On the smallest simultaneous power nonresidue modulo a prime

K. Ford, M. Z. Garaev and S. V. Konyagin

Abstract

Let p be a prime and p_{1}, \ldots, p_{r} be distinct prime divisors of $p-1$. We prove that the smallest positive integer n which is a simultaneous p_{1}, \ldots, p_{r}-power nonresidue modulo p satisfies $$
n<p^{1 / 4-c_{r}+o(1)} \quad(p \rightarrow \infty)
$$ for some positive c_{r} satisfying $c_{r}=e^{-(1+o(1)) r}(r \rightarrow \infty)$.

Mathematical Subject Classification: 11A15, 11A07, 11N29
Keywords: simultaneous power nonresidues; primitive roots; sieve methods; well-spaced divisors

1 Introduction

Let $n(p)$ be the smallest positive quadratic nonresidue modulo p and $g(p)$ be the smallest positive primitive root modulo p. The problem of upper bound estimates for $n(p)$ and $g(p)$ starts from the early works of Vinogradov. It is believed that $n(p)=p^{o(1)}$ and $g(p)=p^{o(1)}$ as $p \rightarrow \infty$. Vinogradov [14, 15] proved that

$$
n(p) \ll p^{\frac{1}{2 \sqrt{e}}}(\log p)^{2}, \quad g(p)<\frac{2^{k+1}(p-1) p^{\frac{1}{2}}}{\phi(p-1)}
$$

where k is the number of distinct prime divisors of $p-1$. Hua [9] improved Vinogradov's result to $g(p)<2^{k+1} p^{1 / 2}$ and then Erdős and Shapiro [6] refined
it to $g(p) \ll k^{C} p^{\frac{1}{2}}$, where C is an absolute constant. These bounds were improved by Burgess [1, 2] to

$$
n(p)<p^{\frac{1}{4 \sqrt{e}}+o(1)}, \quad g(p)<p^{\frac{1}{4}+o(1)} \quad(p \rightarrow \infty)
$$

The Burgess bounds remains essentially the best known up to date, in a sense that it is not even known that $n(p) \ll p^{1 / 4 \sqrt{e}}$ or that $g(p) \ll p^{1 / 4}$.

If one allows a small exceptional set of primes, then better estimates may be obtained. Using his "large sieve", Linnik [12] proved that for any $\varepsilon>0$, there are only $O_{\varepsilon}(\log \log x)$ primes $p \leqslant x$ for which $n(p)>p^{\varepsilon}$. The sharpest to date results for $g(p)$ (which also hold for the least prime primitive root modulo p) are due to Martin [13], who proved that for any $\varepsilon>0$, there is a $C>0$ so that $g(p)=O\left((\log p)^{C}\right)$ with at most $O\left(x^{\varepsilon}\right)$ exceptions $p \leqslant x$. All of these type of results are "purely existential", in that one cannot say for which specific primes p the bounds hold (say, in terms of the factorization of $p-1$).

From elementary considerations it follows that an integer g is a primitive root modulo p if and only if for any prime divisor $q \mid p-1$ the number g is a q-th power nonresidue modulo p. Thus, if p_{1}, \ldots, p_{k} are all the distinct prime divisors of $p-1$, then $g(p)$ is the smallest positive simultaneous p_{1}, \ldots, p_{k}-th power nonresidue modulo p. In the present paper we prove the following result.

Theorem 1. Let p be a prime number and p_{1}, \ldots, p_{r} be distinct prime divisors of $p-1$. Then the smallest positive integer n which is a simultaneous p_{1}, \ldots, p_{r}-th power nonresidue modulo p satisfies

$$
n<p^{1 / 4-c_{r}} e^{C(\log r)^{1 / 2}(\log p)^{1 / 2}}
$$

where $C>0$ is an absolute constant and $c_{r}=e^{-(1+o(1)) r}$ as $r \rightarrow \infty$.
The novelty of the result is given by the factor $p^{-c_{r}}$. We observe that for $c_{r}<(\log p)^{-1 / 2}$ (in particular, for $r \geqslant(0.5+\varepsilon) \log \log p$ and $\left.p \geqslant p(\varepsilon)\right)$ this factor is dominated by the exponential factor.

The following corollaries directly follow from Theorem 1.
Corollary 1. Let p be a prime number and p_{1}, \ldots, p_{r} be distinct prime divisors of $p-1$, where r is fixed. Then the smallest positive integer n which is a simultaneous p_{1}, \ldots, p_{r}-th power nonresidue modulo p satisfies

$$
n<p^{1 / 4-c_{r}+o(1)} \quad(p \rightarrow \infty) .
$$

From our earlier discussion, the upper bound given in Theorem 1 holds also for $g(p)$ whenever $p-1$ has r distinct prime factors.

Corollary 2. For any $\varepsilon>0$, if $p-1$ has at most $(0.5-\varepsilon) \log \log p$ distinct prime divisors, then $g(p)=o\left(p^{1 / 4}\right)$ as $p \rightarrow \infty$.

The counting function of primes satisfying the hypothesis of Corollary 2 is $x(\log x)^{-3 / 2+(\log 2) / 2-O(\varepsilon)}$ (the upper bound follows from e.g., [4, Inequality (5)]; the lower bound can be obtained using sieve methods).

Remark 1. The focus of our arguments is to establish bounds which are uniform in r. We have made no attempt to optimize the value of c_{r} for small r, and leave this as a problem for further study.

Our proof of Theorem 1 proceeds in three main steps. The first is a standard application of character sums to show that a large proportion of integers $n<p^{1 / 4+o(1)}$ are simultaneous p_{1}, \ldots, p_{r}-th power nonresidue modulo p. Next, we show that if such a number n has many divisors $\left(r 2^{r}\right.$ divisors suffice), then for some pair $d<d^{\prime}$ of these divisors, the smaller number $n^{\prime}=d n / d^{\prime}$ is also a simultaneous p_{1}, \ldots, p_{r}-th power nonresidue modulo p. This procedure is most efficient when the ratios d^{\prime} / d are uniformly large. In the third step we show that integers possessing many well-spaced divisors are sufficiently dense, so that there must be one such number in the set guaranteed by first step (with an appropriate quantification of "well-spaced" and "dense").

2 Character sums and distribution of power nonresidues

We begin by recalling the well-known character sum estimate of Burgess $[2,3]$.
Lemma 1. If p is a prime and χ is a non-principal character modulo p and if H and m are arbitrary positive integers, then

$$
\left|\sum_{n=N+1}^{N+H} \chi(n)\right| \ll H^{1-1 / m} p^{(m+1) / 4 m^{2}}(\log p)^{1 / m}
$$

for any integer N, where the implied constant is absolute.

See the proof in [11], (12.58). In the remark after the proof the authors announce that the factor $(\log p)^{1 / m}$ can be replaced by $(\log p)^{1 /(2 m)}$, but this is not important for us.

Lemma 2. Let p be a prime number and p_{1}, \ldots, p_{r} be distinct prime divisors of $p-1$. The number J of integers $n \leqslant H$ which are simultaneous p_{1}, \ldots, p_{r} th power nonresidues modulo p satisfies

$$
J \geqslant \frac{H}{8} \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)+O\left(r^{9} H^{1-1 / m} p^{(m+1) / 4 m^{2}}(\log p)^{1 / m}\right)
$$

where the constant implied in the " O "-symbol is absolute.
Proof. We follow the method of [5]. Let C be a sufficiently large constant, to be chosen later. Assuming that $p_{1}<\cdots<p_{r}$, we choose the largest $s \leqslant r$ so that $p_{s} \leqslant C r^{2}$ (if $p_{1}>C r^{2}$, then set $s=0$). Let J_{1} be the number of integers $n \leqslant H$ which are simultaneous p_{1}, \ldots, p_{s}-th power nonresidues modulo p. For $j>s$, let $J_{2, j}$ be the number of integers $n \leqslant H$ which are p_{j}-th power residues modulo p. Clearly,

$$
\begin{equation*}
J \geqslant J_{1}-\sum_{j=s+1}^{r} J_{2, j} . \tag{2.1}
\end{equation*}
$$

Let g be a primitive root of p and let χ_{0} be the principal Dirichlet character modulo p. We will denote by χ a generic Dirichlet character modulo p. By orthogonality, for $(x, p)=1$ we have

$$
\frac{1}{d} \sum_{\chi^{d}=\chi_{0}} \chi(x)= \begin{cases}1, & \text { if } \operatorname{ind}_{g} x \equiv 0(\bmod d) \\ 0, & \text { if } \operatorname{ind}_{g} x \not \equiv 0(\bmod d)\end{cases}
$$

A number n is a p_{i}-power residue modulo p if and only if $p_{i} \mid \operatorname{ind}_{g} n$. Hence,

$$
J_{1}=\sum_{\substack{n \leqslant H \\ \operatorname{gcd}\left(\operatorname{ind}_{g} n, p_{1} \ldots p_{s}\right)=1}} 1=\sum_{d \mid p_{1} \ldots p_{s}} \mu(d) \sum_{\substack{n \leqslant H \\ d \mid \operatorname{ind}_{g} n}} 1
$$

and for $j=s+1, \ldots, r$ we have

$$
\begin{equation*}
J_{2, j}=\sum_{\substack{n \leqslant H \\ p_{j} \mid \operatorname{ind}_{g} n}} 1 . \tag{2.2}
\end{equation*}
$$

We denote

$$
R=H^{1-1 / m} p^{(m+1) / 4 m^{2}}(\log p)^{1 / m}
$$

Using Lemma 1 for $\chi \neq \chi_{0}$, we get for any d that

$$
\begin{equation*}
\sum_{\substack{n \leqslant H \\ d \mid \operatorname{ind}_{g} n}} 1=\frac{1}{d} \sum_{\chi^{d}=\chi_{0}} \sum_{n \leqslant H} \chi(n)=\frac{H}{d}+O(R) . \tag{2.3}
\end{equation*}
$$

To estimate J_{1} we use a lower bound sieve as in [5] combining with (2.3). Brun's sieve [8, Theorem 2.1 and the following Remark 2] suffices. Here the "sieve dimension" is $\kappa=1$. Taking $\lambda=\frac{1}{4}, b=1, z=C r^{2}$ and $L=O(R)$ in [8, Theorem 2.1 and the following Remark 2], we get that

$$
\begin{aligned}
J_{1} & \geqslant H \prod_{i=1}^{s}\left(1-\frac{1}{p_{i}}\right)\left(1-2 \frac{\lambda^{2 b} e^{2 \lambda}}{1-\lambda^{2} e^{2+2 \lambda}}+O\left(\frac{1}{\log z}\right)\right)-O\left(z^{4.1} R\right) \\
& \geqslant 0.13 H \prod_{i=1}^{s}\left(1-\frac{1}{p_{i}}\right)-O\left(r^{9} R\right)
\end{aligned}
$$

if C is large enough.
By (2.2) and (2.3),

$$
\sum_{j=s+1}^{r} J_{2, j}=H \sum_{j=s+1}^{r} \frac{1}{p_{j}}+O(r R) \leqslant \frac{H}{C r}+O(r R)
$$

since $p_{j}>C r^{2}$ for all $j \geqslant s+1$. Taking into account

$$
\prod_{i=1}^{s}\left(1-\frac{1}{p_{i}}\right) \geqslant \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right) \geqslant \frac{1}{r+1} \geqslant \frac{1}{2 r}
$$

and assuming that $C \geqslant 400$, we get

$$
J_{1}-\sum_{j=s+1}^{r} J_{2, j} \geqslant \frac{H}{8} \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)+O\left(r^{9} R\right)
$$

Using (2.1) we complete the proof of the lemma.

3 Reduction of simultaneous nonresidues

The aim of this section is to show that if a positive integer n which is a simultaneous p_{1}, \ldots, p_{r}-th power nonresidue modulo p has many divisors then it is possible to construct $n^{\prime}<n$ which is also a simultaneous p_{1}, \ldots, p_{r}-th power nonresidue modulo p.

Lemma 3. Let q be a prime, $u \in \mathbb{R}, u>1$ and $a \in \mathbb{Z}, a \not \equiv 0(\bmod q)$. Assume that

$$
\begin{equation*}
a_{1}, a_{2}, \ldots, a_{t} \tag{3.1}
\end{equation*}
$$

is a sequence of $t \geqslant 2 u q /(q-1)$ integers (not necessarily distinct). Then for some $\ell \in \mathbb{N}, \ell \geqslant u$ and indices $i_{1}<i_{2}<\ldots<i_{\ell}$ we have that

$$
a_{i_{v}}-a_{i_{w}} \not \equiv a(\bmod q) \quad(1 \leqslant v, w \leqslant \ell) .
$$

Proof. From the pigeon-hole principle, there is a residue class $h(\bmod q)$ containing at most t / q elements from the sequence (3.1). For $1 \leqslant j \leqslant q-1$, let

$$
Q_{j}=\left\{1 \leqslant i \leqslant t: a_{i} \equiv h+j a(\bmod q)\right\} .
$$

Then

$$
\left|\bigcup_{j=1}^{q-1} Q_{j}\right| \geqslant t-\frac{t}{q}=\frac{(q-1) t}{q}
$$

Let

$$
A=\bigcup_{\substack{1 \leqslant j \leqslant q-1 \\ 2 \mid j}} Q_{j}, \quad B=\bigcup_{\substack{1 \leqslant j \leqslant q-1 \\ 2 \nmid j}} Q_{j}
$$

Clearly, the sets A and B have no solutions to $x-y \equiv a(\bmod q)$. Since

$$
\max \{|A|,|B|\} \geqslant \frac{1}{2}\left|\bigcup_{j=1}^{q-1} Q_{j}\right| \geqslant \frac{(q-1) t}{2 q} \geqslant u
$$

the result follows.
Remark 2. For $q=2$ it is enough to require $t \geqslant 2 u$. Indeed, we can choose a large subsequence of $a_{1}, a_{2}, \ldots, a_{t}$ of the same parity.

Corollary 3. Let $p_{1}, p_{2}, \ldots, p_{r}$ be prime numbers, and

$$
\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{r}\right) \in \mathbb{F}_{p_{1}}^{*} \times \mathbb{F}_{p_{2}}^{*} \times \ldots \times \mathbb{F}_{p_{r}}^{*}
$$

Let

$$
t>2^{r} \prod_{i: p_{i}>2} \frac{p_{i}}{p_{i}-1}
$$

and

$$
\mathbf{a}_{1}, \mathbf{a}_{2} \ldots, \mathbf{a}_{t}
$$

be a sequence of t elements from $\mathbb{F}_{p_{1}} \times \mathbb{F}_{p_{2}} \times \ldots \times \mathbb{F}_{p_{r}}$. Then for some $i<j$ we have that

$$
\mathbf{a}_{j}-\mathbf{a}_{i} \in\left(\mathbb{F}_{p_{1}} \backslash\left\{b_{1}\right\}\right) \times\left(\mathbb{F}_{p_{2}} \backslash\left\{b_{2}\right\}\right) \times \ldots \times\left(\mathbb{F}_{p_{r}} \backslash\left\{b_{r}\right\}\right)
$$

Corollary 3 follows from r applications of Lemma 3 and taking into account Remark 2.
Corollary 4. Let p be a prime number and suppose p_{1}, \ldots, p_{r} are distinct prime divisors of $p-1$. Let n be a simultaneous p_{1}, \ldots, p_{r}-th power nonresidue modulo p and $d_{1}<\cdots<d_{t}$ be some divisors of n where

$$
t>2^{r} \prod_{p_{i}>2} \frac{p_{i}}{p_{i}-1}
$$

Then there exists i, j such that $1 \leqslant i<j \leqslant t$ and the number $n^{\prime}=n d_{i} / d_{j}$ is also a simultaneous p_{1}, \ldots, p_{r}-th power nonresidue modulo p.
Proof. Let g be a primitive root modulo p. To each number x we associate the vector

$$
\left(s_{1}, s_{2}, \ldots, s_{r}\right) \in \mathbb{F}_{p_{1}} \times \mathbb{F}_{p_{2}} \times \ldots \times \mathbb{F}_{p_{r}}
$$

so that for $1 \leqslant i \leqslant r, x \equiv g^{p_{i} k_{i}+s_{i}}(\bmod p)$ where $0 \leqslant s_{i}<p_{i}$
Let the vector $\left(b_{1}, b_{2}, \ldots, b_{r}\right)$ correspond to n and the vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{t}$ correspond to d_{1}, \ldots, d_{t}, respectively. Apply Corollary 3 and select the indices $i<j$ such that

$$
\mathbf{a}_{j}-\mathbf{a}_{i} \in\left(\mathbb{F}_{p_{1}} \backslash\left\{b_{1}\right\}\right) \times\left(\mathbb{F}_{p_{2}} \backslash\left\{b_{2}\right\}\right) \times \ldots \times\left(\mathbb{F}_{p_{r}} \backslash\left\{b_{r}\right\}\right)
$$

Then $n^{\prime}=n d_{i} / d_{j}$ is a simultaneous $p_{1}, p_{2}, \ldots, p_{r}$-power nonresidue modulo p.
Remark 3. We note that if $p_{1}, p_{2}, \ldots, p_{r}$ are distinct primes, then

$$
\begin{equation*}
r>\prod_{p_{i}>2} \frac{p_{i}}{p_{i}-1} \tag{3.2}
\end{equation*}
$$

Hence, in Corollaries 3 and 4 one can take $t=2^{r} r$.

4 Integers with well-spaced divisors

Let $P^{-}(n)$ and $P^{+}(n)$ denote the smallest and largest prime factor of n, respectively, let $\omega(n)$ be the number of distinct prime factors of n, and let $\tau(n)$ be the number of positive divisors of n.

Lemma 4. For each fixed constant $c>1 / \log 2=1.442 \ldots$, there is $\eta=$ $\eta(c)>0$ such that the following holds. Uniformly for integers $t, 2 \leqslant t \leqslant$ $(\log x)^{1 / c}$, all but $O_{c}\left(x / t^{\eta}\right)$ integers $n \leqslant x$ have t divisors $d_{1}<d_{2}<\cdots<d_{t}$ such that $d_{j+1} / d_{j}>x^{1 / t^{c}}$ for all $1 \leqslant j \leqslant t-1$.

Proof. We may assume that $t \geqslant 10$. Take

$$
\varepsilon=\frac{c-1 / \log 2}{4}, \quad \alpha=1 / \log 2+\varepsilon
$$

Write each $n \leqslant x$ in the form $a b d$ where $P^{-}(d)>x^{1 / \log t}, P^{+}(a) \leqslant x^{1 /\left(t^{\alpha} \log t\right)}$ and all prime factors of b lie in $\left(x^{1 /\left(t^{\alpha} \log t\right)}, x^{1 / \log t}\right]$. We divide n into several categories. Let $k_{0}=\left\lceil\frac{\log 2 t}{\log 2}\right\rceil$. Let S_{0} be the set of $n \leqslant x$ with either $d=1$ or with b not squarefree. Let S_{1} be the set of n with $d>1, b$ squarefree and $\omega(b)<k_{0}$. We denote $\alpha_{j}=j \varepsilon$ for $1 \leqslant j \leqslant J-1:=[\alpha / \varepsilon], \alpha_{J}=\alpha$, $a_{j}=x^{1 /\left(t^{\alpha} j \log t\right)}$ for $j=1, \ldots, J$. Let S_{2} be the set of n with $d>1, b$ squarefree and the number of primes from the interval $\left(a_{j}, x^{1 / \log t}\right]$ dividing n is less than $k_{j}:=\left(\alpha_{j}-\varepsilon\right) \log t$ for some $j=1, \ldots, J-1$. Let S_{3} be the set of the remaining integers n.

We first show that S_{0}, S_{1}, and S_{2} are small. By standard counts for smooth numbers,

$$
\left|S_{0}\right| \leqslant \Psi\left(x, x^{1 / \log t}\right)+\sum_{p>x^{1 /\left(t^{\alpha} \log t\right)}} \frac{x}{p^{2}} \ll \frac{x}{t}+\frac{x}{x^{1 /\left(t^{\alpha} \log t\right)}} \ll \frac{x}{t} .
$$

Next, by the results of Halász [7] on the number of integers with a prescribed number of prime factors from a given set (see also Theorem 08 of [10]), we
have

$$
\begin{aligned}
\left|S_{1}\right| & \ll \sum_{k<k_{0}} x e^{-E} \frac{E^{k}}{k!}, \quad E=\sum_{x^{1 /\left(t^{\alpha} \log t\right)<p \leqslant x^{1 / \log t}}} \frac{1}{p}=\alpha \log t+O(1) \\
& \ll x t^{-\alpha} \sum_{k<k_{0}} \frac{(\alpha \log t)^{k}}{k!} \\
& \ll x\left(t^{\alpha}\right)^{-(\beta \log \beta-\beta+1)}, \quad \beta=\frac{1}{\alpha \log 2}=\frac{1}{1+\varepsilon \log 2}<1 \\
& \ll x / t^{\delta}
\end{aligned}
$$

for some $\delta>0$ which depends on ε.
For any $j=1, \ldots, J-1$ we denote by $S_{2, j}$ the set of $n \leqslant x$ with less than k_{j} prime divisors from $\left(a_{j}, x^{1 / \log t}\right]$. We have

$$
\left|S_{2, j}\right| \ll \sum_{k<k_{j}} x e^{-E_{j}} \frac{E_{j}^{k}}{k!},
$$

where

$$
E_{j}=\sum_{\left.x^{1 /\left(t^{\alpha j}\right.}\right)} \frac{1}{\log t)<p \leqslant x^{1 / \log t}}=\alpha_{j} \log t+O(1) .
$$

Arguing as before we get

$$
\left|S_{2, j}\right| \ll x / t^{\delta^{\prime}}
$$

for some $\delta^{\prime}>0$ which depends on ε.
Notice that for $n \in S_{3}, \tau(b)=2^{\omega(b)} \geqslant 2^{k_{0}} \geqslant 2 t$. Next, let S_{4} be the set of $n \in S_{3}$ for which b does not have t well-spaced divisors in the sense of the lemma. Since $d>1$ for such n, given such a $b a d$ value of b, using a standard sieve bound the number of choices for the pair (a, d) is bounded above by

$$
\sum_{a}\left|\left\{d \leqslant x / a b: P^{-}(d)>x^{1 / \log t}\right\}\right| \ll \sum_{a} \frac{x / a b}{\log \left(x^{1 / \log t}\right)} \ll \frac{x}{b t^{\alpha}}
$$

Hence,

$$
\begin{equation*}
\left|S_{4}\right| \ll \sum_{\operatorname{bad} b} \frac{x}{b t^{\alpha}} \tag{4.1}
\end{equation*}
$$

A number b which is bad has many pairs of neighbor divisors. To be precise, let $\sigma=t^{-c} \log x$ and define

$$
W^{*}(b ; \sigma)=\left|\left\{\left(d^{\prime}, d^{\prime \prime}\right): d^{\prime}\left|b, d^{\prime \prime}\right| b, d^{\prime} \neq d^{\prime \prime},\left|\log \left(d^{\prime} / d^{\prime \prime}\right)\right| \leqslant \sigma\right\}\right|
$$

Let $d_{1}<\cdots<d_{\tau(b)}$ be the divisors of b. We construct the subsequence $D_{1}<\cdots<D_{r}$ of this sequence:

$$
D_{1}=1, \quad D_{i}=\min \left\{d_{j}: d_{j}>x^{t^{-c}} D_{i-1}\right\}(i>1)
$$

The process is terminated if D_{i} does not exist. Let $D_{r+1}=+\infty$. The set $\left\{d_{1}, \ldots, d_{\tau(b)}\right\}$ is divided into r subsets $\mathcal{D}_{i}, i=1, \ldots, r$, where

$$
\mathcal{D}_{i}=\left\{d_{j}: D_{i} \leqslant d_{j}<D_{i+1}\right\}
$$

We see that $\left(d^{\prime}, d^{\prime \prime}\right)$ is counted in $W^{*}(b ; \sigma)$ if $d^{\prime}, d^{\prime \prime} \in \mathcal{D}_{i}$ for some i and $d^{\prime} \neq d^{\prime \prime}$. Hence,

$$
W^{*}(b ; \sigma) \geqslant \sum_{i=1}^{r}\left|\mathcal{D}_{i}\right|\left(\left|\mathcal{D}_{i}\right|-1\right)=\sum_{i=1}^{r}\left|\mathcal{D}_{i}\right|^{2}-\tau(b)
$$

Since $\tau(b) \geqslant 2 t$ and $r \leqslant t$, we get by the Cauchy-Schwartz inequality that
$\tau(b)^{2}=\left(\sum_{i=1}^{r}\left|\mathcal{D}_{i}\right|\right)^{2} \leqslant t\left(\sum_{i=1}^{r}\left|\mathcal{D}_{i}\right|^{2}\right) \leqslant t\left(W^{*}(b ; \sigma)+\tau(b)\right) \leqslant t W^{*}(b ; \sigma)+\frac{1}{2} \tau(b)^{2}$.
Therefore,

$$
\begin{equation*}
\sum_{\text {bad } b} \frac{1}{b} \leqslant \sum_{\text {all } b} \frac{2 W^{*}(b ; \sigma) t}{b \tau(b)^{2}} \tag{4.2}
\end{equation*}
$$

each sum being over squarefree integers whose prime factors lie in $\left(x^{1 /\left(t^{\alpha} \log t\right)}, x^{1 / \log t}\right]$.
In the latter sum, fix $k=\omega(b)$, write $b=p_{1} \cdots p_{k}$, where the p_{i} are primes, and $p_{1}<\cdots<p_{k}$. Then $W^{*}\left(p_{1} \cdots p_{k} ; \sigma\right)$ counts the number of pairs $Y, Z \subset\{1, \ldots, k\}$ with $Y \neq Z$ and

$$
\begin{equation*}
\left|\sum_{i \in Y} \log p_{i}-\sum_{i \in Z} \log p_{i}\right| \leqslant \sigma \tag{4.3}
\end{equation*}
$$

Fix Y, Z, and let I be the maximum element of the symmetric difference $(Y \cup Z)-(Y \cap Z)$. We fix I and count the number of p_{1}, \ldots, p_{k} satisfying (4.3). We further partition the solutions, according to the condition $a_{j}<p_{I} \leqslant a_{j-1}$, for $j=1, \ldots, J$. Fix the value of j. If all the p_{i} are fixed except for p_{I}, then (4.3) implies that p_{I} lies in some interval of the form $\left[U, U e^{2 \sigma}\right]$. As $p_{I}>x^{1 / t^{\alpha} j \log t}$ as well, and $\alpha>c$, we have (putting $\left.U_{j}=\max \left(U, x^{1 / t^{\alpha} j \log t}\right)\right)$

$$
\sum_{p_{I}} \frac{1}{p_{I}} \ll \log \left(1+\frac{2 \sigma}{\log U_{j}}\right) \ll \frac{\sigma}{\log U_{j}} \ll t^{\alpha_{j}-c} \log t
$$

Hence, for each fixed k, j, Y and Z,

$$
\begin{align*}
\sum_{x^{1 / t^{\alpha} \log t<p_{1}<\ldots<p_{k} \leqslant x^{1 / \log t}}} \frac{1}{p_{1} \cdots p_{k}} & \ll \frac{t^{\alpha_{j}-c}(\log t)}{(k-1)!}\left(\sum_{x^{1 / t^{\alpha} \log t<p \leqslant x^{1 / \log t}}} \frac{1}{p}\right)^{k-1} \\
& \ll \frac{t^{\alpha_{j}-c}(\log t)(\alpha \log t+O(1))^{k-1}}{(k-1)!} \tag{4.4}
\end{align*}
$$

Now we estimate the number $N(I, j)$ of choices for the pair Y, Z for fixed I and j. Since $p_{I} \leqslant a_{j-1}$, the condition $n \in S_{3}$ implies $I \leqslant k-k_{j-1}$. For any $i \leqslant I$ there are at most four possibilities: $i \in Y \cap Z, i \in Y \backslash Z, i \in Z \backslash Y$, $i \notin Y \cup Z$. For $i>I$ there are two possibilities: $i \in Y \cap Z$ and $i \notin Y \cup Z$. Therefore,

$$
\begin{equation*}
N(I, j) \leqslant 4^{I} 2^{k-I} \leqslant 4^{k} 2^{-k_{j-1}} \leqslant 4^{k} t^{-\alpha_{j} \log 2+2 \varepsilon \log 2} . \tag{4.5}
\end{equation*}
$$

It follows from (4.4) and (4.5) that

$$
\sum_{\omega(b)=k} \frac{W^{*}(b ; \sigma) t}{b \tau(b)^{2}} \ll \sum_{j=1}^{J} t^{1+(1-\log 2) \alpha_{j}+2 \varepsilon-c} \sum_{k} \frac{(\alpha \log t+O(1))^{k-1}}{(k-1)!}
$$

Taking into account that $\alpha_{j} \leqslant \alpha$ and summing on j, k we get

$$
\sum_{b} \frac{W^{*}(b ; \sigma) t}{b \tau(b)^{2}} \ll t^{1+2 \varepsilon+(2-\log 2) \alpha-c}
$$

Thus, by (4.1) and (4.2),

$$
\left|S_{4}\right| \ll \frac{x}{t^{c-(1-\log 2) \alpha-2 \varepsilon-1}}=\frac{x}{t^{c-1 / \log 2-\varepsilon(3-\log 2)}} \ll \frac{x}{t^{\varepsilon}} .
$$

Therefore, there are $x-O\left(x / t^{\min \left(\delta, \delta^{\prime}, \varepsilon\right)}\right)$ numbers $n \leqslant x$ for which b does have t well-spaced divisors.

Remark 4. Lemma 4 is best possible in the sense that the conclusion does not hold for $c<1 / \log 2$. In fact, for any $c<1 / \log 2$, the number of integers $n \leqslant x$ that do have t divisors d_{1}, \ldots, d_{t} with $d_{j+1} / d_{j}>n^{1 / t^{c}}$ for all j is $O_{c}\left(x / t^{\eta}\right)$ for some $\eta>0$ which depends on c.

Proof. It is well-known that if t is large, $c<1 / \log 2$ and ε small enough, then a typical integer n has $r \sim(c+\varepsilon) \log t$ prime factors p_{1}, \ldots, p_{r} in $\left[n^{1 / t^{c+\varepsilon}}, n\right]$. This can be seen, e.g. by the theorem of Halász used in the estimation of $\left|S_{1}\right|$. In fact, the number of exceptional $n \leqslant x$ is $O_{c}\left(x / t^{\eta}\right)$. Thus, a typical n has about $2^{(c+\varepsilon) \log t}=t^{(c+\varepsilon) \log 2}<t$ divisors composed of such primes. Also, for most of these $n, n /\left(p_{1} \cdots p_{r}\right)<n^{1 /\left(2 t^{c}\right)}$; by Theorem 07 of [10], the number of exceptions $n \leqslant x$ is $O\left(x \exp \left\{-c_{1} t^{\varepsilon}\right\}\right)$ for some $c_{1}>0$. Suppose that such an n has t well-spaced divisors d_{1}, \ldots, d_{t} with $d_{j+1} / d_{j}>n^{1 / t^{c}}$ for all j. By the pigeon-hole principle, two of these divisors share the same set of prime factors from $\left\{p_{1}, \ldots, p_{r}\right\}$, hence their ratio is less than $n^{1 /\left(2 t^{c}\right)}$, a contradiction.

5 Proof of Theorem 1

We rewrite the assertion of Lemma 2 as

$$
\begin{equation*}
J \geqslant \frac{H}{8} \prod_{i=1}^{r}\left(1-\frac{1}{p_{i}}\right)-R^{\prime}, \quad R^{\prime}=(5 r)^{C^{\prime \prime}} H^{1-1 / m} p^{(m+1) / 4 m^{2}}(\log p)^{1 / m} \tag{5.1}
\end{equation*}
$$

for some constant $C^{\prime \prime}$. Let \mathcal{N} denotes the set of $n \in[1, H]$ which are simultaneous p_{1}, \ldots, p_{r}-th power nonresidue modulo p, where

$$
H=p^{1 / 4} e^{\left(C^{\prime \prime}+3\right)(\log p)^{1 / 2}(\log (5 r))^{1 / 2}} \log p
$$

Assume that p is sufficiently large, and take

$$
m=\left\lfloor(\log p)^{1 / 2}(\log (5 r))^{-1 / 2}\right\rfloor
$$

Notice that $m \gg(\log p)^{1 / 2}(\log \log p)^{-1 / 2} \rightarrow \infty$ as $p \rightarrow \infty$. Since

$$
R^{\prime}=H\left(H p^{-1 / 4} / \log p\right)^{-1 / m} p^{1 /\left(4 m^{2}\right)}(5 r)^{C^{\prime \prime}}
$$

we have

$$
\left(H p^{-1 / 4} / \log p\right)^{-1 / m} \leqslant(5 r)^{-C^{\prime \prime}-3}
$$

and

$$
p^{1 /\left(4 m^{2}\right)} \leqslant 5 r
$$

Consequently,

$$
R^{\prime} \leqslant H(5 r)^{-2} .
$$

By (5.1) and (3.2),

$$
J \geqslant\left(0.12 r^{-1}-(5 r)^{-2}\right) H \geqslant 0.08 H / r .
$$

So, we see that

$$
\begin{equation*}
|\mathcal{N}| \geqslant 0.08 H / r . \tag{5.2}
\end{equation*}
$$

We consider the case

$$
\begin{equation*}
r<0.6 \log \log p \tag{5.3}
\end{equation*}
$$

first. We will apply Lemma 4 with $x=H$, fixed $c \in(1 / \log 2,1.5]$, and with $t=K r 2^{r}$, where K is a sufficiently large constant depending on c. By (5.2), the exceptional set in Lemma 4 is smaller than $|\mathcal{N}|$ provided that K is large enough. The condition $2 \leqslant t \leqslant(\log x)^{1 / c}$ is satisfied due to the restriction on r and c. By Lemma 4, for some $n \in \mathcal{N}$, there are well-separated divisors $d_{1}<\cdots<d_{t}$ of n, satisfying $d_{i+1} / d_{i}>n^{1 / t^{c}}$ for each i. Now we are in position to apply Corollary 4 and we see that there is an $n^{\prime} \leqslant n p^{-t^{-c} / 4}$ such that n^{\prime} is a simultaneous p_{1}, \ldots, p_{r}-th power nonresidue modulo p. Noting that $t^{-c} / 4=\exp \{-r(c \log 2+o(1))\}$ and that c may be taken arbitrarily close to $1 / \log 2$, we complete the proof.

If (5.3) does not hold, then, as we have mentioned in Section 1, the factor $p^{-c_{r}}$ in the statement of the theorem is dominated by the second factor, and the claim follows from the fact that $\mathcal{N} \neq \emptyset$.

6 Acknowledgements

The first author is supported in part by National Science Foundation grants DMS-1201442 and DMS-1501982. The third author is supported by grant RFBR 14-01-00332.

References

[1] D. A. Burgess, 'The distribution of quadratic residues and nonresidues', Mathematika, 4 (1957), 106-112.
[2] D. A. Burgess, 'On character sums and primitive roots', Proc. London Math. Soc., 12 (1962), 179-192.
[3] D. A. Burgess, 'On character sums and L-series. II.', Proc. London Math. Soc., 13 (1963), 524-536.
[4] P. Erdős, 'On the normal number of prime factors of $p-1$ and some related problems concerning Euler's φ-function', Quart. J. Math. Oxford Ser., 6 (1935), 205-213.
[5] P. Erdős, 'On the least primitive root of a prime', Bull. London Math. Soc., 55 (1945), 131-132.
[6] P. Erdős, H. N. Shapiro, 'On the least primitive root of a prime', Pacific J. Math., 7 (1957), 861-865.
[7] G. Halász, 'Remarks to my paper:"On the distribution of additive and the mean values of multiplicative arithmetic functions"', Acta Math. Acad. Sci. Hungar., 23 (1972), 425-432.
[8] H. Halberstam, H.-E. Richert, Sieve methods, Academic Press, 1974.
[9] L.-K. Hua, 'On the least primitive root of a prime', Bull. Amer. Math. Soc., 48 (1942), 726-730.
[10] R. R. Hall, G. Tenenbaum, Divisors, Cambridge Tracts in mathematics vol. 90, 1988.
[11] H. Iwaniec, E. Kowalski, Analytic number theory, American Mathematical Society, Providence, Rhode Island, 2004.
[12] Yu. V. Linnik, 'A remark on the least quadratic non-residue', (Russian) C. R. (Doklady) Acad. Sci. URSS (N.S.), 36 (1942), 119-120.
[13] G. Martin, 'The least prime primitive root and the shifted sieve', Acta Arith., 80 (1997), no. 3, 277-288.
[14] I. M. Vinogradov, 'On the distribution of quadratic residues and nonresidues', (in Russian), Journal of the Physico-Mathematical Society of Perm, 1919.
[15] I. M. Vinogradov, 'On the least primitive root', (Russian), Doklady Akad. Nauk SSSR, 1 (1930), 7-11.

Address of the authors:
K. Ford, Department of Mathematics, 1409 West Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

E-mail address: ford@math. uiuc.edu
M. Z. Garaev, Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Michoacán, México.

Email address: garaev@matmor.unam.mx
S. V. Konyagin, Steklov Mathematical Institute, 8 Gubkin Street, Moscow, 119991, Russia.

Email address: konyagin@mi.ras.ru

