ON GROUPS WITH PERFECT ORDER SUBSETS
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ABSTRACT. A finite group G is said to have Perfect Order Subsets if for every d, the number of elements of G
of order d (if there are any) divides |G|. Answering a question of Finch and Jones from 2002, we prove that if
G is Abelian, then such a group has order divisible by 3 except in the case G = Z/2Z. We also place additional
restrictions on the order of such groups.

1 Introduction

Consider the multiplicative function

fn) =TT 0" - 1.
p*ln
A finite group G is said to have Perfect Order Subsets if for every d, the number of elements of G of order
d (if there are any) divides |G|. This notion was introduced in the paper [1] by C. Finch and L. Jones. In
the case of finite Abelian groups, the authors reduced the problem of which groups have this property to
the case of groups of the form G = Hle(Z/ piZ)*, where p; are primes and a; > 1. For these groups, it
follows from results in [1] that G has Perfect Order Subsets if and only if f(n)|n. Only 11 examples of such
n are known, given below, and only one of these is divisible by the square of an odd prime.
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The authors of [1] asked several basic questions about such groups. One of which asks if |G| is not a
power of 2, must 3 divide |G|? We prove that this is the case for Abelian groups.

Theorem 1. If f(n)|n and n > 2, then 3|n.

We also show that f(n)|n implies that n/ f(n) is bounded. Note that the divergence of [[ (1 — 1/ p)~!
implies that n/f(n) is unbounded for general n. On the other hand, all of the known examples of n such
that n > 6 and f(n)|n (given in [1]) satisfy n = 2f(n).

Theorem 2. Foranyn € N, if f(n)|n, thenn/f(n) < 85.

The most important property of numbers n with f(n)|n is given by the following easy proposition.

Proposition 1. If f(n)

n, then for every prime p|n, every prime divisor of p — 1 also divides n.
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By Proposition 1, knowing that 3  n allows us to exclude many possible prime factors of n. Inductively,
define a set & or primes as follows: (i) 2 € Z, (ii) 3 ¢ &7, (iii) for every prime p > 5, p € £ if and only
if all prime factors of p — 1 are in &2. Thus,

(1.1) & =1{2,5,11,17,23,41,47,83,89,101, 137,167,179, 251,257, 353, 359, 401, 461, 503, .. . }.

By Proposition 1, every prime dividing n must come from &7. The set & has a alternative interpretation as
the set of all primes whose Pratt tree (see [3]) does not contain a node labeled 3.
Our proof of Theorem 1 is primarily based on the lower bound in the following estimate:

Theorem 3. We have

1
0.2512 < H (1 - ) < 0.2793.
P b
peEL

Since & omits all primes p = 1 (mod 3), and hence omits all primes ¢ such that ¢ — 1 has a prime factor
which is 1 (mod 3), standard application of sieve methods yields the upper bound

x
@(m)::#{pgx:pee@}<<w.

From this one obtains immediately from partial summation that the product in Theorem 3 converges. Ob-
taining good numerical bounds requires more work.
2 Number theory tools
Our first result is an estimate of Rosser and Schoenfeld [4].
Lemma 2.1. Forany z > 1,

1 \! 1 1
1+ <e(l 1—— )< 1+ :
( log2w> ‘ (ng)n< p) ( 10g2x>

p<zT

The following general sieve estimate is Theorem 1 of [2].
Lemma 2.2. Let S be a set of primes containing 2, and put
1
H(t)zH(l—).
p<t p
peS

Then N(x), the number of primes p < x such that all the prime factors of p — 1 are in S, satisfies

T B ﬁlogt
N@) < G eg o)1) I(“')_/l - Hd

Lemma 2.3. Let S be any set of primes with the property that for all p € S and prime q|(p—1), ¢ € S. For

any x = 2,
1 1 8
1——-) > 1—— | — .
H( p) H( p) log x

peES p<
peES

Proof. We may assume S is nonempty, so 2 € S. Write S(x) = #{p € S:p < z}.Forj > 0,lety; = z?

Hj:H<1—;>.

PLY;
peES
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Without loss of generality, suppose Hy > 8/log z, so in particular x > ', We derive by induction lower
estimates for H;. By Lemma 2.2, when y; 1 <t < y;, we have

t
S(#) < 8 -
(1 + 1/10gt)Hj71 log“t

By partial summation and the inequality log(1 — %) > — t_%,

os()=, 2 el )

Yj—1<DP<LY;
peES

= S(y;) log (1 - ylj> — S(yj_1)log <1 - yjl_1> _ /yy ug(f)u du

7—1

. . Yj
> S(y)) Y / ’ S(;ﬁ) du
yi—1 y—1Jy, , u
. Y5
,__8 < Y; > : 1 +/ i : du .
Hj—l Y — 1 log yj + log Yy Yio1 u(log u + log U)

Using the relation y; = y]{l, we find that the integral above equals log(1 + ﬁ) Now log(1 + ¢) <

€ — %52 fore = < % Thus,

1
log y;+1

Hj 8 Yj 1 1 1
Hj Hj_1 \y; —1/) \log®y; +logy; logy;+1 3(logy; +1)
() (s
Hj_1logy; \y; —1 3(logy; +1)?
Since y; = yo = el the right side above is > —8/(H;-11log y;). Therefore,

H;i>H 8 > H  _ g 827
>H: jexpd——" N> pg.o % g, — )
J J-LExP H;_qlogy; i1 log y; -1 log x

Iterating this inequality concludes the proof. O

3 Proof of Theorem 1

Before describing these, we show how to deduce Theorem 1 from Theorem 3. Observe that
f(n) 1
3.1 — = 1—— .
(3.1) el | Bl Rl
pln

Suppose that f(n)|n and 3 { n. If 2%n, then (3.1) and Theorem 3 imply

fln) _ 511 1\ _ 511 1
) o 1= =) > 22 (0.5024) > .
w25 L L) % 512t ) >3
p>5
peEP

Hence, f(n) { n. Thus, 2¥||n, where 1 < k < 8. If k = 1, then 4 { f(n), which means that n = 2p? for
some odd prime p. But then (3.1) and p > 5 imply

no_ 2
fn) — 1=1/p

2 <

<3,
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so that f(n) { n. If k is even, then 3|(2% — 1)|f(n)|n, a contradiction. Finally, if & € {3, 5,7}, then n has

at most 7 odd prime factors, hence
fn) _ 7 1 1
S 1) >,
n 8 H ~ 2

5<p<83 p
peES

so f(n) t n. Therefore, f(n)|n implies 3|n.

Proof of Theorem 3. The proof has two parts. The first is a computer calculation of all of the elements of
& which are less than

zo = 2 ~ 1.76 x 10'3,
consisting of 39479071 primes. This computation took about 120 hours on the first authors’ desktop com-
puter. Rather than compute the elements of & one by one, the algorithm sieved a large interval of integers
(A, B] (size about 10%), both sieving out the residue classes 0 (mod p) for primes < /B, but also sieving
the residue classes 1 (mod p) for primes p € &, p < B/2. Stopping the computation at a power of 2

was convenient for the second part of the proof — using the results of the computation to estimate & (x) for
x > Xo.

Lemma 3.1. Let xy = 2**. Then

1
H (1 - p) = (.27923438887 . ..

peEP
P<T0

Furthermore, with s = 0.6 we have

P(z) < ar®+2 (22 <z < x0),0 = 0.445836183,
T
o/z*+2 (xr <o), =0.501761301.

Estimating accurately Z?(x) is likely a very hard problem. It appears that 2 (x) ~ z°/8.
Conjecture 1. For some c > 0, Z(x) < x'7¢.

Note that if p € &, then p = 2 (mod 3), hence 2(p — 1) is even. A second computer program was used
to generate even numbers which are products of primes in <. Specifically, let

N~ ={n:2ln,PT(n) < z0,Q2n) odd,pjn = pe€ 2} ={2,8,20,32,44, ...},
N ={n:2ln, PT(n) < x0,Q(n) even,pln = p € P} = {4,10,16,22,34,...},

1

and, setting 6 = 7, let

_ 1
hp= ) —
nes "
n<299

If n € 4 and the odd part of n is given, then the parity of the exponent of 2 in the prime factorization of
n 1s fixed. Thus,

1 2—$ v —1
(3.2) § — <= H (1—p=*) .
neN* " - peS
Pt (n)<279 2<p<299

The elements of .4~ were computed exactly up to 236, Our next task is to use this data to obtain crude
upper bounds on & () in the range x¢ < x < 272
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Lemma 3.2. Let § = % and s = 0.6. For every integer j satisfying 44 < jo < 72, we have
P (z) < Cja® (2019 < 5 < 299),

where
Ci = % * max(9, jgﬁ) <t6<44 [a ( hI;ln(t] 1- t)) ta (h;_t a h;_1_44/6> }

+ Z Ci (Pjami — hjs)

i=1+44/5
Moreover, the sequence (C}) is increasing.

Proof. We proceed by induction on j. Suppose Jj > 44 and the given bounds have been proved for xy <
< 20719 Let max(9, jo — 44) < t6 < 44 and put y = 29, Suppose that 20~ 1% < 2 < 279, Suppose
thatp € &2 withp < x,letq = P (p—1)andp—1 = gqn. Then P*(n) < min(q,z/q) < zg,s0n € AN~

We have (i) ¢ < 5, (ii) ¢ > 5and n > x/y, (iii) ¢ > 5 and x/xg < n < x/y, or (iv) q >5andn < x/:po
In case (i), p — 1 is a power of two (there are exactly 4 such p) or p — 1 = 295 witha > 1, b > 1 (there are
68 such primes p < 27%). Now let 2*(x) = £ (z) — 2. Using (3.2), the number of primes counted in case

(i1) is at most
T 1
@* <7> g !,..8 o
> o LD Dl

neN newN
z/ysn<z x/y<n<wx
Pt (n)<y Pt(n)<y
1 1
! .8
<o’ 3 oS- X )
neN neN
Pt (n)<y n<min(y,z/y)

, _
<aa’ (gt B hmin(t,j—l—t)) :
In case (iii), ¢ < xg, hence the number of such p is bounded above by

« (L s 1 s p— -
E P (ﬁ) <oz E v < azx hj—t_hj—1—44/6 .
neN " nes
z/xo<n<z/y z/zo<n<z/y

In the final case, we use the induction hypothesis, in particular the supposition that C;_1 > Cj_o > ---.
Thus, the number of primes counted in case (iv) is at most

Y o(B)e ¥ al) o[k

neAN " neN—
n<z/xo n<z/xo
Jj—1 1
i=44/5+1 neN

20 =18 Lpno(i—it+1)s
Z C( j+1— zihj Z)'
i=44/6+1

Combining the estimates in cases (i)—(iv) proves the given assertion in the range 2= 4 < 299, The
monotonicity of the sequence (C}) follows by direct calculation. g
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We now develop bounds on #(x) for z > 272. Let

_ 1 1
N-= ) ~  Nf= > ~.
neAN — neAN+

By direct application of the computed elements of & which are < x(, we obtain

1 1\ !
NT4+N == <1—> = 1.790610. ..

2 PSTo p
peES

and

_ 1)) 1 1\ !

Nt —N~ = Z ():—2 <1+ ) = —0.1968977 . . ..
neNTuN— n P<Zo p
pES

Thus,
3.3) N~ <0.993755, NT < 0.796857.

Primarily due to the fact that N~ is so close to 1, our bounds from now on take the shape
(3.4) P(r) < Kz (271 <2 <29,

First, using the values of C; from Lemma 3.2, we obtain (3.4) for 45 < i < 72, where

max C; <2(j_1)5) o

K; =
(i—1)/6<j<i/s

For convenience, define
*
Ki = Imax (K45, e 7Kz) .

Lemma 3.3. Fori > 73, we have (3.4), where

K 4 K3

2 8 + (N_ - 5/8) i—4

T 1
Ki=Q2"") g+ —+
0

k
K*
i—44(k—1) ) _
+ > (k!>Nk(1+ (i — 44k) log 2)F 71,

where

N, = NT  keven
N~ kodd.

Proof. Again, we use induction on i. Suppose that 21 < L 20, If p e &, thenp =2 (mod 3). Thus, if
Pt(p—1) < xothenp —1 € 4. Hence, the number of p < z withp € &2 and P (p — 1) < xg is at

most
Tr\S s
E (*) < Z7g44/5-
n

n<r—1
neN+

The number of p — 1 divisible by the square of a prime > xg is trivially at most

> el
2\1.0'

q>To q
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If PT(p—1) > xp and p — 1 is not divisible by the square of any prime > z, let k be the number of prime
factors of p — 1 which are > z(. Using the fact that the smallest 3 elements of .4~ are 2, 8, 20, the number
of p with k£ = 1 is at most

Y 2G)<2@)rrQ)r X2 ()

neNy neN—
n<xz/xg 20<n<x/xo
x X _ *
< §Ki71 + §K¢73 + (N~ =5/8)K;y.

Now suppose k > 2 and put .4, = A4~ if kis odd and .4, = 4T if k is even. Observe that i > 44k. As
there are k! was to order the prime factors of p — 1 which are > x(, the number of p < z corresponding to
this value of & is at most

1 x
) i
k" Z Z k—1 Z k—1 nql o QIC_l
ne,/ka zo<qi<z/(nzg ")  @o<gr—15z/(nzy )
n<z/xf G EP @-1€Z
K* k—1
i—44(k—1) 1 ( 1)
—— — -
k! Z n Z je1 4
neN zo<q<z/x(
Qe

N

K* P )k 1 w/og ! k-1
i—44(k—1) (/x5 ) P(u)

< ————— “Z¢Nyp| — 2 72

< X T k( x/m’éfl + g du)

u2

0
< (Kf_44(k;—1)>k %Nk (1 + log(fﬂ/ﬂfg))kil : U

Heuristically, the terms in the sum corresponding to £ = 1 dominate the others. These terms total at most
K} N~ < K/ ;, which means that the sequence ([;) changes very slowly with ¢. In fact, K; < 0.0001407
for 45 < i < 640. Using computed values of K; for i < 640, we obtain, with z; = 2640,

HEORIERE .

PST1 P<SZo p>T0 To<p<T1
peEY peEY peEP
1 1 P P g
P H (1 — ) exp {— - (@1) + (20) —/ (2u) du}
(3.5) <0 p Zo x1 Zo z U
) peEP
640
1 39479070
> 1] <1 — > exp { — Keao — » K,-log2}
PSTO p o i=45
pEL
> 0.2693.
To finish the proof of Theorem 3, take S = &2 and « = 1 = 254 in Lemma 2.3, and use (3.5). O

4 Proof of Theorem 2
Proposition 2. Suppose f(n)|n and n/f(n) > 5. Then w(n) > 46 and 23 |n.

Proof. 1f 2||n and n > 2, then n = 2p® for a prime p, so (p® — 1)|(2p®) and hence (p® — 1)|2. This implies
p=3andn = 6. If 22|n and 2° { n, then n has at most 6 odd prime factors and

n 4 P
mgg I — <4

1
3<p<1z P
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Now assume 26|n. If w(n) < 45, then

0.8 ()4

3<p<200 p

Hence, w(n) > 46, and thus n has at least 45 odd prime factors. This implies that 24°| f (n)|n. O

We first prove the following result about primes dividing n to a small power.

Theorem 4. If f(n)|n and Q = {p|n : p*° { n}, then

1 —1
H (1 - ) < 85.32.
q

qe@
Proof. By Proposition 2, we may assume 2%°|n, so that 2 & Q. Let tq be the smallest prime that
1 L
4.1) 11 (1 — ) > 16.016¢".
p<to p
PEQ

If no such £ exists, then the theorem follows, since 16.016e” < 30. Next, Lemma 2.1 implies

1 1 1\ ' e
— > I——) > (1+— ,
32.032e7 L4 P log” tg log to

32

which implies that ¢y > e
Let S = {p:p|n}and S(z) = #{p < x : p € S}. For any prime ¢ with ¢°||n, there are at most b primes
p|n withp =1 (mod ¢). Hence, by Lemma 2.2, for x > t; we have

S@ <SR+ Y Y 1+ #{VE<p<aiVg<Vawithge Qaf(p— 1)}

q€Q pln
q<v/z p=1 (mod q)

<40S(Vr)+#{Ve <p<z:Vg<Vrwithge Q,qf (p—1)}

< 20V + (1+1/logx)I(z)’

where

mmzAﬁH@b?m, ]ﬂw:IIC—1>

p<t

By Lemma 2.1 and (4.1),

1 1! 16.016 1 \! 16
o> I () I() = o (i) ot
P/ 5t p og max(t, o) log® g og max(t, to)

p<max(to,t)
pe@

2log? 2
I(z) > gt (z < 1)
8log(z/ty) (x> t3).

. < - S .
Since \/x < 5000 %5 for x > tg, we obtain

x log to ¢ < T < t2
4.2) S(.T) < {ZIOgiz ( 0 : 0)
Seete) (@ > to)-
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Note that by (4.1), S(tp) > 1. By (4.2) and partial summation, if ¢t = tff“ > t2 then

I (1-5)>00{- £ 5 23]

pES pES p p>to
to<p<t to<p<t
1 St S(t ts
sap{-Ly Sl _ SO _ 'S0,
to tO t to ’LL2

Applying Lemma 2.3 gives

I(-5) I )

peES

1 1 11 8
> 1— =) expl— — - = logCp — — .
};( p) eXp{ 8Clogty, 4 8 °° } (C +1)logtg
p<to

By Lemma 2.1, we obtain the bound

(211}

v =
-1
- {_SCItho B % - slglogc} C+ 18) log to go ( 11)>
> exp {_SCIthO _ % _ logC} 81 %(;:_/iog%o)
i i

Taking C' = 296 produces a lower bound for the above product of 0.33437. Therefore,

H 1—1 2# 1—l 0.33437>L
P 16.016¢eY to 85.32
PEQ

and the proof of Theorem 4 is complete. ([l

Proof of Theorem 2. By Theorem 4,

1 1 1
f(nn):H1_p—a<H1_p—1H1_p—40<85'4' 0
4

pe|ln PeEQ
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