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ABSTRACT. We determine, to within O(1), the expected minimal position at level n in certain
branching random walks. The walks under consideration have displacement vector (v1, v2, . . .)
where each vj is the sum of j independent Exponential(1) random variables and the different vi

need not be independent. In particular, our analysis applies to the Poisson-Dirichlet branching ran-
dom walk and to the Poisson-weighted infinite tree. As a corollary, we also determine the expected
height of a random recursive tree to within O(1).

1. INTRODUCTION

A branching random walk starts from an initial particle, the root, with position 0. The root pro-
duces some number of children, who are randomly displaced from their parent according to some
displacement law. Each child in turn produces some number of children, who are displaced from
the position of their parent according to the same law; and so on. In general, the displacements of
siblings relative to their parent may be dependent, but for distinct particles v and w, the displace-
ments of the children of v and of the children of w must be independent. When the displacments
are non-negative, this is often called an age-dependant branching process, and the displacements are
thought of as “times to birth”.

There is a natural tree associated with a branching random walk, where the vertices correspond
to particles, and an edge from parent to child is weighted with the child’s displacement from its
parent. More precisely, let T be the Ulam-Harris tree, which has vertex set V =

⋃∞
n=0 Nn (we

think of elements of Nn as concatenations of n integers, and take N0 = {∅}), is rooted at ∅, and has
an edge from v to vi for each v ∈ V and each i ∈ N. We call Nn the n’th generation of T , and for
v = v1 . . . vn ∈ Nn, we say that v has parent p(v) = v1 . . . vn−1 and children vi, i ∈ N. (We will
usually write Tn in place of Nn for readability.)

Now suppose X = (Xi : i ∈ N) is a random vector, where each Xi ∈ R ∪ {+∞}. We do
not require that the entries of X are independent of one another – this will be important below.
Then we form a branching random walk by marking each vertex v ∈ V with an independent copy
Xv = (Xv

i : i ∈ N) of X. Write T for the pair (T, {Xv : v ∈ V }); then T is our branching random
walk. We call X the displacement vector of T . 1 For each v ∈ V and i ∈ N, we regard Xv

i as
the displacement from v to vi, and let S(v) = S(v, T ) be the sum of the displacements on the path
from the root to v (formally, if v = v1 . . . vn then S(v) =

∑n
i=1X

p(v1...vi)
vi , and this sum is taken

to be +∞ if any of its elements are +∞). We say T has finite branching if almost surely all but
finitely many coordinates of X are equal to +∞.
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For n ∈ N, letMn = inf(S(v) : v ∈ Nn). In all situations we consider in this paper, this infimum
is attained, soMn is the minimal displacement of any individual in the n’th generation. The minimal
displacement is one of the most well-studied parameters associated with branching random walks.
It has been known since the 1970’s [Ham74, Kin75, Big76] that under quite general conditions, Mn

grows asymptotically linearly with lower-order corrections. Recently there have been substantial
developments in understanding the finer behavior of Mn on two fronts: first, convergence results
for the lower order corrections [ABR09, AS10, HS09]; and second, the concentration of Mn about
its mean (or median) [ABR09, BZ09, CD06]. We refer to these as the global behavior and the
local behavior of Mn, respectively. Under suitable conditions, Mn generally seems to exhibit the
following behavior: for some constants α ∈ R and β > 0, median(Mn) = αn + β log n + O(1),
and furthermore, Mn/n → α almost surely and (Mn − αn)/ log n → β in probability (but not
almost surely [HS09]). Also, under sufficiently strong moment conditions for the displacements,
E {exp(γ|Mn − EMn|)} < ∞ for some γ > 0 and all n. (In fact, in some cases the upper tail of
Mn − EMn is even known to decay doubly-exponentially quickly [Bac00, FKL10].)

To date, however, all the results of the kind described in the preceding paragraph that we are aware
of, require that the branching random walk has finite branching. In this paper we study the global
behavior ofMn for a class of branching random walks which do not have finite branching. The class
we consider is rather restricted but nonetheless contains at least two interesting special cases, one
related to the factorization of random integers, and one related to the analysis of algorithms. Say
that X has exponential steps if for all i,Xi is distributed as the sum of i independent Exponential(1)
random variables. The main result of this paper is the following theorem. For short, we denote

M̃n = median(Mn) := sup{x : P{Mn < x} < 1/2}.

Theorem 1.1. If X has exponential steps, then

M̃n =
n

e
+

3
2e

log n+O(1).

Remark: The O(1) term is uniform over n and over all BRW for which X has exponential steps.
Using methods from [FKL10], we can deduce from Theorem 1.1 uniform exponential tails for

Mn. In the next theorem and at other points throughout the paper, we will use the Vinogradov
notation f � g which means f = O(g), with subscripts indicating dependence on any parameter,
e.g. f �k g means the constant implied by the� symbol may depend on k but not on any other
variable.

Theorem 1.2. If X has exponential steps, then for any c1 < e, we have

P{Mn 6 M̃n − x} �c1 e
−c1x (n > 1, x > 0),

and for any c2 < 1,

P{Mn > M̃n + x} �c2 e
−c2x (n > 1, x > 0).

Again, the above estimates are uniform over all BRW under consideration. Also, Theorem 1.2
implies that M̃n = EMn + O(1), and so both Theorems 1.1 and 1.2 hold with M̃n replaced by
EMn.

The simplest example of a displacement vector with exponential steps is obtained by taking
X = (E1, E1 + E2, . . .) where {Ei}i∈N are iid Exponential(1) random variables. In this case T is
called the Poisson-weighted infinite tree [AS04] and has been used very effectively in probabilistic
combinatorial optimization. It also arises in the analysis of an important tree-based data structure
in the following way. Order the elements of T in increasing order of displacement as {wi}i∈N, so
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in particular we have w1 = ∅, w2 = 1 ∈ N1, and either w3 = 2 ∈ N1 or w3 = 11 ∈ N2. Now
for each m let Zm be the subtree of T induced by w1, . . . , wm. By the memoryless property of
the exponential, it follows that the parent of wm+1 is a uniformly random element of Zm – in other
words, Zm is a random recursive tree for all m. This connection is well known [Pit94].)
Zm is also the subtree of T induced by the set of nodes of displacement at most S(wm). (Also,

it is straightforwardly shown by induction and the memoryless property of the exponential that the
families (Zm)m∈N and (S(wm))m∈N are independent, but we will not need this.) Let Hm be the
height of Zm – the largest generation containing a node of Zm. In other words, Hm = max{n :
Mn 6 S(wm)}, which is the representation that will be useful below. Devroye [Dev87] showed
that Hm/ logm→ e almost surely and in expectation, and Pittel [Pit94] provided a different proof
of the almost sure convergence. As a straightforward consequence of Theorems 1.1 and 1.2, we
obtain the following more precise information.

Corollary 1.3. The height Hm of a random recursive tree on m nodes satisfies EHm = e logm−
3
2 log logm+O(1). Furthermore, for all c′ < 1

2e , all m > 1, k > 1,

P {|Hm − EHm| > k} �c′ e
−c′k.

Since the proof of this corollary is very short, we include it in the introduction. In the proof we
write har(s) =

∑s
i=1 1/i.

Proof. The random variable S(wm) is distributed as the sum, F1 + . . . + Fm−1, of independent
random variables with Fi having Exponential(i) distribution for i = 1, . . . ,m − 1. Equiva-
lently, S(wm) is distributed as the maximum of m− 1 iid Exponential(1) random variables. Thus,
ES(wm) = har(m− 1) and for all x > 0,

P {S(wm) > har(m− 1) + x} 6 (m− 1)e−(har(m−1)+x) 6 e−x, (1.1)

P {S(wm) 6 har(m− 1)− x} =
(

1− e−(har(m−1)−x)
)m−1

. 6 e−e
x−1

, (1.2)

Now write

d(m) = max{n : M̃n 6 har(m− 1)} = e logm− 3
2

log logm+O(1),

and note that M̃d(m) = har(m − 1) + O(1) by Theorem 1.1. It follows that for k > 1, if Hm >
d(m) + k then either

Md(m)+k 6 har(m− 1) +
k

2e
6 M̃d(m)+k −

k

2e
+O(1),

or

S(wm) > har(m− 1) +
k

2e
.

By Theorem 1.2 and (1.1), it follows that P {Hm > d(m) + k} �c1 e−c1k/(2e) for each c1 <
e. A similar argument using Theorem 1.2 and (1.2) shows the bound P {Hm 6 d(m)− k} �c2

e−c2k/(2e) for each c2 < 1. �

Another important example of a displacement vector with exponential steps arises from a discrete
time random fragmentation process. LetU1, U2, . . . be independent uniform [0, 1] random variables.
Set G1 = U1 and for i > 1 set Gi = (1−U1) · . . . · (1−Ui−1)Ui. The distribution of the sequence

G = (G1, G2, . . .)
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was first studied, in greater generality, in [Hal44]. (One motivation for Halmos’ paper was a problem
about loss of energy of neutrons after many collisions; after each collision the neutron loses a ran-
dom fraction of its current energy.) G is also a special case of the Griffiths-Engen-McCloskey GEM
distribution. Further, (Gσ(1), Gσ(2), . . .) has the Poisson-Dirichlet (or PD) distribution, where
σ : N → N is the permutation that arranges the terms of (G1, G2, . . .) in decreasing order. (We
remark that both the GEM and the PD distributions as defined above are in fact special cases from
a more general two-parameter family of distributions [Pit06] – in the standard notation, we are
considering the GEM(0, 1) and PD(0, 1) distributions.) The PD distribution arises in a number of
natural decomposition situations, such as factorization of large random integers [Bil72, DG93] and
cycle lengths of random permutations [Pit06].

Letting Xk = − logGk for each k yields a vector (X1, X2, . . .) with exponential steps. We refer
to the resulting branching random walk as a Poisson-Dirichlet branching random walk. This exam-
ple has more complicated dependence between the Xi than the first example. Since

∑∞
i=1Gi = 1

almost surely, there is another way to think of the branching random walk. Imagine that an object of
massm is placed at the root ∅. The root divides this mass into pieces according to the vector G∅ and
sends the pieces to its children, sending a mass mG∅k to its k’th child. This rule is repeated recur-
sively, so each node v sends proportion Gvk of the mass it receives to its k’th child vk. This structure
is variously called a multiplicative cascade or, more commonly at the moment, a fragmentation
process [Ber06]. The special case of Theorem 1.1 when T is a Poisson-Dirichlet branching random
walk is used in [FKL10] to analyze a tree model related to primality testing, proving heuristic ev-
idence for the behavior of the distribution of tree heights. In this special case of a PD branching
random walk, a much stronger estimate for the right tail of Mn was proved in [FKL10], namely for
any c3 < 1,

P
{
Mn > M̃n + x

}
6 exp{−ec3x−c4} (n > 1, x > 0),

where c4 is a constant depending on c3. Such a right tail bound cannot hold in general; for example,
for the case of T being a Poisson-weighted infinite tree, we have P{M1 > x} = e−x. (It seems
likely that among branching random walks with exponential steps, the Poisson-weighted infinite tree
and the Poisson-Dirichlet branching random walk are extremal examples, with the former having
the heaviest tails for Mn − M̃n and the latter the strongest tail bounds for Mn − M̃n. However, we
do not have a precise conjecture in this direction.)

The Pratt tree for a prime p has root p whose children are the prime factors of p− 1; the subtrees
of the children of the root are recursively constructed in the same fashion (stopping when p = 2).
We let H(p) be the height of the Pratt tree for p. It is easily seen that the height is always at most
(log p)/(log 2) + 1. Such trees were used by Pratt [Pra75] to show that if p is prime, then there
exists a certificate (formal proof) of the primality of p, of length O(H(p) log p) = O((log p)2). It is
then of interest to understand the “typical” behavior of H(p). [FKL10] uses Theorems 1.1 and 1.2
to support the following conjecture.

Conjecture 1.4 ([FKL10], Conjecture 3). There exist constants c, c′ > 0 and real numbers {E(p) :
p prime} such that

• H(p) = e log p− 3
2 log log p+ E(p),

• for all z > 0, and x > 0,

e−c
′zπ(x)� |{primes p 6 x : E(p) > z}| � e−czπ(x),

and
|{primes p 6 x : E(p) 6 −z}| � exp(−ecx)π(x).

Here π(x) is the number of primes which are at most x.
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The structure of the remainder of the paper is as follows. In Section 2 we introduce a little
additional notation. In Section 3 we use straightforward calculations to prove weak bounds on the
likely value ofMn, and to “reduce the search space” of nodes in Tn which have a chance of attaining
the minimal displacement Mn. Section 4 studies the sample path properties of a uniformly random
element of certain “homogeneous” subsets of Tn, and forms a key step of the proof. In Section 5
we prove the lower bound of Theorem 1.1, and in Section 6 we prove the upper bound. Finally, the
details of the proof of Theorem 1.2 are found in Section 7.

2. NOTATION

Given v = v1v2 . . . vn ∈ V , we let h(v) =
∑n

i=1 vi, and remark that S(v) has distribution
Gamma(h(v)). If v ∈ Tn, we write k(v) = h(v) − n, and write Tn,k for the set of nodes v ∈ Tn
with k(v) = k. We denote by Tn(x) (resp. Tn,k(x)) the set of nodes of Tn (resp. Tn,k) with
displacement at most x.

The Bachmann-Landau notations o() and O() have their usual meaning. As mentioned earlier,
we use the Vinogradov notation f � g which means f = O(g). We also use the Hardy notation
f � g which means f = O(g) and g = O(f). Constants implied by these symbols are absolute
unless otherwise indicated, e.g. by a subscript.

3. SOME BASIC EXPECTATIONS

In order to restrict the set of nodes we need to consider when searching for the precise location
of Mn, we first assert the following two straightforward facts, whose proofs are forthcoming.

Lemma 3.1. (a) The expected number of nodes v ∈ Tn with |h(v) − (1 + 1/e)n| 6
√
n and with

S(v) 6 n/e+ log n/(2e) is� 1.
(b) The expected number of nodes v ∈ Tn with S(v) 6 n/e+ (2/e) log n and with |h(v)− (1 +

1/e)n| >
√

6n log n is O(n−1/2).

Together, (a) and (b) suggest that in order to find Mn, it should suffice to look at nodes in Tn
satisfying h(v) = (1 + 1/e)n+O(

√
n), as will indeed be the case. In proving (a) and (b), we will

in fact prove more general bounds that will be useful throughout the paper.
We first remark that for v ∈ V with h(v) = h, S(v) has density function

lim
dx↓0

P{S(v) ∈ dx}
dx

= γh(x) =
xh−1e−x

(h− 1)!
(x > 0).

For all n > 1, k > 0, we have

|Tn,k| =
(
n+ k − 1

k

)
, (3.1)

so the sum of the density functions for nodes v ∈ Tn,k is

fn,k(x) =
(
n+ k − 1

k

)
γn+k(x) =

xn+k−1e−x

k!(n− 1)!
=
xk

k!
· x

n−1e−x

(n− 1)!
.

This function will play a significant role, and we now derive bounds on its value for a variety of
ranges of k and x. We remark that assertions (a) and (b), above, state in particular that to find Mn

we should take both k and x near n/e. Thus, writing k = (n+r)/e and x = (n+y)/e, by Stirling’s
formula we have

fn,k(x) =

(
1 +O

(
1
n + 1

k

))
n+ y

√
n

n+ r
e(r−y)/e

(
1− r − y

n+ r

)(n+r)/e (
1 +

y

n

)n e3/2

2π
, (3.2)
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When r = O(
√
n), y = O(

√
n), we have (1 + y/n)n � ey and

(1− (r − y)/(n+ r))(n+r)/e � e−(r−y)/e,

and so obtain the simpler approximation

fn,k(x) � ey

n
.

Consequently,

E |{v ∈ Tn,k : S(v) 6 (n+ 1
2 log n)/e}| �

∫ (logn)/2

0

ey

n
� n−1/2 (3.3)

for any fixed k = n/e+O(
√
n) – where the constants implicit in O(

√
n) and in (3.3) may depend

on each other – and so we obtain

E |{v ∈ Tn,k : S(v) 6 (n+ 1
2 log n)/e, |k − n/e| 6

√
n}| � 1.

This justifies claim (a) of Lemma 3.1, and we now turn to Lemma 3.1 (b). The next lemma is
[FKL10, Lemma 5.1], and we give a different proof below.

Lemma 3.2. For all n and x > 0,

E |Tn(x)| = xn

n!
.

Proof. We have

E |Tn(x)| =
∑
k>0

∑
v∈Tn,k

P{S(v) 6 x} =
∑
k>0

∫ x

0
fn,k(t) dt =

xn

n!
.

�

It follows immediately from Lemma 3.2 and Stirling’s formula that the median of Mn is >
n
e + 1

2e log n+O(1).
We next obtain bounds on the probability that k is very different from x when x > n/(2e). First

we quote easy bounds for the tails of the Poisson distribution.

Proposition 3.3. If z > 0 and 0 < α 6 1 6 β then∑
k6αz

zk

k!
<
( e
α

)αz
,

∑
k>βz

zk

k!
<

(
e

β

)βz
.

Proof. We have ∑
k6αz

zk

k!
=
∑
k6αz

(αz)k

k!

(
1
α

)k
6

(
1
α

)αz ∑
k6αz

(αz)k

k!
<
( e
α

)αz
.

The second inequality follows in the same way. �

An easy corollary is the following.

Lemma 3.4. For 0 6 t 6 x1/6, ∑
{k:|k−x|>t

√
x}

fn,k(x)� e−t
2/2 xn−1

(n− 1)!
.
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Taking t = d
√

5 log ne and integrating the above bound over n/e 6 x 6 n/e+ (2/e) log n, we
obtain the bound

E
∣∣∣∣{v ∈ Tn :

n

e
6 S(v) 6

n+ 2 log n
e

, |h(v)− S(v)| >
√

5n log n
}∣∣∣∣ = O

(
1

n1/2

)
.

Since
√

5n log n+(2/e) log n <
√

6n log n for n large, combining the preceding expectation bound
with Lemma 3.2 (applied with x = n/e) and Stirling’s formula it follows that

E


∣∣∣∣∣∣

⋃
{k:|k−n/e|>

√
6n logn}

Tn,k((n+ 2 log n)/e)

∣∣∣∣∣∣
 = O

(
1

n1/2

)
,

which establishes Lemma 3.1 (b).

4. RANDOMLY SAMPLED RANDOM WALK

For integers n > 1, k > 0 and a vertex v = v1 · · · vn ∈ Tn,k, let hi = h(v1 · · · vi) and
Wi(v) = S(v1 . . . vi) for 1 6 i 6 n, and write W(v) = (W1(v), . . . ,Wn(v)). We write W, Wi

and hi in place of W(v), Wi(v) and hi(v) when v is clear from context. We will always write vn,k
for a uniformly random element of Tn,k, independent of vn′,k′ for (n, k) 6= (n′, k′), and writeWn,k

for the distribution of the sequenceW(vn,w) = (W1(vn,k), . . . ,Wn(vn,k)). Although the sequence
0,W1, . . . ,Wn is not a random walk, it useful to think of it as such for the purposes of estimating
various probabilities.

Denote by Hn,k the set of vectors (h1, . . . , hn) of positive integers with 0 < h1 < · · · < hn =
n + k and note that |Hn,k| =

(
n+k−1

k

)
. The sequence (h1(vn,k), . . . , hn(vn,k)) is distributed as a

uniformly random element ofHn,k.
For v ∈ Tn, let La = La(v) denote the event {Wi > (i/n)Wn− a (i 6 n)}. A vertex v is called

leading if L0(v) holds, and – informally – near–leading if La(v) holds for some small a. (We also
will need to consider the event Ra(v) = {Wi 6 (i/n)Wn + a (i 6 n)}, and when this event occurs
we say v is “near trailing”.)

If Mn is not much larger than normal, v is the vertex at level n with minimal S(v) and Wi 6
(i/n)Wn − c for a large c, then Mi will be smaller than normal and this is rare. Hence, with high
probability v will be a near-leading vertex On the other hand, near-leading vertices are rare – a given
vertex in Tn is near leading with probability O(f(a)/n) for some function f . It will turn out, as in
prior work [ABR09], that EMn is within O(1) of the smallest x such that the expected number of
leading nodes with displacement at most x is at least 1.

In this section, we develop estimates for the probability that vertices of Tn,k are near–leading. As
in [ABR09], we also show that for a near-leading vertex v, it is rare for Wi(v)− (i/n)Wn(v) to be
small if i is far away from 0 and far from n. This useful fact will play an important role in the proof
of Theorem 1.1.

The next proposition, stated without proof, follows from the well-known fact that a Poisson
sample becomes a uniform sample once conditioned on the position of the nth point.

Proposition 4.1. For any positive real numbers b1, . . . , bn and B, and any v ∈ Tn,

P (Wi > bi (i < n)|Wn = B) = P
(
Wi

Wn
>
bi
B

(i < n)
)
, (4.1)

P (Wi 6 bi (i < n)|Wn = B) = P
(
Wi

Wn
6
bi
B

(i < n)
)
, (4.2)
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Proposition 4.1 allows us to rescale the valuesWi to choose a convenient value forWn: for given
B′, letting b′i = bi ·B′/B, the proposition implies that

P{Wi > bi (i < n)|Wn = B} = P{Wi > b
′
i (i < n)|Wn = B′}.

We will use this fact rather casually in what follows. We will also use the following variant of a
well-known fact about cyclically exchangeable sequences.

Proposition 4.2. For any S > 0,

P {L0(vn,k)|Wn = S} = P {R0(vn,k)|Wn = S} =
1
n
.

Proof. For 0 6 l < n, let Wn+l = Wn + Wl. Then, for each 0 6 l < n and all 0 < j 6

n, let W (l)
j = Wj+l − Wl. Then for all l, W (l)

n = Wn. Furthermore, each sequence W(l) =

(W (l)
1 , . . . ,W

(l)
n ) has distributionWn,k and a.s. exactly one of them is leading by the Cycle Lemma

[DM47]. Similarly, exactly one of the sequences W(l) is “trailing”. �

The next two lemmas are analogs of Lemmas 11 and 12 in [ABR09], and are proved using
some of the same ideas. Whereas lemmas in [ABR09] use heavily the fact that a random walk
0, S1, . . . , Sn can be broken into independent sub-walks 0, S1, . . . , Sj and 0, Sj+1−Sj , . . . , Sn−Sj ,
in our situation the analogous subsequences 0,W1, . . . ,Wj and 0,Wj+1 −Wj , . . . ,Wn −Wj are
not independent. However, we do have the following straightforward fact, which essentially says
that conditioning on any subset of the differences h1− h0, . . . , hn− hn−1 breaks the sequence into
independent subsequences with distributions from the same family. The proof is omitted.

Fact 4.3. Fix integers n > 1, k > 0, and let (W1, . . . ,Wn) have lawWn,k. Then for any integers
1 6 i 6 m 6 n, and 1 = n0 < n1 < . . . < nm = n, conditional upon hi − hi−1, the sequence

(Wni−1+1 −Wni−1 , . . . ,Wni −Wni−1)

has lawWni−ni−1,(hi−hi−1)−(ni−ni−1), and is mutually independent of (h1, . . . , hn), of (W1, . . . ,Wni−1),
and of (Wni+1 −Wni , . . . ,Wn −Wn−1).

Lemma 4.4. Uniformly for S > 0, 0 6 k 6 n and a > 0,

P {La(vn,k)|Wn(vn,k) = S} � (an/S)6 + 1
n

,

P {Ra(vn,k)|Wn(vn,k) = S} � (an/S)6 + 1
n

.

Remark: Most likely, the exponent “6” can be replaced with “2”, in analogy with results from
[ABR09] about ballot theorems for random walks.

Given that La(vn,k) holds, it is likely that Wi − (i/n)Wn remains large when i is far from 1 and
far from n. It is also likely that hj is not too large when j is small, and similarly hn−hj is not large
when j is near n. The next two lemmas make this very precise.

For v ∈ Tn, define the events

Ba(v) = {∃m ∈ [a40, n− a40] : Wm(v) 6 (m/n)Wn(v) + min(m,n−m)1/40}
and

Da(v) = {∃j : hj(v) > 3aj or hn(v)− hj(v) > 3a(n− j)}.

Lemma 4.5. Uniformly for 0 6 k 6 n/2, n/10 6 S 6 n and a > 1,

P {La(vn,k), Ba(vn,k)|Wn(vn,k) = S} � 1
na7

.
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Lemma 4.6. Uniformly for 0 6 k 6 n/2, n/10 6 S 6 n and a > 0,

P {La(vn,k), Da(vn,k)|Wn(vn,k) = S} � e−a

n
.

Proof of Lemma 4.4. It suffices to prove the lemma when a > 10. We also assume a 6 n1/6, or
else the conclusion is trivial. Finally, in light of Proposition 4.1 we may assume without loss of
generality that S = n+ k, so that n 6 S 6 2n.

Let

m = a2, l = dkm/ne, n′ = n+ 2m, k′ = k + 2l, λ =
n′ + k′

n′
, a′ =

anλ

S
.

We remark that m, l 6 n1/3, aλ/2 6 a′ 6 aλ, and for n large enough 1 6 λ 6 3.
By Proposition 4.2,

A := P
{
L0(vn′,k′)|Wn′(vn′,k′) = λn′

}
=

1
n′
. (4.3)

Now let W′ = (W ′1, . . . , ,W
′
n′) be a sequence with law Wn′,k′ . We bound A from below by

counting only sequences with h′m = m + l and h′n−m = (n′ + k′) − (m + l). In this way, we can
break W′ into three subsequences, namely

W̃, where W̃j = W ′j , h̃j = h′j (1 6 j 6 m),

W, where Wj = W ′j+m −W ′m, hj = h′j+m − h′j (1 6 j 6 n),

Ŵ, where Ŵj = W ′n′ −W ′n′−j , ĥj = n′ + k′ − h′n′−j (1 6 j 6 m).

That is, W̃ captures the first m steps, W the next n steps, and Ŵ the last m steps taken in reverse
order.

We’ll work with four events:

E1 = {h′m = m+ l, h′n′−m = (n′ + k′)− (m+ l)},

E2 = {W̃j > λj (j 6 m), W̃m − λm ∈ [a′, 2a′]},

E3 = {Ŵj 6 λj (j 6 m), Ŵm − λm ∈ [−3a′,−2a′]},
E4(x, y) = {Wj > λj − x (j < n)}.

Given E1, W̃ and Ŵ have law Wm,l, and W has law Wn,k, and all three are independent. Also
given E1, the events E2, E3 and E4(x, y) are independent. Thus,

A > P{E1 |W ′n′ = λn′}P{E2|E1,W
′
n′ = λn′}P{E3|E1,W

′
n′ = λn′}

· inf
a′6x62a′

−3a′6y6−2a′

P{E4(x, y)|E1,W
′
n′ = λn′,Wn = λn− x− y}. (4.4)

Since m + l = O(n1/3), if k > 0 then a slightly tedious but routine computation with Stirling’s
formula and (3.1) gives

P{E1 |W ′n′ = λn′} =

(
m+l−1

l

)2(n+k−1
k

)(
n+2m+2l+k−1

k+2l

) � (m+ l − 1
l

)2 k2ln2m

(n+ k)2m+2l
� 1
l
. (4.5)

When k = 0, trivially P{E1 |W ′n′ = λn′} = 1. For the remainder of the proof we write Pc {·} to
mean P{· | E1,W

′
n′ = λn′}. Next,

Pc {E2} = Pc
{
W̃j > λj (j < m)|W̃m − λm ∈ [a′, 2a′]

}
Pc
{
W̃m − λm ∈ [a′, 2a′]

}
.. (4.6)
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Given that W ′n′ = λn′ and h′m = m+ l, W̃m has distribution

λn′ · Beta(m+ l, n+ k −m− l),

and in particular has mean

λn′(m+ l)/(n+ k) = λm+O

(
m2

n

)
= λm+O(1)

and variance

(λn′)2 (m+ l)(n+ k −m− l)
(n+ k)2(n+ k + 1)

= O(m).

Since a′ > a
2 >

1
2

√
m, it follows that the second probability on the right side of (4.6) is � 1.

Applying Proposition 4.1 followed by Proposition 4.2, the first factor on the right side of (4.6) is

> inf
a′6x62a′

Pc{W̃j > λj (j < m)|W̃m = λm+ x}

> inf
a′6x62a′

P {L0(vm,l)|Wm(vm,l) = λm+ x} =
1
m
.

Therefore,

Pc{E2} �
1
m
� 1

a2
. (4.7)

Similarly,

Pc{E3} � inf
−3a′6y6−2a′

P {L0(vm,l)|Wm(vm,l) = λm+ y} =
1
m
� 1

a2
. (4.8)

Lastly, for a′ 6 x 6 2a′ and −3a′ 6 y 6 −2a′, Proposition 4.1 yields

Pc{E4(x, y)|Wn = λn− x− y} = P
{
Wj

Wn
>

λj − x
λn− x− y

(j 6 n)
}

> P
{
Wj

Wn
>
j

n
− a

S
(j 6 n)

}
= P {La(vn,k)|Wn(vn,k) = S} . (4.9)

Together, (4.3)–(4.9) imply

1
n
� 1

a6
P {La(vn,k)|Wn(vn,k) = S} ,

which proves the first assertion of the lemma. The proof of the second part is identical. �

Proof of Lemma 4.5. Fix k, S, and a as in the statement of the lemma. We write Wm = Wm(vn,k),
hm = hm(vn,k) and so on. If a40 > n/2 then there is nothing to prove so we assume a40 6 n/2.
For a40 6 m 6 n− a40 and l > 0, let

Am,l = P
{
La(vn,k),Wm 6

m

n
S + min(m,n−m)1/40

∣∣∣Wn = S, hm = m+ l
}
.

Break (W1, . . . ,Wn) into two sequences: W̃j = Wj for j 6 m, and Ŵj = Wn − Wn−j for
j 6 n −m (the latter being the final n −m steps taken in reverse). Given hm = hm − h0, these
sequences are independent by Fact 4.3. We write Pc {·} for the conditional probability measure
P{·|hm = m+ l}, and Ec {·} for the corresponding expectation operator. Also, let λ = n+k

n .
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Suppose first that a40 6 m 6 n/2. Put b = m1/40 n+k
S and a′ = an+k

S . Note that Ec
{
W̃m |Wn = S

}
=

S · (m+ l)/(n+ k). Rescaling by (n+ k)/S (this is allowed by the comment just after Proposition
4.1), by the definitions of b and a′ we have

Am,l 6 Pc
{
W̃m − λm ∈ [−a′, b]|Wn = λn

}
× sup
−a′6x6b

Pc
{
W̃j > λj − a′ (j < m)|W̃m = λm+ x

}
× sup
−b6x6a′

Pc
{
Ŵj 6 λj + a′ (j < n−m)|Ŵn−m = λ(n−m) + x

}
. (4.10)

Given that Wn = λn and hm = m+ l, W̃m has distribution λn · Beta(m+ l, k + n−m− l) and
so the first factor on the RHS of (4.10) is O(b/

√
m) uniformly in l. Applying Proposition 4.1 and

the first inequality of Lemma 4.4, the second factor on the RHS of (4.10) is

6 Pc

{
W̃j

W̃m

>
j

m
− a′ + bj/m

mλ+ b
(j < m)

}

6 Pc

{
W̃j

W̃m

>
j

m
− a′ + b

mλ+ b
(j < m)

}

= P {La′+b(vm,l)|Wm(vm,l) = mλ+ b} � (a′ + b)6 + 1
m

� b6

m
,

so the product of the first two factors on the right-hand side of (4.10) is O(b7m−3/2). Similarly, by
Proposition 4.1 and the second inequality of Lemma 4.4, the third factor on the RHS of (4.10) is is

6 P

{
Ŵj

Ŵn−m
6

j

n−m
+

a′ + b

λ(n−m)− b
(j < n−m)

}
� b6

n−m
� b6

n
.

Combining these bounds, we obtain that when a40 6 m 6 n/2, Am,l � b13/(nm3/2). The
estimation of Am,l with m > n/2 is identical, by reversing the roles of W̃ and Ŵ. Therefore,

P (La(vn,k), Ba(vn,k)|Wn = S)�
∑

a406m6n/2

∑
l>0

P {hm = m+ l}Am,l

� 1
n

∑
a406m6n/2

m13/40

m3/2
� 1

na7
. �

Proof of Lemma 4.6. As before, we write Wn = Wn(vn,k), hj = hj(vn,k) and so on. We may
assume a > 10, or else the conclusion follows from Lemma 4.4. We also assume k > 1, or else
hj = j for every j and Da(vn,k) is impossible. For fixed j, given hj the sequence (W1, . . . ,Wn)
breaks into two independent sequences W̃, consisting of the first j steps, and Ŵ, consisting of the
last n− j steps taken in reverse. If Wn = S and La(vn,k) holds, then there is an integer b > −a−1
so that W̃j − j

nS ∈ [b, b+ 1]. Consequently, Ŵn−j − n−j
n S ∈ [−b− 1,−b].

Fix j > 3aj – note that in this case j < n+k
3a 6

n
20 – and suppose that hj = h. Given that hn = h

and Wn = S, tWj has distribution S · Beta(h, n + k − h). Since k 6 n/2 and S 6 n, it is then
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straightforward to check that P
{
W̃j > b | hn = h,Wn = s

}
6 e−b/4 for b > 4h. We also have

P
{
Ŵi >

i

n
S − (a+ b) (i 6 n− j)

∣∣∣∣ Ŵn−j −
n− j
n

S ∈ [−b− 1,−b], hj = h,Wn = S

}
6 P

{
L2a+b(vn−j,k−h+j)

∣∣∣Wn−j(vn−j,k−h+j)−
n− j
n

S ∈ [−b− 1,−b]
}

� (2a+ b)6

n

by Lemma 4.4 if b 6 n1/6, and trivially otherwise. Summing on b, we find that

P {La(vn,k)|hj = h,Wn = S} �
∑

−a−16b64h

(2a+ b)6

n
+
∑
b>4h

(2a+ b)6

neb/4
� h7

n
.

Note that (h1, . . . , hn) is independent of Wn and so P {hj = h |Wn = S} = P {hj = h}. Since
h− j 6 k 6 n/2, by Stirling’s formula

P {hj = h} =
(
h− 1
h− j

)(n+k−h−1
k−h+j

)(
n+k−1

k

)
6
hj

j!
· (n− 1) · · · (n− j) · k · · · (k − h+ j + 1)

(n+ k − 1) · · · (n+ k − h)

6

(
eh

j

)j (k
n

)h−j
6 (6ae)h/(3a) 2−h < e−h/2, (4.11)

the last inequality holding at least for a > 5 (which we have assumed). Summing over h > 3aj,
then over j, we find that

P {La(vn,k), ∃j : hj > 3aj |Wn = S} � 1
n

∑
j>1

∑
h>3aj

h7e−h/2 � e−a

n
. (4.12)

Next, suppose h = hn − hj > 3a(n− j), in which case n− j < n
20 . Let b′ = Wj − j

nS. Since
Wi+1 > Wi for all i, Wj 6 S and so b′ 6 n−j

n S 6 n − j. Also, in order for Ln,k(a) to occur we
must have b′ > −a. Thus, writing I = [−a, n − j], and ignoring the last n − j steps of W for an
upper bound, we have

P {La(vn,k)|hn − hj = h,Wn = S}

6 sup
b′∈I

P
{
W̃i >

i

n
S − a (i 6 j)

∣∣∣W̃j =
j

n
S + b′, hn − hj = h

}
6 sup

b′∈I
P
{
La+b′(vj,n+k−h)

∣∣∣Wj(vj,n+k−h) =
j

n
S + b′

}
,

Note that a 6 n/2 (or else 3a > 3n/2 > n + k and Da(vn,k) is impossible). Since j > 19
20n

and b′ > −a > −n/2, by Lemma 4.4 and straightforward manipulations the last probability is
O( 1

n(a + b′)6) = O( 1
n(a + n − j)6). Also, P {hn − hj = h} = P {hn−j = h} < e−h/2 by the

same calculation as in (4.11). Summing over h > 3a(n− j) and j 6 n− 1 gives

P {La(vn,k), ∃j : hn − hj > 3a(n− j) |Wn = S} � e−a

n
.

Together with (4.12), this completes the proof. �
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5. THE LOWER BOUND IN THEOREM 1.1

We continue to adopt the notational conventions from the previous section. Let c be a sufficiently
large positive constant, and b = ec/3. Let

Yn =
⋃

|k−n/e|6
√

6n logn

Tn,k,

and put mn = n
e + 3 logn

2e . If Mn 6 mn − c, then one of the following must occur:
(i) For some v ∈ Tn, S(v) 6 mn − log n;

(ii) For some k satisfying |k − n/e| >
√

6n log n and some v ∈ Tn,k, S(v) 6 mn;
(iii) For some v ∈ Yn, mn − log n 6 S(v) 6 mn and Wi 6 (i/n)Wn − log n for some i;
(iv) For some v ∈ Yn, mn − log n 6 S(v) 6 mn − c and Wi > (i/n)Wn − b for all i;
(v) For some v ∈ Yn and some integer a ∈ [b, log n + 1], mn − log n 6 S(v) 6 mn, Wi >

(i/n)Wn − a for all i and Wj < (j/n)Wn − (a − 1) for some j (write Fa,j for the event
that this occurs for a given a and j with j minimal, and note that these events are disjoint).

By Lemma 3.2 and Stirling’s forumula, the probability of (i) is at most E{Tn(mn − log n)} =
O(n1−e). The probability of (ii) is O(n−1/2) by Lemma 3.1 (b). If (iii) occurs, then Mi 6
(i/n)mn − log n, and this happens with probability at most E{Ti((i/n)mn − log n)}, which is
O(n3/2−ei−1/2) by Lemma 3.2. Summing on i, we find that (iii) occurs with probability O(n2−e).

To bound the probability of the event in (iv), we write Ek for the event that there is v ∈ Tn,k for
which mn − log n 6 S(v) 6 mn − c and Wi > (i/n)Wn − b for all i, so that by a union bound
and Lemma 4.4, the probability of (iv) is at most∑

|k−n/e|6
√

6n logn

P {Ek}

6
∑

|k−n/e|6
√

6n logn

|Tn,k|P {mn − log n 6 S(vn,k) 6 mn − c, Lb(vn,k)}

�
∑

|k−n/e|6
√

6n logn

|Tn,k|P {mn − log n 6 S(vn,k) 6 mn − c} ·
b6

n

6
b6

n
· E{Tn(mn − c)}

� e(2−e)c. (5.1)

(This line of argument will arise again in bounding (v), and we will omit the details.)
Finally, we bound (v). To do so, we are forced to separately treat j in three different ranges. First

suppose j 6 a40. If Fa,j occurs thenMj 6 (j/n)mn−a, the probability of which isO(j−1/2e−ea)
by Lemma 3.2. Summing on a and on j 6 a40 gives a total probability of O(e−2b) for this range of
parameters.

Next suppose that a40 < j < n−a40, so that (min(j, n−j))1/40 > a. IfFa,j occurs then for some
v ∈ Yn, La(v) and Ba(v) both occur. Note that for n large enough n/10 6 mn− log n 6 mn 6 n,
and for all k for which Tn,k ⊆ Yn we have 0 6 k 6 n/2. Thus, for such n, k, and a, we may apply
Lemma 4.5 to see that

P {La(vn,k), Ba(vn,k) |mn − log n 6Wn(vn,k) 6 mn} �
1
na7

.

Further, the expected number of v ∈ Yn with S(v) 6 mn is O(n) by Lemma 3.2. By these two
bounds and a reprise of the argument leading to (5.1), we see that for a given a, the probability of



14 LOUIGI ADDARIO-BERRY, KEVIN FORD⋃
j∈[a40,n−a40] Fa,j isO(1/a7) and summing over integers a ∈ [b, log n+1], gives a total probability

of O(1/b6) = O(e−2c).
Now suppose Fa,j holds with j ∈ [n − a40, n] and a ∈ [b, log n + 1]. By the definition of Fa,j ,

letting w be the unique ancestor of v in Tj , the event La−1(w) also occurs. Since j > n− (log n+
1)40, for n sufficiently large |mj − (j/n)mn| 6 1 and hence S(w) 6 mj + 1 − (a − 1). On the
other hand, for any integer k′ > 1, by Lemma 4.4 we have

P
{
Wj(vj,k′) 6 mj + 2− a, La−1(vj,k′)

}
� a6

j
P
{
Wj(vj,k′) 6 mj + 2− a

}
By Lemma 3.2, it follows that

P {Ga,j} �
a6

j
E |Tj(mj + 2− a)| � a6e−ea.

Summing first over j ∈ [n − a40, n], then over a ∈ [b, log n + 1], we see that the probability Ga,j
occurs for any a and j in this range is

� b46e−eb = exp{(46/3)c− e1+c/3} < e−2c,

as long as c is large enough. Combining the three ranges, we obtain that (v) occurs with probability
� e−2c. Altogether, the probability that one of (i)-(v) holds is� e(2−e)c, which is less than 1/2 if
c is chosen large enough. Hence, M̃n > mn − c.

6. THE UPPER BOUND IN THEOREM 1.1

w ∈ Tj,k(w)

k2 = k′ − k(x)

g = n− (j + 1)

v′ ∈ Tn′,k′ v ∈ Tn,k

x ∈ Tj+1,k(w)+k1

FIGURE 1
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For the upper bound for median(Mn), we use a second-moment method. By the Cauchy-Schwarz
inequality, for any non-negative random variable X ,

P{X > 0} > [EX]2

EX2
. (6.1)

When X is the size of some random subset X of a ground set V , we may rewrite (6.1) using the
fact that

EX2 =
∑
v,w∈V

P{v ∈ X , w ∈ X} =
∑
v∈V

E [X | v ∈ X ] P{v ∈ X},

so that

P{X > 0} > [EX]2∑
v∈V E [X | v ∈ X ] P{v ∈ X}

>
EX

supv∈V E [X | v ∈ X ]
. (6.2)

Let a be a large positive constant. Let V = Y , where Y is defined as in the previous section, and
let X be the set of nodes in v ∈ Y satisfying

(i) mn − 1 6 S(v) 6 mn,
(ii) La(v),

(iii) neither Ba(v) nor Da(v).
Taking X = |X |, by Lemmas 4.2, 4.5 and 4.6

EX > E[Tn(mn)− Tn(mn − 1)]
(

1
n
−O

(
1
a7n

)
−O

(
e−a

n

))
� 1 (6.3)

if a is chosen large enough.
Recall that for all v ∈ Y , |k(v) − n/e| 6

√
6n log n. For fixed v ∈ Y , we need to estimate

E {X | v ∈ X}.
The definitions of the coming two paragraphs are for the most part depicted in Figure 1. Write

j = j(v, v′) for the integer 0 6 j < n such that v and v′ are descendants of two distinct children of
some node w = w(v, v′) ∈ Tj (and let j(v, v′) = n if v = v′). Supposing 0 6 j(v, v′) 6 n− 1, let
x be the unique child of w on the path from w to v′.

Also, write W = W(v) and W′ = (W ′1, . . . ,W
′
n′) = W(v′). Let g = n − (j(v, v′) + 1), let

W̃i = W̃i(v, v′) = W ′j+i+1 −W ′j+1 for 1 6 i 6 g, and let W̃ = (W̃1, . . . , W̃g), so in particular

W ′n′ = W ′j+1 + W̃g.
Finally, let let k′ = k(v′), let k1 = k1(v, v′) = k(x) − k(w) and let k2 = k′ − k(x), so

k1 +k2 = k′−k(w). Note that once g and k2 are fixed, W̃ is independent of W and has lawWg,k2 .
For integers j, 0 6 j 6 n, let Fj = Fj(v) = {v′ ∈ X , j(v, v′) = j} and let Fj = Fj(v) =

E{|Fj | | v ∈ X}. Clearly, Fn = 1, as j = n implies v = v′.
Now fix v′. If v′ ∈ X , then by (i), (ii) and (iii), we have

k1 + k2 6 min (3a(j + 1), 3a(g + 1)) (6.4)

and if v ∈ X then, with j = j(v, v′), we have

Wj >
j

n
(mn − 1) +

{
(−a) whatever the value of j
min(j, n− j)1/40 if a40 6 j 6 n− a40.

(6.5)

Consider separately four ranges of j. First, if n− a40 6 j 6 n− 1, then for sufficiently large n,
(6.4) implies that k1 + k2 6 3a(n− j), so Fj is deterministically at most∑

l63a(n−j)

|Tn−j,l| =
∑

l63a(n−j)

(
n− j + l − 1

l

)
6 3a41(a40 + 3a41)a

40
.



16 LOUIGI ADDARIO-BERRY, KEVIN FORD

Hence, recalling that a is now a fixed, large constant,∑
n−a406j6n

Fj � 1. (6.6)

Next, let r = (2 log n)40. If n−r < j 6 n−a40 then for n sufficiently large, j > n− j = g+1,
and (6.5) implies that in order to have W ′n 6 mn we must have

W̃g 6
g + 1
n

mn − g1/40 + 1 6 g/e− g1/40 + 2,

the second inequality holding for sufficiently large n. For fixed k1, by Lemma 3.2 we thus have

E
{
|{v′ ∈ X , j(v, v′) = j, k1(v, v′) = k1}| | v ∈ X

}
6 ETg(g/e− g1/40 + 2)

� exp[−eg1/40].

Using (6.4) to bound k1 and summing over j yields∑
n−r<j6n−a40

Fj �
∑

a406g6r

a(g + 1) exp[−eg1/40]� 1. (6.7)

Next, suppose r 6 j 6 n− r. By (6.5), in order to have W ′n 6 mn it must be that

W̃g 6
g + 1
n

mn −min(j, n− j)1/40 + 1 6
g

e
− log n.

Since we also require k1(v, v′) 6 3an by (6.4), we have Fj 6 3anETg(g/e− log n) � 1/n2 for
this range of j, and hence ∑

r6j6n−r
Fj �

1
n
. (6.8)

Finally, suppose 0 6 j 6 r. Here g > n− r − 1 = n+O((log n)40), and since La(v) holds by
assumption, if v ∈ X then

Wj >
j

n
Wn − a >

j

n
mn − (a+ 1).

For each integer b ∈ [−(a+ 1), 2 log n), let Eb be the event that Wj − (j/n)mn ∈ [b, b+ 1). Also,
let E∗ be the event that Wj − (j/n)mn > d2 log ne. The events {Eb : −(a + 1) 6 b < 2 log n}
and E∗ together partition the event {v′ ∈ Fj(v)}, so by conditioning

Fj 6 max
(

E {|Fj | | v ∈ X , E∗} , max
−(a+1)6b<2 logn

E {|Fj | | v ∈ X , Eb}
)

(6.9)

If Wj > (j/n)mn + 2 log n, then to have v′ ∈ Fj , we must have W̃g(v′) 6 g/e− log n so, as in
the case r 6 j 6 n− r, we have

E {|Fj | | v ∈ X , E∗} �
1
n2
.

Now suppose Wj − (j/n)mn ∈ [b, b + 1], where b is an integer satisfying −a − 1 6 b 6 2 log n.
Note that if b < (j1/40 − 2) and a40 6 j 6 r then Fj(v) is necessarily empty due to Ba(v),
so for such j and b, E {|Fj | | v ∈ X , Eb} = 0. For the rest, we further subdivide Fj , writing
Fj,l = {v′ ∈ X , j(v, v′) = j, k1(v, v′) = l}. By (6.4) we have

E {|Fj | | v ∈ X , Eb} =
∑

l63(j+1)

E {|Fj,l| | v ∈ X , Eb} .
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Suppose additionally that W ′j+1(v′) −W ′j(v′) ∈ [∆,∆ + 1], where ∆ is a non-negative integer.
Since Wj(v′) = Wj(v), in order to have v′ ∈ Fj , by (i) we require2

W̃g −
g

n
mn ∈ [mn/n− (b+ ∆ + 3),mn/n− (b+ ∆)].

Since 0 6 mn/n < 1 and, for n sufficiently large, mg − 1 6 (g/n)mn 6 mg, this implies that,
writing I = [−(b+ ∆ + 4),−(b+ ∆− 1)], we must have

W̃g −mg ∈ I.
By (i) and (ii), we also require

W̃i >
i

n
Wn − b−∆− a− 2 >

i

g
mg − b−∆− a− 3 (i 6 g)

This implies that for all i 6 g,

W̃i >
i

g
Wg −max(b+ ∆ + a− 3, a− 2).

None of this depends on l, so for any 0 6 l 6 3(j + 1), writing m = max(b+ ∆ + a− 3, a− 2),

E {|Fj,l| | v ∈ X , Eb} 6
∑

16k263a(j+1)

∆>0

E |{v ∈ Tg,k2 : S(v)− (g/n)mn ∈ I, Lm(v)}|

6
∑

16k263a(j+1)

∆>0

(
E {Tg,k2(mg − (b+ ∆− 1)}

· sup
x∈I

P {Lm(vg,k2) |Wg(vg,k2) = mg + x}
)

�
∑
∆>0

E {Tg(mg − (b+ ∆− 1))} · j · max(b+ ∆ + a− 3, a− 2)6

n

�
∑
∆>0

ne−e(b+∆) · j · max(b+ ∆ + a− 3, a− 2)6

n

� je−eb(a+ |b|)6,

the third-to-last line by Lemma 4.4 and the second-to-last by Lemma 3.2. Summing over 0 6 l 6
3(j + 1), it follows that

E {|Fj | | v ∈ X , Eb} � j2e−eb(a+ |b|)6.

For j 6 a40 this is O(1) uniformly in b. When j > a40 we also have b > j1/40 − 2 and for such j,
the above bound is O(j3e−ej

1/40
). By (6.9) it follows that for such 0 6 j 6 r,

Fj �

{
1 if j 6 a40

max(n−2, j3 exp(−ej1/40)) if j > a40

Summing on j, we find that ∑
06j6r

Fj � 1. (6.10)

2The mn/n terms come from the “skipped step” from W ′
j to W ′

j+1, and the (b + ∆ + 3) comes from b + 1, ∆ + 1,
and the requirement that S(v) > mn − 1.
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Together, (6.6),(6.7),(6.8), and (6.10) imply that for every v ∈ T ,

E[X : v ∈ X ] = O(1).

Combining this estimate with (6.2) and (6.3), shows that P {X > 0} � 1, and if X > 0 then
Mn 6 mn, so there exists an absolute constant ε > 0 such that for all n,

P {Mn 6 mn} > ε.
From here it is straightforward to show that Mn 6 mn + O(1), and we now do so. The next two
lemmas, taken from [FKL10], are standard bounds for BRW. As the proofs are short, we include
them here.

Lemma 6.1. For any BRW, positive integers m,n and positive real numbers M , N ,

P{Mm+n >M +N} 6 E[(P{Mn > N})Tm(M)].

Proof. Suppose Mm+n > M + N and Tm(M) = k. For each of these k individuals, all of their
descendants in generation m+ n are offset from their generation m ancestor by at least N . �

Lemma 6.2. Let m,n be positive integers and let M > 0, ε > 0 be real. If E{(1− ε)Tm(M)} < 1
2 ,

then P{Mn < M̃n+m −M} 6 ε. In particular, the conclusion holds if P{Tm(M) < 1/ε} 6 1
5 .

Proof. Let q = sup{x : P{Mn < x} < ε}; then P{Mn < q} 6 ε. By Lemma 6.1,

P{Mm+n >M + q} 6 E
[
(P{Mn > q})Tm(M)

]
<

1
2
.

Therefore, M + q > M̃m+n, and thus P{Mn < M̃m+n −M} 6 P{Mn < q} 6 ε. To prove the
second part, assume that P{Tm(M) < 1/ε} 6 1

5 . Then

E
{

(1− ε)Tm(M)
}
6 P{Tm(m) < 1

ε}+ (1− P{Tm(M) < 1
ε})(1− ε)

1/ε 6
1
5

+
4
5e

<
1
2
. �

Now take A such that P {T1(A) < 1/ε} 6 1
5 . By Lemma 6.2,

P
{
Mn 6 M̃n −A

}
6 P

{
Mn 6 M̃n+1 −A

}
6 ε,

and hence M̃n 6Mn +A, which completes the proof of the upper bound in Theorem 1.1.

7. PROOF OF THEOREM 1.2

Let a > 1/e and 0 < η < ae/2. By Biggins’ analog of Chernoff’s inequality for the BRW
[Big77, Theorem 2], for large r we have P{Tr(ar) 6 (ae − η)r} 6 1

5 . Let r0 be large enough
that, in addition, M̃n+r >Mn + (1/e− η)r for all r > r0 and all n (such an r0 exists by Theorem
1.1). Now fix r > r0 and let M = ar, let m = r, and let ε = (ae − η)−r. We then have
P{Tm(M) < 1/ε} 6 1/5, so for all n, by the preceding bound for M̃n+r and by Lemma 6.2, we
obtain that

P{Mn 6 M̃n − (a− 1/e+ η)r} 6 P{Mn 6 M̃n+r − ar} 6 (ae− η)−r.

The first estimate follows with c1 = log(ae−η)
(a−1/e+η) . Fix a, let η → 0, then let a→ 1/e, so that c1 → e.

This proves the first part of Theorem 1.2.
For the second part, fix 0 < ε < 1/50 and let δ = ε2, so that δ(1 + log((1 − ε/5)/δ)) < ε/5.

Then choose r0 sufficiently large that for all r > r0, we have (1− ε/5)r+ 2dlog(2r)e < r, and for
all s > log(2r0), we have P{Ts(2s) 6 4s} 6 e−1/δ (as in the first part, such r exists by [Big77,
Theorem 2]).



POISSON-DIRICHLET BRANCHING RANDOM WALKS 19

Recall that if h ∈ N1 = T1 is a child of the root in T then S(h) is Gamma(h) distributed. Thus,
for any positive integer r, by a union bound

P {T1((1− ε/5)r) 6 δr} 6
∑
h6δr

P{S(h) > (1− ε/5)r}

=
∑
h6δr

e−(1−ε/5)r((1− ε/5)r)h

h!

6 e−(1−ε/5)re(1+log((1−ε/5)/δ))δr

6 e−(1−2ε/5)r,

the second-to-last inequality by Proposition 3.3.
Write s = dlog(2r)e, and let E be the event that there are at least 4s nodes in Ts+1 with displace-

ment at most (1 − ε/5)r + 2s < r. If T1((1 − ε/5)r) > δr then either E occurs, or else for each
h 6 dδre, the number of v ∈ Ts+1 descending from h ∈ T1 with S(v)− S(h) 6 2s is less than 4s.
The latter event has probability less then (e−(1/δ))δr = e−r. It follows that

P {Ec} 6 e−(1−2ε/5)r + e−r 6 e−(1−ε/2)r,

the last inequality holding for large r. Finally, if Mn > M̃n−(s+1) + r, then for each node v ∈ Ts+1

with S(v) 6 (1 − ε/5)r + 2s, for all w ∈ Tn descending from v we must have S(w) − S(v) >
M̃n−(s+1). If E occurs then there are at least 4s > 2r such nodes v, and so

P
{
Mn > M̃n−(s+1) + r

}
6 e−(1−ε/2)r + 2−2r < e−(1−ε)r,

the last inequality holding for large r. Since M̃n−(s+1) 6 M̃n, the second part of Theorem 1.2 is
proved by letting ε→ 0.

Acknowledgements. The authors thank Hugh Montgomery for bringing paper [Hal44] to our
attention.
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