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Abstract

Let p be a prime and p1, . . . , pr be distinct prime divisors of p− 1.
We prove that the smallest positive integer n which is a simultaneous
p1, . . . , pr-power nonresidue modulo p satisfies

n < p
1/4−cr+o(1) (p → ∞)

for some positive cr satisfying cr = e−(1+o(1))r (r → ∞).
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1 Introduction

Let n(p) be the smallest positive quadratic nonresidue modulo p and g(p) be
the smallest positive primitive root modulo p. The problem of upper bound
estimates for n(p) and g(p) starts from the early works of Vinogradov. It is
believed that n(p) = po(1) and g(p) = po(1) as p → ∞. Vinogradov [14, 15]
proved that

n(p) ≪ p
1

2
√
e (log p)2, g(p) <

2k+1(p− 1)p
1
2

φ(p− 1)
,

where k is the number of distinct prime divisors of p− 1. Hua [9] improved
Vinogradov’s result to g(p) < 2k+1p1/2 and then Erdős and Shapiro [6] refined
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it to g(p) ≪ kCp
1
2 , where C is an absolute constant. These bounds were

improved by Burgess [1, 2] to

n(p) < p
1

4
√
e
+o(1)

, g(p) < p
1
4
+o(1) (p → ∞).

The Burgess bounds remains essentially the best known up to date, in a sense
that it is not even known that n(p) ≪ p1/4

√
e or that g(p) ≪ p1/4.

If one allows a small exceptional set of primes, then better estimates may
be obtained. Using his “large sieve”, Linnik [12] proved that for any ε > 0,
there are only Oε(log log x) primes p 6 x for which n(p) > pε. The sharpest
to date results for g(p) (which also hold for the least prime primitive root
modulo p) are due to Martin [13], who proved that for any ε > 0, there is a
C > 0 so that g(p) = O((log p)C) with at most O(xε) exceptions p 6 x. All
of these type of results are “purely existential”, in that one cannot say for
which specific primes p the bounds hold (say, in terms of the factorization of
p− 1).

From elementary considerations it follows that an integer g is a primitive
root modulo p if and only if for any prime divisor q|p− 1 the number g is a
q-th power nonresidue modulo p. Thus, if p1, . . . , pk are all the distinct prime
divisors of p− 1, then g(p) is the smallest positive simultaneous p1, . . . , pk-th
power nonresidue modulo p. In the present paper we prove the following
result.

Theorem 1. Let p be a prime number and p1, . . . , pr be distinct prime divi-
sors of p − 1. Then the smallest positive integer n which is a simultaneous
p1, . . . , pr-th power nonresidue modulo p satisfies

n < p1/4−creC(log r)1/2(log p)1/2

where C > 0 is an absolute constant and cr = e−(1+o(1))r as r → ∞.

The novelty of the result is given by the factor p−cr . We observe that for
cr < (log p)−1/2 (in particular, for r > (0.5 + ε) log log p and p > p(ε)) this
factor is dominated by the exponential factor.

The following corollaries directly follow from Theorem 1.

Corollary 1. Let p be a prime number and p1, . . . , pr be distinct prime divi-
sors of p− 1, where r is fixed. Then the smallest positive integer n which is
a simultaneous p1, . . . , pr-th power nonresidue modulo p satisfies

n < p1/4−cr+o(1) (p → ∞).
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From our earlier discussion, the upper bound given in Theorem 1 holds
also for g(p) whenever p− 1 has r distinct prime factors.

Corollary 2. For any ε > 0, if p− 1 has at most (0.5− ε) log log p distinct
prime divisors, then g(p) = o(p1/4) as p → ∞.

The counting function of primes satisfying the hypothesis of Corollary 2
is x(log x)−3/2+(log 2)/2−O(ε) (the upper bound follows from e.g., [4, Inequality
(5)]; the lower bound can be obtained using sieve methods).

Remark 1. The focus of our arguments is to establish bounds which are
uniform in r. We have made no attempt to optimize the value of cr for small
r, and leave this as a problem for further study.

Our proof of Theorem 1 proceeds in three main steps. The first is a
standard application of character sums to show that a large proportion of
integers n < p1/4+o(1) are simultaneous p1, . . . , pr-th power nonresidue modulo
p. Next, we show that if such a number n has many divisors (r2r divisors
suffice), then for some pair d < d′ of these divisors, the smaller number
n′ = dn/d′ is also a simultaneous p1, . . . , pr-th power nonresidue modulo p.
This procedure is most efficient when the ratios d′/d are uniformly large. In
the third step we show that integers possessing many well-spaced divisors
are sufficiently dense, so that there must be one such number in the set
guaranteed by first step (with an appropriate quantification of “well-spaced”
and “dense”).

2 Character sums and distribution of power

nonresidues

We begin by recalling the well-known character sum estimate of Burgess
[2, 3].

Lemma 1. If p is a prime and χ is a non-principal character modulo p and
if H and m are arbitrary positive integers, then

∣

∣

∣

N+H
∑

n=N+1

χ(n)
∣

∣

∣
≪ H1−1/mp(m+1)/4m2

(log p)1/m

for any integer N , where the implied constant is absolute.
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See the proof in [11], (12.58). In the remark after the proof the authors
announce that the factor (log p)1/m can be replaced by (log p)1/(2m), but this
is not important for us.

Lemma 2. Let p be a prime number and p1, . . . , pr be distinct prime divisors
of p−1. The number J of integers n 6 H which are simultaneous p1, . . . , pr-
th power nonresidues modulo p satisfies

J >
H

8

r
∏

i=1

(

1−
1

pi

)

+O
(

r9H1−1/mp(m+1)/4m2

(log p)1/m
)

,

where the constant implied in the “O”-symbol is absolute.

Proof. We follow the method of [5]. Let C be a sufficiently large constant, to
be chosen later. Assuming that p1 < · · · < pr, we choose the largest s 6 r so
that ps 6 Cr2 (if p1 > Cr2, then set s = 0). Let J1 be the number of integers
n 6 H which are simultaneous p1, . . . , ps-th power nonresidues modulo p.
For j > s, let J2,j be the number of integers n 6 H which are pj-th power
residues modulo p. Clearly,

J > J1 −
r

∑

j=s+1

J2,j . (2.1)

Let g be a primitive root of p and let χ0 be the principal Dirichlet char-
acter modulo p. We will denote by χ a generic Dirichlet character modulo p.
By orthogonality, for (x, p) = 1 we have

1

d

∑

χd=χ0

χ(x) =

{

1, if indg x ≡ 0 (mod d),

0, if indg x 6≡ 0 (mod d).

A number n is a pi-power residue modulo p if and only if pi| indg n. Hence,

J1 =
∑

n6H
gcd(indg n,p1...ps)=1

1 =
∑

d|p1...ps

µ(d)
∑

n6H
d| indg n

1

and for j = s+ 1, . . . , r we have

J2,j =
∑

n6H
pj | indg n

1. (2.2)
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We denote
R = H1−1/mp(m+1)/4m2

(log p)1/m.

Using Lemma 1 for χ 6= χ0, we get for any d that

∑

n6H
d| indg n

1 =
1

d

∑

χd=χ0

∑

n6H

χ(n) =
H

d
+O(R). (2.3)

To estimate J1 we use a lower bound sieve as in [5] combining with (2.3).
Brun’s sieve [8, Theorem 2.1 and the following Remark 2] suffices. Here the
“sieve dimension” is κ = 1. Taking λ = 1

4
, b = 1, z = Cr2 and L = O(R) in

[8, Theorem 2.1 and the following Remark 2], we get that

J1 > H
s
∏

i=1

(

1−
1

pi

)(

1− 2
λ2be2λ

1− λ2e2+2λ
+O

(

1

log z

))

−O(z4.1R)

> 0.13H
s
∏

i=1

(

1−
1

pi

)

−O(r9R)

if C is large enough.
By (2.2) and (2.3),

r
∑

j=s+1

J2,j = H
r

∑

j=s+1

1

pj
+O(rR) 6

H

Cr
+O(rR),

since pj > Cr2 for all j > s+ 1. Taking into account

s
∏

i=1

(

1−
1

pi

)

>

r
∏

i=1

(

1−
1

pi

)

>
1

r + 1
>

1

2r

and assuming that C > 400, we get

J1 −
r

∑

j=s+1

J2,j >
H

8

r
∏

i=1

(

1−
1

pi

)

+O(r9R).

Using (2.1) we complete the proof of the lemma.
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3 Reduction of simultaneous nonresidues

The aim of this section is to show that if a positive integer n which is a
simultaneous p1, . . . , pr-th power nonresidue modulo p has many divisors then
it is possible to construct n′ < n which is also a simultaneous p1, . . . , pr-th
power nonresidue modulo p.

Lemma 3. Let q be a prime, u ∈ R, u > 1 and a ∈ Z, a 6≡ 0 (mod q).
Assume that

a1, a2, . . . , at (3.1)

is a sequence of t > 2uq/(q− 1) integers (not necessarily distinct). Then for
some ℓ ∈ N, ℓ > u and indices i1 < i2 < . . . < iℓ we have that

aiv − aiw 6≡ a (mod q) (1 6 v, w 6 ℓ).

Proof. From the pigeon-hole principle, there is a residue class h (mod q)
containing at most t/q elements from the sequence (3.1). For 1 6 j 6 q − 1,
let

Qj = {1 6 i 6 t : ai ≡ h+ ja (mod q)}.

Then
∣

∣

∣

q−1
⋃

j=1

Qj

∣

∣

∣
> t−

t

q
=

(q − 1)t

q
.

Let
A =

⋃

16j6q−1
2|j

Qj, B =
⋃

16j6q−1
2∤j

Qj

Clearly, the sets A and B have no solutions to x− y ≡ a (mod q). Since

max{|A|, |B|} >
1

2

∣

∣

∣

q−1
⋃

j=1

Qj

∣

∣

∣
>

(q − 1)t

2q
> u,

the result follows.

Remark 2. For q = 2 it is enough to require t > 2u. Indeed, we can choose
a large subsequence of a1, a2, . . . , at of the same parity.
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Corollary 3. Let p1, p2, . . . , pr be prime numbers, and

b = (b1, b2, . . . , br) ∈ F∗
p1
× F∗

p2
× . . .× F∗

pr .

Let
t > 2r

∏

i:pi>2

pi
pi − 1

and
a1, a2 . . . , at

be a sequence of t elements from Fp1 × Fp2 × . . .× Fpr . Then for some i < j
we have that

aj − ai ∈ (Fp1 \ {b1})× (Fp2 \ {b2})× . . .× (Fpr \ {br}) .

Corollary 3 follows from r applications of Lemma 3 and taking into ac-
count Remark 2.

Corollary 4. Let p be a prime number and suppose p1, . . . , pr are distinct
prime divisors of p−1. Let n be a simultaneous p1, . . . , pr-th power nonresidue
modulo p and d1 < · · · < dt be some divisors of n where

t > 2r
∏

pi>2

pi
pi − 1

.

Then there exists i, j such that 1 6 i < j 6 t and the number n′ = ndi/dj is
also a simultaneous p1, . . . , pr-th power nonresidue modulo p.

Proof. Let g be a primitive root modulo p. To each number x we associate
the vector

(s1, s2, . . . , sr) ∈ Fp1 × Fp2 × . . .× Fpr ,

so that for 1 6 i 6 r, x ≡ gpiki+si (mod p) where 0 6 si < pi
Let the vector (b1, b2, . . . , br) correspond to n and the vectors a1, a2, . . . , at

correspond to d1, . . . , dt, respectively. Apply Corollary 3 and select the in-
dices i < j such that

aj − ai ∈ (Fp1 \ {b1})× (Fp2 \ {b2})× . . .× (Fpr \ {br})

Then n′ = ndi/dj is a simultaneous p1, p2, . . . , pr-power nonresidue modulo
p.

Remark 3. We note that if p1, p2, . . . , pr are distinct primes, then

r >
∏

pi>2

pi
pi − 1

. (3.2)

Hence, in Corollaries 3 and 4 one can take t = 2rr.
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4 Integers with well-spaced divisors

Let P−(n) and P+(n) denote the smallest and largest prime factor of n,
respectively, let ω(n) be the number of distinct prime factors of n, and let
τ(n) be the number of positive divisors of n.

Lemma 4. For each fixed constant c > 1/ log 2 = 1.442 . . ., there is η =
η(c) > 0 such that the following holds. Uniformly for integers t, 2 6 t 6

(log x)1/c, all but Oc(x/t
η) integers n 6 x have t divisors d1 < d2 < · · · < dt

such that dj+1/dj > x1/tc for all 1 6 j 6 t− 1.

Proof. We may assume that t > 10. Take

ε =
c− 1/ log 2

4
, α = 1/ log 2 + ε.

Write each n 6 x in the form abd where P−(d) > x1/ log t, P+(a) 6 x1/(tα log t)

and all prime factors of b lie in (x1/(tα log t), x1/ log t]. We divide n into several
categories. Let k0 = ⌈ log 2t

log 2
⌉. Let S0 be the set of n 6 x with either d = 1

or with b not squarefree. Let S1 be the set of n with d > 1, b squarefree
and ω(b) < k0. We denote αj = jε for 1 6 j 6 J − 1 := [α/ε], αJ = α,
aj = x1/(tαj log t) for j = 1, . . . , J . Let S2 be the set of n with d > 1, b
squarefree and the number of primes from the interval (aj, x

1/ log t] dividing
n is less than kj := (αj − ε) log t for some j = 1, . . . , J − 1. Let S3 be the set
of the remaining integers n.

We first show that S0, S1, and S2 are small. By standard counts for
smooth numbers,

|S0| 6 Ψ(x, x1/ log t) +
∑

p>x1/(tα log t)

x

p2
≪

x

t
+

x

x1/(tα log t)
≪

x

t
.

Next, by the results of Halász [7] on the number of integers with a prescribed
number of prime factors from a given set (see also Theorem 08 of [10]), we
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have

|S1| ≪
∑

k<k0

xe−EE
k

k!
, E =

∑

x1/(tα log t)<p6x1/ log t

1

p
= α log t+O(1)

≪ xt−α
∑

k<k0

(α log t)k

k!

≪ x(tα)−(β log β−β+1), β =
1

α log 2
=

1

1 + ε log 2
< 1

≪ x/tδ

for some δ > 0 which depends on ε.
For any j = 1, . . . , J − 1 we denote by S2,j the set of n 6 x with less than

kj prime divisors from (aj, x
1/ log t]. We have

|S2,j| ≪
∑

k<kj

xe−Ej
Ek

j

k!
,

where

Ej =
∑

x1/(t
αj log t)<p6x1/ log t

1

p
= αj log t+O(1).

Arguing as before we get
|S2,j| ≪ x/tδ

′

for some δ′ > 0 which depends on ε.
Notice that for n ∈ S3, τ(b) = 2ω(b) > 2k0 > 2t. Next, let S4 be the set

of n ∈ S3 for which b does not have t well-spaced divisors in the sense of the
lemma. Since d > 1 for such n, given such a bad value of b, using a standard
sieve bound the number of choices for the pair (a, d) is bounded above by

∑

a

|{d 6 x/ab : P−(d) > x1/ log t}| ≪
∑

a

x/ab

log(x1/ log t)
≪

x

btα
.

Hence,

|S4| ≪
∑

bad b

x

btα
(4.1)

A number b which is bad has many pairs of neighbor divisors. To be
precise, let σ = t−c log x and define

W ∗(b; σ) = |{(d′, d′′) : d′|b, d′′|b, d′ 6= d′′, | log(d′/d′′)| 6 σ}|.
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Let d1 < · · · < dτ(b) be the divisors of b. We construct the subsequence
D1 < · · · < Dr of this sequence:

D1 = 1, Di = min{dj : dj > xt−c

Di−1} (i > 1).

The process is terminated if Di does not exist. Let Dr+1 = +∞. The set
{d1, . . . , dτ(b)} is divided into r subsets Di, i = 1, . . . , r, where

Di = {dj : Di 6 dj < Di+1}.

We see that (d′, d′′) is counted inW ∗(b; σ) if d′, d′′ ∈ Di for some i and d′ 6= d′′.
Hence,

W ∗(b; σ) >
r

∑

i=1

|Di|(|Di| − 1) =
r

∑

i=1

|Di|
2 − τ(b).

Since τ(b) > 2t and r 6 t, we get by the Cauchy-Schwartz inequality that

τ(b)2 =

( r
∑

i=1

|Di|

)2

6 t

( r
∑

i=1

|Di|
2

)

6 t(W ∗(b; σ)+τ(b)) 6 tW ∗(b; σ)+
1

2
τ(b)2.

Therefore,
∑

bad b

1

b
6

∑

all b

2W ∗(b; σ)t

bτ(b)2
, (4.2)

each sum being over squarefree integers whose prime factors lie in (x1/(tα log t), x1/ log t].
In the latter sum, fix k = ω(b), write b = p1 · · · pk, where the pi are

primes, and p1 < · · · < pk. Then W ∗(p1 · · · pk; σ) counts the number of pairs
Y, Z ⊂ {1, . . . , k} with Y 6= Z and

∣

∣

∣

∑

i∈Y
log pi −

∑

i∈Z
log pi

∣

∣

∣
6 σ. (4.3)

Fix Y, Z, and let I be the maximum element of the symmetric difference
(Y ∪Z)−(Y ∩Z). We fix I and count the number of p1, . . . , pk satisfying (4.3).
We further partition the solutions, according to the condition aj < pI 6 aj−1,
for j = 1, . . . , J . Fix the value of j. If all the pi are fixed except for pI ,
then (4.3) implies that pI lies in some interval of the form [U,Ue2σ]. As
pI > x1/tαj log t as well, and α > c, we have (putting Uj = max(U, x1/tαj log t))

∑

pI

1

pI
≪ log

(

1 +
2σ

logUj

)

≪
σ

logUj

≪ tαj−c log t.
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Hence, for each fixed k, j, Y and Z,

∑

x1/tα log t<p1<...<pk6x1/ log t

1

p1 · · · pk
≪

tαj−c(log t)

(k − 1)!

(

∑

x1/tα log t<p6x1/ log t

1

p

)k−1

≪
tαj−c(log t)(α log t+O(1))k−1

(k − 1)!
.

(4.4)

Now we estimate the number N(I, j) of choices for the pair Y, Z for fixed I
and j. Since pI 6 aj−1, the condition n ∈ S3 implies I 6 k − kj−1. For any
i 6 I there are at most four possibilities: i ∈ Y ∩ Z, i ∈ Y \ Z, i ∈ Z \ Y ,
i 6∈ Y ∪ Z. For i > I there are two possibilities: i ∈ Y ∩ Z and i 6∈ Y ∪ Z.
Therefore,

N(I, j) 6 4I2k−I
6 4k2−kj−1 6 4kt−αj log 2+2ε log 2. (4.5)

It follows from (4.4) and (4.5) that

∑

ω(b)=k

W ∗(b; σ)t

bτ(b)2
≪

J
∑

j=1

t1+(1−log 2)αj+2ε−c
∑

k

(α log t+O(1))k−1

(k − 1)!
.

Taking into account that αj 6 α and summing on j, k we get

∑

b

W ∗(b; σ)t

bτ(b)2
≪ t1+2ε+(2−log 2)α−c.

Thus, by (4.1) and (4.2),

|S4| ≪
x

tc−(1−log 2)α−2ε−1
=

x

tc−1/ log 2−ε(3−log 2)
≪

x

tε
.

Therefore, there are x−O(x/tmin(δ,δ′,ε)) numbers n 6 x for which b does have
t well-spaced divisors.

Remark 4. Lemma 4 is best possible in the sense that the conclusion does
not hold for c < 1/ log 2. In fact, for any c < 1/ log 2, the number of integers
n 6 x that do have t divisors d1, . . . , dt with dj+1/dj > n1/tc for all j is
Oc(x/t

η) for some η > 0 which depends on c.
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Proof. It is well-known that if t is large, c < 1/ log 2 and ε small enough, then
a typical integer n has r ∼ (c+ ε) log t prime factors p1, . . . , pr in [n1/tc+ε

, n].
This can be seen, e.g. by the theorem of Halász used in the estimation of
|S1|. In fact, the number of exceptional n 6 x is Oc(x/t

η). Thus, a typical
n has about 2(c+ε) log t = t(c+ε) log 2 < t divisors composed of such primes.
Also, for most of these n, n/(p1 · · · pr) < n1/(2tc); by Theorem 07 of [10], the
number of exceptions n 6 x is O(x exp{−c1t

ε}) for some c1 > 0. Suppose
that such an n has t well-spaced divisors d1, . . . , dt with dj+1/dj > n1/tc for
all j. By the pigeon-hole principle, two of these divisors share the same set
of prime factors from {p1, . . . , pr}, hence their ratio is less than n1/(2tc), a
contradiction.

5 Proof of Theorem 1

We rewrite the assertion of Lemma 2 as

J >
H

8

r
∏

i=1

(

1−
1

pi

)

−R′, R′ = (5r)C
′′
H1−1/mp(m+1)/4m2

(log p)1/m (5.1)

for some constant C ′′. Let N denotes the set of n ∈ [1, H] which are simul-
taneous p1, . . . , pr-th power nonresidue modulo p, where

H = p1/4e(C
′′+3)(log p)1/2(log(5r))1/2 log p.

Assume that p is sufficiently large, and take

m = ⌊(log p)1/2(log(5r))−1/2⌋.

Notice that m ≫ (log p)1/2(log log p)−1/2 → ∞ as p → ∞. Since

R′ = H(Hp−1/4/ log p)−1/mp1/(4m
2)(5r)C

′′
,

we have
(Hp−1/4/ log p)−1/m

6 (5r)−C′′−3

and
p1/(4m

2)
6 5r.

Consequently,
R′

6 H(5r)−2.
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By (5.1) and (3.2),

J > (0.12r−1 − (5r)−2)H > 0.08H/r.

So, we see that
|N | > 0.08H/r. (5.2)

We consider the case
r < 0.6 log log p (5.3)

first. We will apply Lemma 4 with x = H, fixed c ∈ (1/ log 2, 1.5], and with
t = Kr2r, where K is a sufficiently large constant depending on c. By (5.2),
the exceptional set in Lemma 4 is smaller than |N | provided that K is large
enough. The condition 2 6 t 6 (log x)1/c is satisfied due to the restriction
on r and c. By Lemma 4, for some n ∈ N , there are well-separated divisors
d1 < · · · < dt of n, satisfying di+1/di > n1/tc for each i. Now we are in
position to apply Corollary 4 and we see that there is an n′ 6 np−t−c/4 such
that n′ is a simultaneous p1, . . . , pr-th power nonresidue modulo p. Noting
that t−c/4 = exp{−r(c log 2 + o(1))} and that c may be taken arbitrarily
close to 1/ log 2, we complete the proof.

If (5.3) does not hold, then, as we have mentioned in Section 1, the factor
p−cr in the statement of the theorem is dominated by the second factor, and
the claim follows from the fact that N 6= ∅.
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