x

(t0 6 x 6 t20)
x

8 log(x/t0)
(x > t20).
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Note that by (4.1), S(t0) > 1. By (4.2) and partial summation, if t = tC+1
0 > t20 then

∏

p∈S
t0<p6t

(

1− 1

p

)

> exp

{

−
∑

p∈S
t0<p6t

1

p
−
∑

p>t0

1

p2

}

> exp

{

− 1

t0
+

S(t0)

t0
− S(t)

t
−
∫ t

t0

S(u)

u2
du

}

> exp

{

− 1

8C log t0
− 1

4
− 1

8
logC

}

.

Applying Lemma 2.3 gives

∏

p∈S

(

1− 1

p

)

>
∏

p∈S
p6t

(

1− 1

p

)

− 8

log t

>
∏

p∈S
p6t0

(

1− 1

p

)

· exp
{

− 1

8C log t0
− 1

4
− 1

8
logC

}

− 8

(C + 1) log t0
.

By Lemma 2.1, we obtain the bound

∏

p∈Q
p>t0

(

1− 1

p

)

>
∏

p∈S
p>t0

(

1− 1

p

)

> exp

{

− 1

8C log t0
− 1

4
− 1

8
logC

}

− 8

(C + 1) log t0

∏

p6t0

(

1− 1

p

)−1

> exp

{

− 1

8C log t0
− 1

4
− 1

8
logC

}

− 8eγ(1 + 1/ log2 t0)

C + 1

> exp

{

− 1

256C
− 1

4
− 1

8
logC

}

− 8eγ(1 + 1/1024)

C + 1
.

Taking C = 296 produces a lower bound for the above product of 0.33437. Therefore,

∏

p∈Q

(

1− 1

p

)

>
1

16.016eγ

(

1− 1

t0

)

0.33437 >
1

85.32

and the proof of Theorem 4 is complete. �

Proof of Theorem 2. By Theorem 4,

n

f(n)
=
∏

pa‖n

1

1− p−a
6
∏

p∈Q

1

1− p−1

∏

p

1

1− p−40
6 85.4. �
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