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Abstract For any positive integer k, we show that infinitely often, perfect k-th powers appear inside very long gaps

between consecutive prime numbers, that is, gaps of size

ck

log p log2 p log4 p

(log3 p)2
,

where p is the smaller of the two primes.

1 Introduction

In 1938, Rankin [11] proved that the maximal gap, G(x), between primes 6 x, satisfies1

G(x)> (c+o(1))
logx log2 x log4 x

(log3 x)2
, (1)

with c = 1
3
. The following six decades witnessed several improvements of the constant c; we highlight out only a

few of these. First, Rankin’s own improvement [12] c = eγ in 1963 represented the limit of what could be achieved

by inserting into Rankin’s original 1938 argument best possible bounds on counts of “smooth” numbers. This record

stood for a long time until Maier and Pomerance [8] introduced new ideas to improve the constant to c = 1.31256eγ

in 1989; these were refined by Pintz [10], who obtained c = 2eγ in 1997. Very recently, the first and third authors

together with Green and Tao [3] have shown that c can be taken arbitrarily large. Independently, this was also proven

by Maynard [9].
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Rankin’s lower bound (1) is probably very far from the truth. Based on a probabilistic model of primes, Cramér [1]

conjectured that

limsup
X→∞

G(X)

log2 X
= 1,

and Granville [2], using a refinement of Cramér’s model, has conjectured that the limsup above is in fact at least

2e−γ = 1.1229 . . .. Cramér’s model also predicts that the normalized prime gaps
pn+1−pn

log pn
should have exponential

distribution, that is, pn+1 − pn >C log pn for about e−Cπ(X) primes 6 X .

Our aim in this paper is to study whether or not long prime gaps, say of the size of the right hand size of the

inequality in (1), occur when we impose that an integer of a specified type lies inside the interval. To be precise, we

say that a number m is “prime avoiding with constant c” if m+u is composite for all integers u satisfying

|u|6 c
logm log2 m log4 m

(log3 m)2
.

Here we will be concerned with prime avoiding perfect powers.

Theorem 1. For any positive integer k, there are a constant c = c(k) > 0 and infinitely many perfect k-th powers

which are prime-avoiding with constant c.

It seems possible that the methods of Green, Ford, Konyagin and Tao, or of Maynard, might be adapted to handle

slightly longer intervals containing a k-th power but no primes. However we leave this possibility aside for the time

being.

2 Sieve estimates

Throughout, constants implied by the Landau O-symbol and Vinogradov ≪-symbol are absolute unless otherwise

indicated, e.g. by a subscript such as ≪u. The symbols p and q will always denote prime numbers. Denote by P+(n)
the largest prime factor of a positive integer n, and by P−(n) the smallest prime factor of n.

We need several standard lemmas from sieve theory, the distribution of “smooth” numbers, and the distribution of

primes in arithmetic progressions.

Lemma 2.1. For large x and z 6 xlog3 x/(10log2 x), we have

#{n 6 x : P+(n)6 z}≪ x

log5 x
.

Proof. This follows from standard counts of smooth numbers. Lemma 1 of Rankin [11] also suffices. ⊓⊔

Lemma 2.2. Let R denote any set of primes and let a ∈ {−1,1}. Then

#{p 6 x : p 6≡ a (mod r) (∀r ∈ R)}≪ x

logx
∏
p∈R

p6x

(

1− 1

p

)

.

Proof. Standard sieve methods [4]. ⊓⊔

Finally, we require a bound of “large sieve” type for averages of quadratic character sums.

Lemma 2.3. For any set P of primes in [2,x], and for any ε > 0,
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∑
m6x

m odd

µ2(m)
∣

∣

∣ ∑
p∈P

( p

m

)∣

∣

∣

2

≪ε x2+ε .

Proof. This follows immediately from Theorem 1 of [5]. ⊓⊔

3 k-th power residues and prime ideals

One of our principle tools is the following estimate for an average of counts of solutions of a certain k-th power

congruence.

Lemma 3.1. Let k be a positive integer. For any non-zero integer u and any prime p write

ρu,k(p) = ρu(p) = #{n (mod p) : nk +u ≡ 0 (mod p)}.

Then for any fixed ε > 0 and x > 2 we have

∏
x<p6y

(

1− ρu(p)

p

)

≪k,ε |u|ε
logx

logy
.

The proof of this is based on the Prime Ideal Theorem, and we begin by giving a formal statement of an appropriate

form of the latter.

Lemma 3.2. There is an effectively computable absolute constant c > 0 with the following property. Let K be an

algebraic number field of degree nK , and write dK for the absolute value of the discriminant of K. Let β0 be the largest

simple real zero of ζK(s) in the interval [ 1
2
,1] if any such exists. Then

|πK(x)−Li(x)|6 Li(xβ0)+O
(

xexp{−cn
−1/2
K log1/2 x}

)

for x > exp{10nK log2 dK}, where as usual, πK(x) denotes the number of prime ideals of K with norm at most x, and

Li(x) =
∫ x

2 dt/ log t. We omit the first summand on the right hand side if β0 does not exist.

This follows from Theorem 1.3 of Lagarias and Odlyzko [7], on choosing L=K in their notation. The reader should

note that the counting function πC(x,L/K) of [7] excludes ramified primes, but the number of these is O(nK logdK),

which is majorized by xexp{−cn
−1/2
K log1/2 x}.

In order to handle the term involving the possible simple real zero β0 we use the following result of Heilbronn [6,

Theorem 1].

Lemma 3.3. A simple real zero of ζK(s) must be a zero of ζk(s) for some quadratic subfield k of K.

It follows that β0 is a zero for some quadratic Dirichlet L-function L(s,χ), with a character χ of conductor dividing

dK . Thus Siegel’s Theorem shows that 1−β0 > c(ε)d−ε
K , for any fixed ε > 0, with an ineffective constant c(ε) > 0.

We then deduce that

Li(xβ0)≪ xβ0 6 xexp{−c(ε)d−ε
K logx}6 xexp{−c(ε)n

−1/2
K log1/2 x}

if nK logx > d2ε
K . We therefore obtain the following version of the Prime Ideal Theorem.

Lemma 3.4. For any η > 0 there is an ineffective constant C(η)> 0 with the following property. Let K be an algebraic

number field of degree nK , and write dK for the absolute value of the discriminant of K. Then
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πK(x) = Li(x)+O(xexp{−C(η)n
−1/2
K log1/2 x})

for

x > exp
{

max
(

10nK log2 dK , n−1
K d

η
K

)}

.

Proof (Proof of Lemma 3.1.). Since it may happen that −u is a perfect power we begin by taking a to be the largest

divisor of k for which −u is a perfect a-th power. Then if −u = va and k = ab we see firstly that the polynomial Xb −v

is irreducible over the rationals, and secondly that nb ≡ v (mod p) implies nk +u ≡ 0 (mod p), whence

ρu,k(p)> ρ−v,b(p). (1)

We will apply Lemma 3.4 to the field K =Q(θ), where θ is a root of Xb − v. Thus K has degree b 6 k. Moreover its

discriminant will be a divisor of

D := Disc(1,θ ,θ 2, . . . ,θ b−1) = (−1)b−1bbvb−1.

We now set

x0 =C(k,η)exp(|D|η).
If we choose the constant C(k,η) sufficiently large then whenever x > x0 we will have

xexp{−C(η)b−1/2 log1/2 x}6 x log−2 x

and

x > exp
{

max
(

10b(log |D|)2 , b−1|D|η
)}

.

It therefore follows from Lemma 3.4 that

πK(x) = Li(x)+Ok,η

(

x log−2 x
)

for x > x0.

We now write νK(p) for the number of first degree prime ideals of K lying above p. Then

πK(x) = ∑
p6x

νK(p)+Ok( ∑
pe6x,e>2

1).

Moreover, by Dedekind’s Theorem we will have ρ−v,b(p) = νK(p) whenever p ∤ D. In the remaining case in which

p | D we have ρ−v,b(p)6 b 6 k and νK(p)6 b 6 k. It therefore follows that

πK(x) = ∑
p6x

ρ−v,b(p)+Ok(x
1/2)+Ok(log |D|),

so that

∑
p6x

ρ−v,b(p) = Li(x)+Ok,η(x log−2 x)

when x > x0.

We now observe that
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∏
x<p6y

(

1− ρu(p)

p

)

6 exp

{

− ∑
x<p6y

ρu(p)

p

}

6 exp

{

− ∑
x<p6y

ρ−v,b(p)

p

}

by (1). Assuming that y > x0 we may then use summation by parts to calculate that

∑
x<p6y

ρ−v,b(p)

p
> ∑

max(x,x0)<p6y

ρ−v,b(p)

p

= log logy− log log
(

max(x,x0)
)

+Ok,η(1)

> log logy− log logx− log logx0 +Ok,η(1)

= log logy− log logx−η log |D|+Ok,η(1)

> log logy− log logx−ηk log |u|+Ok,η(1).

We therefore have

∏
x<p6y

(

1− ρu(p)

p

)

≪k,η |u|kη logx

logy

when y > x0. Of course this estimate is trivial when y 6 x0 since one then has logy ≪k,η |D|η ≪k,η |u|kη . The lemma

then follows.

4 Main argument

Fix a positive integer k. Let x be a large number, sufficiently large depending on k, let c1 and c2 be two positive

constants depending on k to be chosen later, and put

N = ∏
p6x

p, z = xc1 log3 x/ log2 x, y =
c2x logx log3 x

(log2 x)2
.

In the rest of the paper we will prove the following lemma.

Lemma 4.1. There is a number m 6 2N such that mk +u is composite for |u|6 y.

Theorem 1 will follow upon observing that mk 6 ekx+o(x) as x → ∞ and consequently that

y ≫k

log(mk) log2(m
k) log4(m

k)

(log3(m
k))2

.

We will select m be choosing residue classes for m modulo p for primes p 6 x. Let

P1 = {p : p 6 logx or z < p 6 x/4}, P2 = {p : logx < p 6 z}.

We first choose

m ≡ 0 (mod p) (p ∈ P1),

m ≡ 1 (mod p) (p ∈ P2).
(1)
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Observe that p|(mk + u) if p|u for some p ∈ P1. Because y < (x/4) logx, any remaining value of u is thus either

composed only of primes in P2 (in particular, u is z-smooth), including |u|= 1, or |u| is a prime larger than x/4. For

any u in the latter category such that p|(u+1) for some p ∈P2, p|(mk +u). Let U denote the set of exceptional values

of u, that is, the set of u ∈ [−y,y] not divisible by any prime in P1, and such that if |u| is prime then p ∤ (u+1) for all

p ∈ P2. By Lemmas 2.1 and 2.2, if c1 is sufficiently small, then

|U | ≪ y

log5 x
+

y

logx
∏

p∈P2

(

1− 1

p

)

≪ y log2 x

logx logz
=

c2

c1

x

logx
.

Choosing c2 appropriately, we can ensure that |U |6 δx/ logx, where δ > 0 depends on k (δ will be chosen later).

The remaining steps depend on whether k is odd or even. If k is odd, the construction is very easy. For each u ∈U ,

associate with u a different prime pu ∈ (x/4,x] such that (pu −1,k) = 1 (e.g., one can take pu ≡ 2 (mod k) if k > 3).

Then every residue modulo pu is a k-th power residue, and we take m in the residue class modulo pu such that

mk ≡−u (mod pu) (u ∈U). (2)

By the prime number theorem for arithmetic progressions, the number of available primes is at least

x/(2φ(k) logx)> |U |

if δ is small enough. With this construction, pu|(mk +u) for every u ∈U . Therefore, mk +u is divisible by a prime 6 x

for every |u|6 y. Furthermore, (1) and (2) together imply that m is defined modulo a number N′, where N′|N. Therefore,

there is an admissible value of m satisfying N < m 6 2N. The prime number theorem implies that N = ex+o(x), thus

mk − y > x. Consequently, mk +u is composite for |u|6 y.

Now suppose that k is even. There do not exist primes for which every residue modulo p is a k-th power residue.

However, we maximize the density of k-th power residues by choosing primes p such that (p− 1,k) = 2, e.g. taking

p ≡ 3 (mod 2k). For such primes p, every quadratic residue is a k-th power residue. Let

P3 = {x/4 < p 6 x/2 : p ≡ 3 (mod 2k)}.

By the prime number theorem for arithmetic progressions, |P3| > x/(5φ(2k) logx). We aim to associate numbers

u ∈U with distinct primes pu ∈ P3 such that
(

−u
pu

)

= 1. This ensures that the congruence mk +u ≡ 0 (mod pu) has a

solution. We, however, may not be able to find such p for every u ∈U , but can find appropriate primes for most u. Let

U ′ =

{

u ∈U :

(−u

p

)

= 1 for at most
δx

logx
primes p ∈ P3

}

.

The numbers u ∈U\U ′ may be paired with different primes pu ∈ P3 such that
(

−u
pu

)

= 1. We then may take m such

that

mk ≡−u (mod pu) (u ∈U\U ′). (3)

Next we will show that |U ′| is small. Write

S = ∑
u∈U

∣

∣

∣ ∑
p∈P3

(−u

p

)

∣

∣

∣

2

.

Each u may be written uniquely in the form u = su2
1u2, where s = ±1, u2 > 0 and u2 is squarefree. By quadratic

reciprocity,
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(−u

p

)

= (−s)

(

u2

p

)

= (−s)(−1)
u2−1

2

(

p

u2

)

,

since p ≡ 3 (mod 4). Given u2, there are at most
√

y/u2 6
√

y choices for u1. Hence, using Lemma 2.3,

S = ∑
u∈U

∣

∣

∣ ∑
p∈P3

(

p

u2

)

∣

∣

∣

2

6 ∑
u26y

2y1/2
∣

∣

∣ ∑
p∈P3

(

p

u2

)

∣

∣

∣

2

≪ε x5/2+ε .

Now let δ = 1
15φ(2k) , so that δx/ logx 6 1

3
|P3|. If u ∈U ′, then clearly

∣

∣

∣ ∑
p∈P3

(−u

p

)

∣

∣

∣
>

1

3
|P3|> δ

x

logx
.

It follows that |S| ≫ |U ′|(x/ logx)2, and consequently that

|U ′| ≪ε x1/2+2ε . (4)

Let A mod M denote the set of numbers m satisfying the congruence conditions (1) and (3), where 0 6 A < M.

Thus, if m ≡ A (mod M) and u 6∈U ′, then mk +u is divisible by a prime 6 x/2. Let

K = ∏
x/2<p6x

p.

We’ll take m = M j +A, where 1 6 j 6 K, and aim to show that there exists a value of j so that (m j +A)k + u is

composite for every u ∈U ′. By sieve methods (see [4]),

K

∑
j=1

#{u ∈U ′ : (M j+A)k +u prime}= ∑
u∈U ′

#{1 6 j 6 K : (M j+A)k +u prime}

≪ ∑
u∈U ′

K ∏
y<q6

√
K

(

1− ρu(q)

q

)

.

By Lemma 3.1, the above product is

≪k,ε uε/2 logy

logK
≪k,ε uε/2 logx

x
.

Combined with our estimate (4) for the size of |U ′|, we find that

∑
16 j6K

#{u ∈U ′ : (M j+A)k +u prime}≪k,ε
K

x1/2−4ε
.

It follows that the left hand side above is zero for some j. That is, (M j +A)k + u is composite for every u ∈ U ′.
Therefore, (M j+A)k +u is composite for every u satisfying |u|6 y. Finally, we note that M j+A 6 2N, and the proof

of Lemma 4.1 is complete.
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Remark 1. For odd k the constant c(k) in Theorem 1 is effective. For even k it is ineffective due to the use of

Siegel’s theorem in the proof of Lemma 3.1.
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