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ABSTRACT. Let pn denote the n-th prime. We prove that

max
pn6X

(pn+1 − pn)�
logX log logX log log log logX

log log logX

for sufficiently large X , improving upon recent bounds of the first three and fifth authors and of the fourth au-
thor. Our main new ingredient is a generalization of a hypergraph covering theorem of Pippenger and Spencer,
proven using the Rödl nibble method.
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1. INTRODUCTION

Let pn denote the nth prime, and let

G(X) := max
pn6X

(pn+1 − pn)

It is clear from the prime number theorem that

G(X) > (1 + o(1)) logX,

as the average gap between the prime numbers which are 6 X is ∼ logX . In 1931, Westzynthius [46]
proved that infinitely often, the gap between consecutive prime numbers can be an arbitrarily large multiple
of the average gap, that is, G(X)/ logX → ∞ as X → ∞, improving upon prior results of Backlund [2]
and Brauer-Zeitz [5]. Moreover, he proved the quantitative bound1

G(X)� logX log3X

log4X
.

1As usual in the subject, log2 x = log log x, log3 x = log log log x, and so on. The conventions for asymptotic notation such
as� and o() will be defined in Section 2.
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In 1935 Erdős [11] sharpened this to

G(X)� logX log2X

(log3X)2

and in 1938 Rankin [40] made a subsequent improvement

G(X) > (c+ o(1))
logX log2X log4X

(log3X)2

with c = 1
3 . The constant c was increased several times: to 1

2e
γ by Schönhage [43], then to c = eγ by

Rankin [41], to c = 1.31256eγ by Maier and Pomerance [32] and, most recently, to c = 2eγ by Pintz [36].
Recently, in two independent papers [13, 35], the authors showed that c could be taken to be arbitrarily

large, answering in the affirmative a long-standing conjecture of Erdős [12]. The methods of proof in
[13] and [35] both introduced estimates on primes in very short arithmetic progressions, but these differed
in some key aspects. The arguments in [13] used recent results [22, 21, 23] on the number of solutions to
linear equations in primes, whereas the arguments in [35] instead relied on multidimensional prime-detecting
sieves introduced in [33]. Our main theorem is the following quantitative improvement.

Theorem 1 (Large prime gaps). For any sufficiently large X , one has

G(X)� logX log2X log4X

log3X
.

The implied constant is effective.

Our overall approach combines ideas from the two previous papers [13, 35]. There are two key ingredients
which allow us to obtain the quantitative improvement. Firstly, we incorporate a uniform version of the
multidimensional sieve approach as worked out in [34], which gives a quantitative improvement to the
underlying estimates about primes. Secondly, we prove a generalization of a hypergraph covering theorem
of Pippenger and Spencer [37], which allows for an essentially optimal means of translating such estimates
into a result on large gaps between primes. It is this covering theorem which is the key new ingredient in
our work, and may be of independent interest.

All approaches which obtain quantitative improvements beyond the average bound G(X)� logX have
used a sieving argument which is conjectured to be unable to produce a result stronger than G(X) �
logX(log2X)2+o(1). Moreover, in light of the essentially optimal bounds in our covering theorem for this
problem and the current limitations of the multidimensional sieve estimates, Theorem 1 appears to be the
strongest result one can hope to prove without improvements towards the Hardy-Littlewood prime k-tuples
conjecture, or a radically new approach.

In a sequel [15] to this paper, a subset of the authors will extend the above theorem to also cover chains
of consecutive large gaps between primes, by combining the methods in this paper with the Maier matrix
method. In view of this, we have written some of the key propositions in this paper in slightly more general-
ity than is strictly necessary to prove Theorem 1, as the more general versions of these results will be useful
in the sequel [15].

The results and methods of this paper have also subsequently been applied by Maier and Rassias [31]
(extending the method of the first author, Heath-Brown and the third author [14]) to obtain large prime gaps
(of the order of that in Theorem 1) that contain a perfect kth power of a prime for a fixed k, and by Baker and
Freiberg [3] to obtain lower bounds on the density of limit points of prime gaps normalized by any function
that grows slightly more slowly than the one in Theorem 1. We refer the interested reader to these papers
for further details.
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1.1. Historical background. Based on a probabilistic model of primes, Cramér [8] conjectured that

lim sup
X→∞

G(X)

log2X
= 1.

Granville [20] offered a refinement of Cramér’s model and has conjectured that the lim sup above is in
fact at least 2e−γ = 1.1229 . . .. These conjectures are well beyond the reach of our methods. Cramér’s
model also predicts that the normalized prime gaps pn+1−pn

log pn
should have exponential distribution, that is,

pn+1 − pn > C log pn for about e−Cπ(X) primes 6 X , for any fixed C > 0. Numerical evidence from
prime calculations up to 4 ·1018 [44] matches this prediction quite closely, with the exception of values of C
close to logX , for which there is very little data available. In fact, maxX64·1018 G(X)/ log2X ≈ 0.9206,
slightly below the predictions of Cramér and Granville.

Unconditional upper bounds for G(X) are far from the conjectured truth, the best being G(X)� X0.525

and due to Baker, Harman and Pintz [4]. Even the Riemann Hypothesis only2 furnishes the bound G(X)�
X1/2 logX [7].

All works on lower bounds for G(X) have followed a similar overall plan of attack: show that there are
at least G(X) consecutive integers in (X/2, X], each of which has a “very small” prime factor. To describe
the results, we make the following definition.

Definition 1. Let x be a positive integer. Define Y (x) to be the largest integer y for which one may select
residue classes ap mod p, one for each prime p 6 x, which together “sieve out” (cover) the whole interval
[y] = {1, . . . , y}. Equivalently, Y (x) is the largest integer m so that there are m consecutive integers, each
with a factor in common with P (x).

The relation between this function Y and gaps between primes is encoded in the following simple lemma.

Lemma 1.1. Write P (x) for the product of the primes less than or equal to x. Then

G(P (x) + x) > Y (x).

Proof. Set y = Y (x), and select residue classes ap mod p, one for each prime p 6 x, which cover [y].
By the Chinese remainder theorem there is some m, x < m 6 x + P (x), with m ≡ −ap (mod p) for
all primes p 6 x. We claim that all of the numbers m + 1, . . . ,m + y are composite, which means that
there is a gap of length y amongst the primes less than m + y, thereby concluding the proof of the lemma.
To prove the claim, suppose that 1 6 t 6 y. Then there is some p such that t ≡ ap (mod p), and hence
m + t ≡ −ap + ap ≡ 0 (mod p), and thus p divides m + t. Since m + t > m > x > p, m + t is indeed
composite. �

By the prime number theorem we have P (x) = e(1+o(1))x. Thus the bound of Lemma 1.1 implies that

G(X) > Y
(
(1 + o(1)) logX

)
as X →∞. In particular, Theorem 1 is a consequence of the bound

(1.1) Y (x)� x log x log3 x

log2 x
,

which we will establish later in this paper. This improves on the bound Y (x) � x log x log3 x

log22 x
obtained by

Rankin [40].

2Some slight improvements are available if one also assumes some form of the pair correlation conjecture; see [26].
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The function Y is intimately related to Jacobsthal’s function j. If n is a positive integer then j(n) is
defined to be the maximal gap between integers coprime to n. In particular j(P (x)) is the maximal gap
between numbers free of prime factors6 x, or equivalently 1 plus the longest string of consecutive integers,
each divisible by some prime p 6 x. The Chinese remainder theorem construction given in the proof of
Lemma 1.1 in fact proves that

(1.2) Y (x) = j(P (x))− 1.

This observation, together with results in the literature, gives upper bounds for Y . The best upper bound
known is Y (x)� x2, which comes from Iwaniec’s work [28] on Jacobsthal’s function. It is conjectured by
Maier and Pomerance that in fact Y (x) � x(log x)2+o(1). This places a serious (albeit conjectural) upper
bound on how large gaps between primes we can hope to find via lower bounds for Y (x): a bound in the
region of G(X) ' logX(log logX)2+o(1), far from Cramér’s conjecture, appears to be the absolute limit
of such an approach.

The lower bound on certain values of Jacobsthal’s function provided by (1.1), (1.2) can be inserted directly
into [39, Theorem 1] to obtain a lower bound for the maximum over l of p(k, l), the least prime in the
arithmetic progression l mod k, in the case when the modulus k has no small prime factors. We have

Corollary 1. For any natural number k, letM(k) denote the maximum value of p(k, l) over all l coprime to
k. Suppose that k has no prime factors less than or equal to x for some x 6 log k. Then, if x is sufficiently
large (in order to make log2 x, log3 x positive), one has the lower bound

M(k)� k
x log x log3 x

log2 x
.

Proof. Apply [36, Theorem 1] with m = P (x) if x 6 1
2 log k and with m = P (12 log k) if 1

2 log k < x 6
log k. �

In view of [39, Theorem 3], one may also expect to be able to prove a lower bound of the form

(1.3) M(k)� φ(k)
log k log2 k log4 k

log3 k

for a set of natural numbers k of density 1, but we were unable to find a quick way to establish this from the
results in this paper 3.

1.2. Method of proof. Our methods here are a combination of those in our previous papers [13, 35],
which are in turn based in part on arguments in earlier papers, particularly those of Rankin [40] and Maier-
Pomerance [32]. In order to make the lower bound in Theorem 1 as efficient as possible, we combine these
ideas with a generalization of some arguments of Pippenger and Spencer [37].

As noted above, to prove Theorem 1, it suffices to sieve out an interval [y] by residue classes ap mod p

for each prime p 6 x, where y � x log x log3 x
log2 x

. Actually, it is permissible to have O( x
log x) survivors in [y]

that are not sieved out by these residue classes, since one can easily eliminate such survivors by increasing
x by a constant multiplicative factor. Also, for minor technical reasons, it is convenient to sieve out [y]\[x]
rather than [y].

Following [13], we will sieve out [y]\[x] by the residue classes 0 mod p both for very small primes p
(p 6 log20 x) and medium primes p (between z := xlog3 x/(4 log2 x) and x/2). The survivors of this process

3Inequality (1.3) has recently been established by Li, Pratt and Shakan [30] for every positive integer k except those with more
than exp{(1/2− ε) log2 k log4 k/ log3 k} prime factors, ε > 0 fixed.
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are essentially the set Q of primes between x and y. After this initial sieving, the next stage will be to
randomly sieve out residue classes ã = (as mod s)s∈S for small primes s (between log20 x and z). (This
approach differs slightly from the approach taken in [35] and earlier papers, in which a fixed residue class
is used for all small (and very small) primes instead.) This cuts down the set of primes Q to a smaller set
Q ∩ S(ã), whose cardinality is typically on the order of x

log x log2 x. The remaining task is then to select
integers np for each prime p between x/2 and x, such that the residue classes np mod p cut downQ∩S(ã)
to a set of survivors of size O( x

log x).
Assuming optimistically that one can ensure that the different residue classes np mod p largely remove

disjoint sets from Q∩ S(ã), we are led to the need to select the integers np so that each np mod p contains
about log2 x of the primes in Q ∩ S(ã). In [13], the approach taken was to use recent results on linear
equations in primes [21, 22, 23] to locate arithmetic progressions q, q + r!p, . . . , q + (r − 1)r!p consisting
entirely of primes for some suitable r, and then to take np = q. Unfortunately, due to various sources of
ineffectivity in the known results on linear equations in primes, this method only works when r is fixed or
growing extremely slowly in x, whereas here we would need to take r of the order of log2 x. To get around
this difficulty, we use instead the methods from [35], which are based on the multidimensional sieve methods
introduced in [33] to obtain bounded intervals with many primes. A routine modification of these methods
gives tuples q + h1p, . . . , q + hkp which contain� log k primes, for suitable large k; in fact, by using the
calculations in [34], one can take k as large as logc x for some small absolute constant c (e.g. c = 1/5), so
that the residue class q mod p is guaranteed to capture� log2 x primes in Q.

There is however a difficulty due to the overlap between the residue classes np mod p. In both of the
previous papers [13, 35], the residue classes were selected randomly and independently of each other, but
this led to a slight inefficiency in the sieving: with each residue class np mod p containing approximately
log2 x primes, probabilistic heuristics suggest that one would have needed the original survivor setQ∩S(ã)

to have size about x
log x

log2 x
log3 x

rather than x
log x log2 x if one is to arrive at O( x

log x) after the final sieving
process. This ultimately leads to the bound

(1.4) G(X)� logX log2X

log3X
,

as worked out in in unpublished work of the fourth author - an additional loss of log4 x compared to Theorem
1.

To avoid this difficulty, we use some ideas from the literature on efficient hypergraph covering. Of
particular relevance is the work of Pippenger and Spencer [37] in which it is shown that whenever one
has a large hypergraph G = (V,E) which is uniform both in the sense of edges e ∈ E having constant
cardinality, and also in the sense of the degrees #{e ∈ E : v ∈ e} being close to constant in v, one can
efficiently cover most of V by almost disjoint edges in E. Unfortunately, the results in [37] are not directly
applicable for a number of technical reasons, the most serious of which is that the analogous hypergraph in
this case (in which the vertices are the sifted setQ∩S(ã) and the edges are sets of the form {q ∈ Q∩S(ã) :
q ≡ np (mod p)} for various np, p) does not have edges of constant cardinality. However, by modifying
the “Rödl nibble” or “semi-random” method used to prove the Pippenger-Spencer theorem, we are able to
obtain a generalization of that theorem in which the edges are permitted to have variable cardinality. This
generalization is purely combinatorial in nature and may be of independent interest beyond the application
here to large prime gaps.

We will make a series of reductions to prove Theorem 1. To aid the reader, we summarize the chain of
implications below, indicating in which Section each implication or Theorem is proven (above or below),
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and in which Section one may find a statement of each Theorem (in parentheses).

Thm 5 (§6)
§7,8

=⇒
§6

Thm 4 (§4)

§5
Thm 3 (§4.2)

⇓
Cor 4 (§4.3)

⇓
=⇒
§4,5

Thm 2 (§3) =⇒
§3

Thm 1

The deduction of Theorem 1 from Theorem 2 is easy, and codifies the reduction of the problem to that of
finding residue classes for primes in S ∪ (x/2, x] which cover all the primes in Q with O(x/ log x) excep-
tions. Theorem 5, proved using the sieve methods from [34], postulates the existence of a weight function
with certain average properties. It implies the existence of residue classes np mod p for primes p ∈ (x/2, x],
each containing many primes of Q, and moreover that each prime q ∈ Q ∩ S(ã) is covered by about the
same number of these congruence classes np mod p. These properties are quantified in Theorem 4. Show-
ing that Theorem 4 implies Theorem 2, i.e. that there exist choices for np which efficiently cover most of the
primes in q ∈ Q∩S(ã), is accomplished with our new hypergraph covering tool. The fundamental result is
Theorem 3, which is written in a very general form and is consequently rather long to state. Corollary 4 is a
somewhat shorter version specialized for our purposes.

For ease of reading, we have endeavored to separate the combinatorial arguments of Section 4, 5 and 6
from the number theoretic arguments of Section 7 and 8. Indeed, a reader only interested in our hypergraph
covering result Theorem 3 can read Section 4 and 5 as a standalone paper. A reader only interested in the
number theoretic part of Theorem 1 can just read Section 7 and 8 provided they are willing to assume the
reduction of Theorem 2 to Theorem 5. The deduction of Theorem 2 from the purely combinatorial Corollary
4 and the purely number theoretic Theorem 5 is performed in the second half of Section 4 and in Section 6,
and does not require reading the more specialized Section 5, 7 or 8.
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2. NOTATIONAL CONVENTIONS

In most of the paper, xwill denote an asymptotic parameter going to infinity, with many quantities allowed
to depend on x. The symbol o(1) will stand for a quantity tending to zero as x→∞. The same convention
applies to the asymptotic notation X ∼ Y , which means X = (1 + o(1))Y . We use X = O(Y ), X � Y ,
and Y � X to denote the claim that there is a constant C > 0 such that |X| 6 CY throughout the domain
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of the quantity X . We adopt the convention that C is independent of any parameter unless such dependence
is indicated, e.g. by subscript such as�k. In all of our estimates here, the constant C will be effective (we
will not rely on ineffective results such as Siegel’s theorem). If we can take the implied constant C to equal
1, we write f = O6(g) instead. Thus for instance

X = (1 +O6(ε))Y

is synonymous with
(1− ε)Y 6 X 6 (1 + ε)Y.

Finally, we use X � Y synonymously with X � Y � X .
When summing or taking products over the symbol p, it is understood that p is restricted to be prime.
Given a modulus q and an integer n, we use n mod q to denote the congruence class of n in Z/qZ.
Given a set A, we use 1A to denote its indicator function, thus 1A(x) is equal to 1 when x ∈ A and zero

otherwise. Similarly, if E is an event or statement, we use 1E to denote the indicator, equal to 1 when E is
true and 0 otherwise. Thus for instance 1A(x) is synonymous with 1x∈A.

We use #A to denote the cardinality ofA, and for any positive real z, we let [z] := {n ∈ N : 1 6 n 6 z}
denote the set of natural numbers up to z.

Our arguments will rely heavily on the probabilistic method. Our random variables will mostly be discrete
(in the sense that they take at most countably many values), although we will occasionally use some contin-
uous random variables (e.g. independent real numbers sampled uniformly from the unit interval [0, 1]). As
such, the usual measure-theoretic caveats such as “absolutely integrable”, “measurable”, or “almost surely”
can be largely ignored by the reader in the discussion below. We will use boldface symbols such as X or a
to denote random variables (and non-boldface symbols such as X or a to denote deterministic counterparts
of these variables). Vector-valued random variables will be denoted in arrowed boldface, e.g. ~a = (as)s∈S
might denote a random tuple of random variables as indexed by some index set S.

We write P for probability, and E for expectation. If X takes at most countably many values, we define
the essential range of X to be the set of all X such that P(X = X) is non-zero, thus X almost surely takes
values in its essential range. We also employ the following conditional expectation notation. IfE is an event
of non-zero probability, we write

P(F |E) :=
P(F ∧ E)

P(E)

for any event F , and

E(X|E) :=
E(X1E)

P(E)

for any (absolutely integrable) real-valued random variable X. If Y is another random variable taking at
most countably many values, we define the conditional probability P(F |Y) to be the random variable that
equals P(F |Y = Y ) on the event Y = Y for each Y in the essential range of Y, and similarly define the
conditional expectation E(X|Y) to be the random variable that equals E(X|Y = Y ) on the event Y = Y .
We observe the idempotency property

(2.1) E(E(X|Y)) = EX

whenever X is absolutely integrable and Y takes at most countably many values.
We will make frequent use of the basic inequalities of Markov

(2.2) P(X > λ) 6
µ

λ
, µ = EX > 0, λ > 0,
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and Chebyshev

(2.3) P
(
|X − µ| > λ

√
E|X − µ|2

)
6

1

λ2
, λ > 0, µ = EX ∈ R,E|X − µ|2 > 0.

The latter implies, when the variance E|X − µ|2 is small, that a random variable is highly concentrated.

Lemma 2.1. Suppose that for some A > 0 and 0 < ε < 1 we have

µ = EX = A(1 +O6(ε)), EX2 = A2(1 +O6(ε)).

Then, for any δ > ε we have

P(|X −A| > δA) 6
4ε

(δ − ε)2
.

Proof. We first derive an upper bound on the variance

E|X − µ|2 = EX2 − µ2 = A2O6(ε+ 2ε+ ε2) 6 4εA2.

Then, using (2.3), we obtain

P(|X −A| > δA) 6 P (|X − µ| > (δ − ε)A)

6 P
(
|X − µ| > δ − ε

2
√
ε

√
E|X − µ|2

)
6

4ε

(δ − ε)2
. �

We also require Hoeffding’s inequality (see e.g. [16, Theorem 7.20]).

Lemma 2.2. LetX1, . . . , Xm be independent random variables with EXi = 0 and |Xi| 6 Bi almost surely
for each i. Then, for any real t > 0,

P (|X1 + · · ·+Xm| > t) 6 2 exp

(
− t2

2(B2
1 + · · ·+B2

m)

)
.

3. SIEVING A SET OF PRIMES

We begin by using a variant of the Westzynthius-Erdős-Rankin method to reduce this problem to a prob-
lem of sieving a set Q of primes in [y]\[x], rather than integers in [y]\[x].

Given a large real number x, define

(3.1) y := cx
log x log3 x

log2 x
,

where c is a certain (small) fixed positive constant. Also let

(3.2) z := xlog3 x/(4 log2 x),

and introduce the three disjoint sets of primes

S := {s prime : log20 x < s 6 z},(3.3)

P := {p prime : x/2 < p 6 x},(3.4)

Q := {q prime : x < q 6 y}.(3.5)

For residue classes ~a = (as mod s)s∈S and~b = (bp mod p)p∈P , define the sifted sets

S(~a) := {n ∈ Z : n 6≡ as (mod s) for all s ∈ S}
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and likewise
S(~b) := {n ∈ Z : n 6≡ bp (mod p) for all p ∈ P}.

We then have

Theorem 2 (Sieving primes). Let x be sufficiently large and suppose that y obeys (3.1). Then there are
vectors ~a = (as mod s)s∈S and~b = (bp mod p)p∈P , such that

(3.6) #(Q∩ S(~a) ∩ S(~b))� x

log x
.

We prove Theorem 2 in subsequent sections. Here, we show how this theorem implies (1.1), and hence
Theorem 1.

Let ~a and~b be as in Theorem 2. We extend the tuple ~a to a tuple (ap)p6x of congruence classes ap mod p
for all primes p 6 x by setting ap := bp for p ∈ P and ap := 0 for p 6∈ S ∪ P , and consider the sifted set

T := {n ∈ [y]\[x] : n 6≡ ap (mod p) for all p 6 x}.

The elements of T , by construction, are not divisible by any prime in (0, log20 x] or in (z, x/2]. Thus, each
element must either be a z-smooth number (i.e., a number with all prime factors at most z), or must consist
of a prime greater than x/2, possibly multiplied by some additional primes that are all at least log20 x.
However, from (3.1) we know that y = o(x log x). Thus, we see that an element of T is either a z-smooth
number or a prime inQ. In the second case, the element lies inQ∩S(~a)∩S(~b). Conversely, every element
ofQ∩S(~a)∩S(~b) lies in T . Thus, T only differs fromQ∩S(~a)∩S(~b) by a setR consisting of z-smooth
numbers in [y].

To estimate #R, let

u :=
log y

log z
,

so from (3.1), (3.2) one has u ∼ 4 log2 x
log3 x

. By standard counts for smooth numbers (e.g. de Bruijn’s theorem
[6]) and (3.1), we thus have

#R � ye−u log u+O(u log log(u+2)) =
y

log4+o(1) x
= o

(
x

log x

)
.

Thus, we find that #T � x/ log x.
Next, let C be a sufficiently large constant such that #T is less than the number of primes in (x,Cx]. By

matching each of these surviving elements to a distinct prime in (x,Cx] and choosing congruence classes
appropriately, we thus find congruence classes ap mod p for p 6 Cx which cover all of the integers in
(x, y]. In the language of Definition 1, we thus have

Y (Cx) > y − x+ 1,

and (1.1) follows from (3.1).

Remark 1. One can replace the appeal to de Bruijn’s theorem here by the simpler bounds of Rankin [40,
Lemma II], if one makes the very minor change of increasing the 4 in the denominator of (3.2) to 5, and also
makes similar numerical changes to later parts of the argument.

It remains to establish Theorem 2. This is the objective of the remaining sections of the paper.
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4. EFFICIENT HYPERGRAPH COVERING

In the previous section we reduced matters to obtaining residue classes ~a, ~b such that the sifted set Q ∩
S(~a)∩S(~b) is small. In this section we use a hypergraph covering theorem, generalizing a result of Pippenger
and Spencer [37], to reduce the task to that of finding residue classes ~b that have large intersection with
Q∩ S(~a).

4.1. Heuristic discussion. Consider the following general combinatorial problem. Let (V,Ei)i∈I be a
collection of (non-empty) hypergraphs on a fixed finite vertex set V indexed by some finite index set I . In
other words, V and I are finite sets, and for each i ∈ I , Ei is a (non-empty) collection of subsets of V .
The problem is then to select a single edge ei from each set Ei in such a way that the union

⋃
i∈I ei covers

as much of the vertex set V as possible. (In the context considered in [37], one considers choosing many
edges from a single hypergraph (V,E), which in our context would correspond to the special case when
(V,Ei) was independent of i.) One should think of the set V \

⋃
i∈I ei as a sifted version of V , with each ei

representing one step of the sieve.
One simple way to make this selection is a random one: one chooses a random edge ei uniformly at

random from Ei, independently in i. In that case, the probability that a given vertex v ∈ V survives the
sifting (that is, it avoids the random union

⋃
i∈I ei) is equal to∏
i∈I

(1− P(v ∈ ei)).

In applications, the index set I is large and the probabilities P(v ∈ ei) are small, in which case the above
expression may be well approximated by

exp(−dI(v))

where we define the normalized degree dI(v) of v to be the quantity

dI(v) :=
∑
i∈I

P(v ∈ ei).

If we make the informal uniformity assumption
(i) One has dI(v) ≈ d for all (or almost all) vertices v,

we thus expect the sifted set V \
⋃
i∈I ei to have density approximately exp(−d).

Can one do better than this? Choosing the ei independently is somewhat inefficient because it allows
different random edges ei, ej to collide with each other. If we could somehow modify the coupling between
the ei so that they were always disjoint, then the probability that a given vertex v ∈ V survives the sieve
would now become

1−
∑
i∈I

P(v ∈ ei) = 1− dI(v).

This suggests that one could in principle lower the density of the sifted set from exp(−d) to 1 − d (or
max(1−d, 0), since the density clearly cannot be negative), and in particular to sift out V almost completely
as soon as d exceeds 1.

Suppose for the moment that such an optimal level of sieve efficiency is possible, and return briefly to
consideration of Theorem 2. We set the vertex set V equal to Q∩ S(~a) for some suitable choice of ~a. If we
set

y := cx
log x log3 x

log2 x
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for some small c > 0 (in accordance with (3.1)), then standard probabilistic heuristics (together with
Mertens’ theorem and (3.1), (3.3)) suggest that V should have cardinality about

y

log x
×
∏
s∈S

(
1− 1

s

)
≈ c x

log x
log2 x,

so in particular this set is roughly c log2 x times larger than P . In later sections, we will use the multidimen-
sional sieve from [35], [34] to locate for most primes p in P , a large number of residue classes bp mod p
that each intersect Q ∩ S(~a) in roughly � log2 x elements on the average. If we let Ep be the set of all
such intersections (bp mod p) ∩ V , then the task of making Q ∩ S(~a) ∩ S(~b) small is essentially the same
as making the sifted set V \

⋃
p∈P ep small, for some suitable edges ep drawn from Ep. By double counting,

the expected density d here should be roughly

d � #P × log2 x

#V
� 1

c
,

and so one should be able to sieve out Q ∩ S(~a) more or less completely once c is small enough if one
had optimal sieving. In contrast, if one used independent sieving, one would expect the cardinality of
Q ∩ S(~a) ∩ S(~b) to be something like exp(−1/c)× c x

log x log2 x, which would only be acceptable if c was
slightly smaller than 1

log3 x
. This loss of log3 x ultimately leads to the loss of log4X in (1.4) as compared

against Theorem 1.
It is thus desirable to obtain a general combinatorial tool for achieving near-optimal sieve efficiency

for various collections (V,Ei)i∈I of hypergraphs. The result of Pippenger and Spencer [37] (extending
previous results of Rödl [42] and Frankl and Rödl [17], as well as unpublished work of Pippenger) asserts,
very roughly speaking, that one can almost attain this optimal efficiency under some further assumptions
beyond (i), which we state informally as follows:

(ii) The hypergraphs (V,Ei) do not depend on i.
(iii) The normalized codegrees

∑
i∈I P(v, w ∈ ei) for v 6= w are small.

(iv) The edges ei of Ei are of constant size, thus there is a k such that #ei = k for all i and all ei ∈ Ei.
The argument is based on the Rödl nibble from [42], which is a variant of the semi-random method from
[1]. Roughly speaking, the idea is to break up the index set I into smaller pieces I1, . . . , Im. For the first
I1, we perform a “nibble” by selecting the ei for i ∈ I1 uniformly and independently. For the next nibble at
I2, we restrict (or condition) the ei for i ∈ I2 to avoid the edges arising in the first nibble, and then select ei
for i ∈ I2 independently at random using this conditioned distribution. We continue performing nibbles at
I3, . . . , Im (restricting the edges at each nibble to be disjoint from the edges of previous nibbles) until the
index set I is exhausted. Intuitively, this procedure enjoys better disjointness properties than the completely
independent selection scheme, but it is harder to analyze the probability of success. To achieve the latter
task, Pippenger and Spencer rely heavily on the four hypotheses (i)-(iv).

In our context, hypothesis (iii) is easily satisfied, and (i) can also be established. Hypothesis (ii) is not
satisfied (the Ep vary in p), but it turns out that the argument of Pippenger and Spencer can easily be written
in such a way that this hypothesis may be discarded. But it is the failure of hypothesis (iv) which is the
most severe difficulty: the size of the sets ep = (bp mod p) ∩ V can fluctuate quite widely for different
choices of p or bp. This creates an undesirable bias in the iterative nibbling process: with each nibble, larger
edges ei have a reduced chance of survival compared with smaller edges, simply because they have more
elements that could potentially intersect previous nibbles. Given that one expects the larger edges to be the
most useful for the purposes of efficient sieving, this bias is a significant problem. One could try to rectify
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the issue by partitioning the edge sets Ei depending on the cardinality of the edges, and working on one
partition at a time, but this seriously impacts hypothesis (i) in a manner that we were not able to handle.

Our resolution to this problem is to modify the iterative step of the nibbling process by reweighting
the probability distribution of the ei at each step to cancel out the bias incurred by conditioning an edge
ei to be disjoint from previous nibbles. It turns out that there is a natural choice of reweighting for this
task even when the normalized degrees dI(v) vary in v. As a consequence, we can obtain a version of
the Pippenger-Spencer theorem in which hypothesis (ii) is essentially eliminated and (i), (iv) significantly
weakened, leaving only (iii) as the main hypothesis. We remark that a somewhat similar relaxation of
hypotheses (i)-(iv) was obtained by Kahn in [29], although the statement in [29] is not exactly in a form
convenient for our applications here.

4.2. Statement of covering theorem. We now rigorously state the hypergraph covering theorem that we
will use. In order to apply this theorem for our application, we will need a probabilistic formulation of this
theorem which does not, at first glance, bear much resemblance to the combinatorial formulation appearing
in [37]; we will discuss the connections between these formulations shortly. We will also phrase the theorem
in a completely quantitative fashion, avoiding the use of asymptotic notation; this will be convenient for the
purposes of proving the theorem via induction (on the number m of “nibbles”).

Theorem 3 (Probabilistic covering). There exists a constant C0 > 1 such that the following holds. Let
D, r,A > 1, 0 < κ 6 1/2, and let m > 0 be an integer. Let δ > 0 satisfy the smallness bound

(4.1) δ 6

(
κA

C0 exp(AD)

)10m+2

.

Let I1, . . . , Im be disjoint finite non-empty sets, and let V be a finite set. For each 1 6 j 6 m and i ∈ Ij ,
let ei be a random finite subset of V . Assume the following:

• (Edges not too large) With probability 1, we have for all j = 1, . . . ,m and all i ∈ Ij
(4.2) #ei 6 r;

• (Each sieve step is sparse) For all j = 1, . . . ,m, i ∈ Ij and v ∈ V ,

(4.3) P(v ∈ ei) 6
δ

(#Ij)1/2
;

• (Very small codegrees) For every j = 1, . . . ,m, and distinct v1, v2 ∈ V ,

(4.4)
∑
i∈Ij

P(v1, v2 ∈ ei) 6 δ

• (Degree bound) If for every v ∈ V and j = 1, . . . ,m we introduce the normalized degrees

(4.5) dIj (v) :=
∑
i∈Ij

P(v ∈ ei)

and then recursively define the quantities Pj(v) for j = 0, . . . ,m and v ∈ V by setting

(4.6) P0(v) := 1

and

(4.7) Pj+1(v) := Pj(v) exp(−dIj+1(v)/Pj(v))
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for j = 0, . . . ,m− 1 and v ∈ V , then we have

(4.8) dIj (v) 6 DPj−1(v) (1 6 j 6 m, v ∈ V )

and

(4.9) Pj(v) > κ (0 6 j 6 m, v ∈ V ).

Then we can find random variables e′i for each i ∈
⋃m
j=1 Ij with the following properties:

(a) For each i ∈
⋃m
j=1 Ij , the essential support of e′i is contained in the essential support of ei, union

the empty set singleton {∅}. In other words, almost surely e′i is either empty, or is a set that ei also
attains with positive probability.

(b) For any 0 6 J 6 m and any finite subset e of V with #e 6 A− 2rJ , one has

(4.10) P

e ⊂ V \ J⋃
j=1

⋃
i∈Ij

e′i

 =
(

1 +O6(δ1/10
J+1

)
)
PJ(e)

where

(4.11) Pj(e) :=
∏
v∈e

Pj(v).

We prove this theorem in Section 5. It is likely that the smallness condition (4.1) can be relaxed, for in-
stance by modifying the techniques from [45]. However, this would not lead to any significant improvement
in the final bound on G(X) in Theorem 1, as in our application the condition (4.1) is already satisfied with
some room to spare. The parameter r does not appear explicitly in the smallness requirement (4.1), but is
implicit in that requirement since the conclusion is trivially true unless 2r < A.

One may deduce special cases of this theorem which are close to the original hypergraph covering lemma
of Pippenger and Spencer. These were included in an earlier draft of this paper (as Corollaries 2 and 3), and
will now be described in a future, separate paper.

4.3. Applying the covering theorem. We now specialize Theorem 3 to a situation relevant for the appli-
cation to large prime gaps, given by Corollary 4. Very roughly, this states that if we have a large collection
{ep : p ∈ P ′} of random subsets of a set Q′, then there is a realization of these random variables which
covers almost all of Q′, provided the subsets are suitably ‘uniform’ and all elements of Q are covered more
than once on average. Clearly we cannot hope to cover Q unless almost all elements are covered at least
once on average, and similarly if the subsets are too highly correlated then one can easily produce examples
where Q′ will not be covered. Thus some form of both of these assumptions is necessary. For our applica-
tion to prime gaps, the random sets ep will be all elements of Q′ in a randomly chosen residue class modp
(which will be produced by the multidimensional sieve in the later sections.)

Corollary 4. Let x→∞. Let P ′,Q′ be sets with #P ′ 6 x and (log2 x)3 < #Q′ 6 x100. For each p ∈ P ′,
let ep be a random subset of Q′ satisfying the size bound

(4.12) #ep 6 r = O

(
log x log3 x

log22 x

)
(p ∈ P ′).

Assume the following:
• (Sparsity) For all p ∈ P ′ and q ∈ Q′,

(4.13) P(q ∈ ep) 6 x
−1/2−1/10.
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• (Small codegrees) For any distinct q1, q2 ∈ Q′,

(4.14)
∑
p∈P ′

P(q1, q2 ∈ ep) 6 x
−1/20.

• (Elements covered more than once in expectation) For all but at most 1
(log2 x)

2 #Q′ elements q ∈ Q′,
we have

(4.15)
∑
p∈P ′

P(q ∈ ep) = C +O6

(
1

(log2 x)2

)
for some quantity C, independent of q, satisfying

(4.16)
5

4
log 5 6 C � 1.

Then for any positive integer m with

(4.17) m 6
log3 x

log 5
,

we can find random sets e′p ⊆ Q′ for each p ∈ P ′ such that e′p is either empty or a subset of Q′ which ep
attains with positive probability, and that

#{q ∈ Q′ : q 6∈ e′p for all p ∈ P ′} ∼ 5−m#Q′

with probability 1− o(1). More generally, for any Q′′ ⊂ Q′ with cardinality at least (#Q′)/
√

log2 x, one
has

#{q ∈ Q′′ : q 6∈ e′p for all p ∈ P ′} ∼ 5−m#Q′′

with probability 1− o(1). The decay rates in the o(1) and ∼ notation are uniform in P ′, Q′, Q′′.

Remarks. For the arguments in this paper, we only need the caseQ′′ = Q′, but the more general situation
Q′′ ⊂ Q′ will be of use in the sequel [15] of this paper when we consider chains of large gaps.

From (4.13) and (4.15), it follows that #P ′ � x1/2+1/10.

Proof. It suffices to establish the claim for x sufficiently large, as the claim is trivial for bounded x. The
number of exceptional elements q of Q′ that fail (4.15) is o(5−m#Q′′), thanks to (4.17). Thus we may
discard these elements from Q′ and assume that (4.15) holds for all q ∈ Q′, and deduce the conclusions of
the corollary with the modified set Q′.

By (4.16), we may find disjoint intervals I1, . . . ,Im in [0, 1] with length

(4.18) |Ij | =
51−j log 5

C

for j = 1, . . . ,m. Let ~t = (tp)p∈P ′ be a tuple of elements tp of [0, 1] drawn uniformly and independently
at random for each p ∈ P ′ (independently of the ep), and define the random sets

Ij = Ij(~t) := {p ∈ P ′ : tp ∈ Ij}
for j = 1, . . . ,m. These sets are clearly disjoint.

We will verify (for a suitable choice of ~t) the hypotheses of Theorem 3 with the indicated sets Ij and
random variables ep, and with suitable choices of parameters D, r,A > 1 and 0 < κ 6 1/2, and V = Q′.

Set

(4.19) δ := x−1/20
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and observe from (4.13) and #P ′ 6 x that one has

(4.20) P(q ∈ ep) 6
δ

(#Ij)1/2

for all j = 1, . . . ,m, p ∈ Ij , and q ∈ Q′. Clearly the small codegree condition (4.14) implies that

(4.21)
∑
p∈Ij

P(q1, q2 ∈ ep) 6 δ (1 6 j 6 m).

Let q ∈ Q′, 1 6 j 6 m and consider the independent random variables (X
(q,j)
p (~t))p∈P ′ , where

X(q,j)
p (~t) =

{
P(q ∈ ep) if p ∈ Ij
0 otherwise.

By (4.15), (4.16) and (4.18), for every j and every q ∈ Q′,∑
p∈P ′

EX(q,j)
p (~t) =

∑
p∈P ′

P(q ∈ ep)P(p ∈ Ij(~t)) = |Ij |
∑
p∈P ′

P(q ∈ ep) = 51−j log 5 +O6

(
4/5

(log2 x)2

)
.

By (4.13), we have |X(q,j)
p (~t)| 6 x−1/2−1/10 for all p, and hence by Hoeffding’s inequality (Lemma 2.2),

P

∣∣∣ ∑
p∈P ′

(X(q,j)
p (~t)− EX(q,j)

p (~t))
∣∣∣ > 1

(log2 x)2

 6 2 exp

{
− (log2 x)−4

2x−1−1/5#Ij

}

6 2 exp

{
− x1/5

(log2 x)4

}
� 1

x200
.

By the upper bound on #Q′, there is a deterministic choice ~t of~t (and hence I1, . . . , Im) such that for every
q ∈ Q′ and every j = 1, . . . ,m, we have∣∣∣ ∑

p∈P ′
(X(q,j)

p (~t)− EX(q,j)
p (~t))

∣∣∣ < 1

(log2 x)2
.

We fix this choice ~t (so that the Ij are now deterministic), and we conclude that

(4.22)
∑
p∈P ′

X(q,j)
p (~t) =

∑
p∈Ij

P(q ∈ ep) = 51−j log 5 +O6

(
2

(log2 x)2

)
uniformly for all j = 1, . . . ,m, and all q ∈ Q′.

Inserting (4.22) into the definition (4.5) of dIj (q) and using the bound (4.17) on m, we now have

dIj (q) = (1 +O6(2/ log2 x))5−j+1 log 5

for all q ∈ Q′ and 1 6 j 6 m. A routine induction using (4.6), (4.7) then shows (for x sufficiently large)
that

Pj(q) = (1 +O6(4j/ log2 x))5−j (0 6 j 6 m),

and hence that

(4.23) Pj(q) = 5−j(1 +O6((log2 x)−ν)) (0 6 j 6 m),
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where ν = log(5/4)/ log 5. In particular we have

dIj (q) 6 DPj−1(q) (1 6 j 6 m)

for some D = O(1), and
Pj(q) > κ (1 6 j 6 m),

where
κ� 5−m.

We now set
A := 2rm+ 2.

By our bounds on m (4.17) and r (4.12),

A� log x log23 x

log22 x
,

and so
κA

C0 exp(AD)
> exp

(
−O

(
log x log33 x

log22 x

))
.

By (4.17) and (4.19), we see that

δ1/10
m+2
6 exp

(
− log x

2000(log2 x)log 10/ log 5

)
,

and so (4.1) is satisfied x is large enough (note that log 10/ log 5 < 2). Thus all the hypotheses of Theorem
3 have been verified for this choice of parameters (note that A, κ and D are independent of P ′, Q′).

Applying Theorem 3 (with V = Q′) and using (4.23), one thus obtains random variables e′p for p ∈⋃m
j=1 Ij whose essential range is contained in the essential range of ep together with ∅, such that

(4.24) P

q 6∈ m⋃
j=1

⋃
p∈Ij

e′p

 = 5−m
(
1 +O((log2 x)−ν)

)
for all q ∈ Q′, and

(4.25) P

q1, q2 6∈ m⋃
j=1

⋃
p∈Ij

e′p

 = 5−2m
(
1 +O((log2 x)−ν)

)
for all distinct q1, q2 ∈ Q′.

Set e′p = ∅ for p ∈ P ′\
⋃m
j=1 Ij . Let Q′′ be as in the corollary, and consider the random variable

Y := #{q ∈ Q′′ : q 6∈ e′p for all p ∈ P ′} =
∑
q∈Q′′

1q 6∈
⋃m
j=1

⋃
p∈Ij

e′p
.

Using (4.24) and (4.25), we obtain

EY = 5−m
(
1 +O((log2 x)−ν)

)
#Q′′

and

EY2 = 5−2m
(
1 +O((log2 x)−ν)

)
(#Q′′)2 +O(5−m#Q′′) = 5−2m

(
1 +O((log2 x)−ν)

)
(#Q′′)2,
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(here we use (4.17) and the mild bound #Q′′ > (log2 x)2), and so from Lemma 2.1 we have

Y ∼ 5−m#Q′′

with probability 1− o(1), as required. �

In view of the above corollary, we may now reduce Theorem 2 to the following claim.

Theorem 4 (Random construction). Let x be a sufficiently large real number and define y by (3.1). Then
there is a quantity C with

(4.26) C � 1

c

with the implied constants independent of c, a tuple of positive integers (h1, . . . , hr) with r 6
√

log x, and
some way to choose random vectors ~a = (as mod s)s∈S and ~n = (np)p∈P of congruence classes as mod s
and integers np respectively, obeying the following:

• For every ~a in the essential range of ~a, one has

(4.27) P(q ∈ ep(~a)|~a = ~a) 6 x−1/2−1/10 (p ∈ P),

where ep(~a) := {np + hip : 1 6 i 6 r} ∩ Q ∩ S(~a).
• With probability 1− o(1) we have that

(4.28) #(Q∩ S(~a)) ∼ 80c
x

log x
log2 x.

• Call an element ~a in the essential range of ~a good if, for all but at most x
log x log2 x

elements q ∈
Q ∩ S(~a), one has

(4.29)
∑
p∈P

P(q ∈ ep(~a)|~a = ~a) = C +O6

(
1

(log2 x)2

)
.

Then ~a is good with probability 1− o(1).

We now show why Theorem 4 implies Theorem 2. By (4.26), we may choose 0 < c < 1/2 small enough
so that (4.16) holds. Take

m =

⌊
log3 x

log 5

⌋
.

Now let ~a and ~n be the random vectors guaranteed by Theorem 4. Suppose that we are in the probability
1− o(1) event that ~a takes a value ~a which is good and such that (4.28) holds. Fix some ~a within this event.
We may apply Corollary 4 with P ′ = P and Q′ = Q ∩ S(~a) for the random variables np conditioned to
~a = ~a. A few hypotheses of the Corollary must be verified. First, (4.15) follows from (4.29). The small
codegree condition (4.14) is also quickly checked. Indeed, for distinct q1, q2 ∈ Q′, if q1, q2 ∈ ep(~a) then
p|q1− q2. But q1− q2 is a nonzero integer of size at most x log x, and is thus divisible by at most one prime
p0 ∈ P ′. Hence ∑

p∈P ′
P(q1, q2 ∈ ep(~a)) = P(q1, q2 ∈ ep0(~a)) 6 x−1/2−1/10,

the sum on the left side being zero if p0 doesn’t exist. By Corollary 4, there exist random variables e′p(~a),
whose essential range is contained in the essential range of ep(~a) together with ∅, and satisfying

{q ∈ Q ∩ S(~a) : q 6∈ e′p(~a) for all p ∈ P} ∼ 5−m#(Q∩ S(~a))� x

log x
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with probability 1− o(1), where we have used (4.28). Since e′p(~a) = {n′p + hip : 1 6 i 6 r} ∩ Q ∩ S(~a)
for some random integer n′p, it follows that

{q ∈ Q ∩ S(~a) : q 6≡ n′p (mod p) for all p ∈ P} � x

log x

with probability 1− o(1). Taking a specific ~n′ = ~n′ for which this relation holds and setting bp = n′p for all
p concludes the proof of the claim (3.6) and establishes Theorem 2.

It remains to establish Theorem 4. This will be achieved in later sections.

5. PROOF OF THE COVERING THEOREM

We now prove Theorem 3. Let C0 be a sufficiently large absolute constant.
We induct on m. The case m = 0 is vacuous, so suppose that m > 1 and that the claim has already

been proven for m− 1. Let D, r,A, κ, δ, Ij , ei, V be as in the theorem. By the induction hypothesis, we can
already find random variables e′i for i ∈

⋃m−1
j=1 Ij obeying the conclusions (a), (b) of the theorem for m− 1.

In particular, we may form the partially sifted set

W := V \
m−1⋃
j=1

⋃
i∈Ij

e′i,

and we have

(5.1) P(e ⊂W) = (1 +O6(δ1/10
m

))Pm−1(e)

whenever e ⊂ V has cardinality #e 6 A− 2r(m− 1).
Our task is then to construct random variables e′i for i ∈ Im, possibly coupled with existing random

variables such as W, whose essential range is contained in that of ei together with the empty set, and such
that

(5.2) P

(
e ⊂W\

⋃
i∈Im

e′i

)
=
(

1 +O6(δ1/10
m+1

)
)
Pm(e)

for all finite subsets e of V with #e 6 A − 2rm. Note that we may assume that A > 2rm, as the claim
(4.10) is trivial otherwise. In particular we have

(5.3) A− 2r(m− 1) > 2r.

From (4.9), (4.11) we note that

(5.4) Pj(ẽ) > κ
#ẽ

whenever j = 1, . . . ,m and all ẽ ⊂ V . In particular, by (5.4) and (4.2), whenever ẽi is in the essential range
of ei, we have

(5.5) Pj(ẽi) > κ
r.

For future reference, we observe that from (5.3) and (4.1), we have

(5.6) rκ−r 6 Aκ−r 6 A2κ−2r 6 A2Dκ−A 6 δ−1/10
m+2

.
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For each i ∈ Im, and every W in the essential range of W, define the normalization factor

(5.7) Xi(W ) := E
(

1ei⊂W
Pm−1(ei)

)
=
∑
ẽi⊂W

P(ei = ẽi)

Pm−1(ẽi)
.

We will see shortly, and this is crucial to our argument, that Xi(W) concentrates to 1. With this in mind,
we let Fi = Fi(W) be the event that

(5.8) |Xi(W)− 1| 6 δ
1

3×10m .

Very small values of Xi(W ), in particular sets W with Xi(W ) = 0, are problematic for us and must be
avoided. Fortunately, this occurs with very small probability.

We now define the random variables e′i for i ∈ Im. If Fi(W) fails, we set e′i = ∅. Otherwise, if Fi(W)
holds, then after conditioning on a fixed value W of W, we choose e′i from the essential range of ei using
the conditional probability distribution

(5.9) P(e′i = ẽi|W = W ) :=
1ẽi⊂W
Xi(W )

P(ei = ẽi)

Pm−1(ẽi)

for all ẽi in the essential range of ei, and also require that the e′i are conditionally jointly independent for
i ∈ Im on each event W = W . Note from (5.7) that (5.9) defines a probability distribution, and so the e′i are
well defined as random variables. Informally, e′i is ei conditioned to the event ei ⊂W , and then reweighted
by Pm−1(ei) to compensate for the bias caused by this conditioning.

Lemma 5.1. We have
P(Fi(W)) = 1−O(δ

1
3×10m ).

Proof. By Lemma 2.1, it suffices to show that

(5.10) EXi(W) = 1 +O(δ
1

10m )

and

(5.11) E(Xi(W)2) = 1 +O(δ
1

10m ).

We begin with (5.10). Let ẽi be in the essential range of ei. From (4.2) and (5.3) we have

#ẽi 6 r 6 A− 2r(m− 1)

and thus by (5.7) and (5.1), we have

EXi(W) =
∑
W

P(W = W )
∑
ẽi⊂W

P(ei = ẽi)

Pm−1(ẽi)

=
∑
ẽi

P(ei = ẽi)
P(ẽi ⊂W)

Pm−1(ẽi)
= 1 +O6(δ

1
10m ).

Now we show (5.11). Let ẽi and êi be in the essential range of ei. From (4.2), (5.3) we have

#ẽi ∪ êi 6 A− 2r(m− 1)

and from (4.11) we have
Pm−1(ẽi ∪ êi)

Pm−1(ẽi)Pm−1(êi)
=

1

Pm−1(ẽi ∩ êi)



20 KEVIN FORD, BEN GREEN, SERGEI KONYAGIN, JAMES MAYNARD, AND TERENCE TAO

and thus by (5.7) and (5.1) we have

E(Xi(W)2) =
∑
ẽi,êi

P(ei = ẽi)P(ei = êi)
P(ẽi ∪ êi ⊂W)

Pm−1(ẽi)Pm−1(êi)

=
(

1 +O6(δ
1

10m )
)∑
ẽi,êi

P(ei = ẽi)P(ei = êi)

Pm−1(ẽi ∩ êi)
.

The denominator Pm−1(ẽi ∩ êi) is 1 if ẽi ∩ êi = ∅, and is at least κr otherwise, thanks to (5.5). Thus, by
(4.2), (4.3) and a union bound,∑

ẽi,êi

P(ei = ẽi)P(ei = êi)

Pm−1(ẽi ∩ êi)
= 1 +O

κ−r∑
ẽi

P(ei = ẽi)
∑
v∈ẽi

P(v ∈ ei)

 = 1 +O(rδκ−r),

and the claim (5.11) follows from (5.6). �

It remains to verify (5.2). Let e be a fixed subset of V with

(5.12) #e 6 A− 2rm.

For any W in the essential range of W, let Y (W ) denote the quantity

Y (W ) := P

(
e ⊂W\

⋃
i∈Im

e′i|W = W

)
.

From (4.7), (4.11), (2.1), our task is now to show that

EY (W) =
(

1 +O6(δ1/10
m+1

)
)
Pm−1(e) exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
.

Clearly Y (W) is only non-zero when e ⊂W. From (5.1) we have

(5.13) P(e ⊂W) = (1 +O6(δ1/10
m

))Pm−1(e),

so it will suffice to show that

E(Y (W)|e ⊂W) =
(

1 +O(δ
1

9×10m )
)

exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
.

From (4.8), (5.12) and (4.1), we have

exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
> exp(−AD) > δ1/10

m+2
,

so it suffices to show that

(5.14) E(Y (W)|e ⊂W) =
(

1 +O(δ
1

9×10m )
)

exp

(
−
∑
v∈e

dIm(v)

Pm−1(v)

)
+O(δ

1
8×10m ).

Suppose that W is in the essential range of W with e ⊂ W . As the e′i, i ∈ Im, are jointly conditionally
independent on the event W = W , we may factor Y (W ) as

Y (W ) =
∏
i∈Im

(1− P(e ∩ e′i 6= ∅|W = W )).
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Since e′i = ∅ if Fi(W ) fails, we may write

Y (W ) =
∏
i∈Im

(1− 1Fi(W )P(e ∩ e′i 6= ∅|W = W )).

Now suppose that i ∈ Im and that W is such that Fi(W ) holds. From the union bound we have

P(e ∩ e′i 6= ∅|W = W ) 6
∑
v∈e

P(v ∈ e′i|W = W ).

From (5.9), (5.8), and (5.5), we have

P(v ∈ e′i|W = W ) =
∑
ẽi:v∈ẽi

P(e′i = ẽi|W = W )� κ−rP(v ∈ ei),

and hence by (4.3), (5.12)

P(e ∩ e′i 6= ∅|W = W )� Aκ−rδ/(#Im)1/2.

From Taylor’s expansion, we then have

1− 1Fi(W )P(e ∩ e′i 6= ∅|W = W ) = exp
(
−1Fi(W )P(e ∩ e′i 6= ∅|W = W ) +O((Aκ−rδ)2/#Im)

)
.

From (5.6), we have (Aκ−rδ)2 = O(δ
1

9×10m ), and so

Y (W ) = (1 +O(δ
1

9×10m )) exp

(
−1Fi(W )

∑
i∈Im

P(e ∩ e′i 6= ∅|W = W )

)
.

Next, we apply inclusion-exclusion to write

P(e ∩ e′i 6= ∅|W = W ) =
∑
v∈e

P(v ∈ e′i|W = W )−O

 ∑
v,w∈e:v 6=w

P(v, w ∈ e′i|W = W )

 .

The error term is handled by summing (5.9) over all ẽi with v, w ∈ ẽi, and using (5.8) and (5.5). For distinct
v, w ∈ e, we have

P(v, w ∈ e′i|W = W ) =
∑

ẽi:v,w∈ẽi

P(e′i = ẽi|W = W )� κ−r
∑

ẽi:v,w∈ẽi

P(ei = ẽi)� κ−rP(v, w ∈ ei).

Hence by (4.4), (5.12)∑
i∈Im

∑
v,w∈e
v 6=w

P(v, w ∈ e′i|W = W )� κ−rA2 max
v,w∈e
v 6=w

∑
i∈Im

P(v, w ∈ ei)� A2κ−rδ.

From (5.6), we have A2κ−rδ = O(δ
1

9×10m ), and so

Y (W ) = (1 +O(δ
1

9×10m )) exp

(
−1Fi(W )

∑
v∈e

∑
i∈Im

P(v ∈ e′i|W = W )

)
.

Also we trivially have 0 6 Y (W ) 6 1. Thus, to prove (5.14), it suffices to show that∑
v∈e

∑
i∈Im

1Fi(W)P(v ∈ e′i|W) =
∑
v∈e

dIm(v)

Pm−1(v)
+O(δ

1
9×10m )
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with probability 1 − O(δ
1

8×10m ), conditionally on the event that e ⊂W. From (5.12), (5.6), and the union
bound, it thus suffices to show that for each v ∈ e, one has

(5.15)
∑
i∈Im

1Fi(W)P(v ∈ e′i|W) =
dIm(v)

Pm−1(v)
+O(δ

1
8×10m )

with probability 1−O(δ
1

7×10m ), conditionally on the event that e ⊂W.
We have

(5.16) 1Fi(W)P(v ∈ e′i|W) =
1Fi(W)

Xi(W)

∑
ẽi:v∈ẽi

1ẽi⊂W
P(ei = ẽi)

Pm−1(ẽi)

and, by (5.8),

(5.17)
1Fi(W)

Xi(W)
= 1 +O((1− 1Fi(W)) + δ

1
3×10m ).

Upon inserting (5.16) and (5.17) into (5.15), the left side of (5.15) breaks into two pieces, a “main term”
and an “error term”.

Let us first estimate the error∑
i∈Im

O
(

1− 1Fi(W) + δ
1

3×10m

) ∑
ẽi:v∈ẽi

1ẽi⊂W
P(ei = ẽi)

Pm−1(ẽi)
.

By (5.5) and (4.5), we may bound this by

O(κ−r)
∑
i∈Im

(1− 1Fi(W) + δ
1

3×10m ))P(v ∈ ei) = O(κ−r)dIm(v)(1− 1Fi(W) + δ
1

3×10m ).

By Lemma 5.1, the unconditional expectation of this random variable is

O
(
κ−rδ

1
3×10m dIm(v)

)
.

Thus, by (5.13), the conditional expectation of this random variable to the event e ⊂W is

� κ−rδ
1

3×10m
dIm(v)

Pm−1(e)
� κ−Aδ

1
3×10m .

Here we used (4.8), (5.5) and (5.3) to obtain the second bound. By (5.6), this can be bounded by

O(δ
2

7×10m ).

Thus, by Markov’s inequality, this error is O(δ
1

7×10m ) with probability 1 − O(δ
1

7×10m ), conditionally on
e ⊂W. By the triangle inequality, it thus suffices to show that the main term satisfies∑

i∈Im

∑
ẽi:v∈ẽi

1ẽi⊂W
P(ei = ẽi)

Pm−1(ẽi)
=

dIm(v)

Pm−1(v)
+O(δ

1
8×10m )

with probability 1−O(δ
1

7×10m ), conditionally on e ⊂W.
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By a conditional version of Lemma 2.1 (replacing EX and EX2 with E(X|E) and E(X2|E), respec-
tively), together with (4.8), (4.1), it suffices to show that

(5.18) E

∑
i∈Im

∑
ẽi:v∈ẽi

1ẽi⊂W
P(ei = ẽi)

Pm−1(ẽi)

∣∣∣e ⊂W

 =
dIm(v)

Pm−1(v)
+O(δ

1
2×10m )

and

(5.19) E

( ∑
i,i′∈Im

∑
ẽi:v∈ẽi
êi:v∈êi

1ẽi⊂W
P(ei = ẽi)

Pm−1(ẽi)
1êi⊂W

P(ei′ = êi)

Pm−1(êi)

∣∣∣e ⊂W

)
=

(
dIm(v)

Pm−1(v)

)2

+O(δ
1

2×10m ).

We begin with (5.18). For any given i ∈ Im, we have from (5.1), (5.3) that

P(e ∪ ẽi ⊂W)

P(e ⊂W)
= (1 +O(δ1/10

m
))
Pm−1(e ∪ ẽi)
Pm−1(e)

.

By (4.11), we can rewrite

Pm−1(e ∪ ẽi)
Pm−1(ẽi)Pm−1(e)

=
1

Pm−1(v)Pm−1(ẽi ∩ e\{v})
.

By (2.1), we may thus write the left-hand side of (5.18) as∑
i∈Im

∑
ẽi:v∈ẽi

P(ei = ẽi)

Pm−1(ẽi)

P(e ∪ ẽi ⊂W)

P(e ⊂W)
=

1 +O(δ1/10
m

)

Pm−1(v)

∑
i∈Im

∑
ẽi:v∈ẽi

P(ei = ẽi)

Pm−1(ẽi ∩ e\{v})
.

As in the proof of Lemma 5.1, Pm−1(ẽi ∩ e\{v}) equals 1 unless ẽi and e\{v} have a common element, in
which case it is > κr by (5.5). Thus

1

Pm−1(ẽi ∩ e\{v})
= 1 +O

(
κ−r

∑
w∈e\{v}

1w∈ẽi

)
.

From (4.5) one has ∑
i∈Im

∑
ẽi:v∈ẽi

P(v ∈ ei) = dIm(v),

and from (4.4) one has ∑
i∈Im

P(v, w ∈ ei) 6 δ

for all w 6= v. Therefore, by (5.12), the left side of (5.18) is

1 +O(δ1/10
m

)

Pm−1(v)

(
dIm(v) +O(Aδκ−r)

)
.

The claim now follows from (5.6) and (4.8).
Now we prove (5.19). For any i, i′ ∈ Im, we have from (5.1), (5.3) that

P(ẽi ∪ êi ∪ e ⊂W)

P(e ⊂W)
= (1 +O(δ1/10

m
))
Pm−1(ẽi ∪ êi ∪ e)

Pm−1(e)
,
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so we are reduced (after applying (4.8), (5.6)) to showing that∑
i,i′∈Im

∑
ẽi:v∈ẽi
êi:v∈êi

P(ei = ẽi)P(ei′ = êi)
Pm−1(v)2Pm−1(ẽi ∪ êi ∪ e)
Pm−1(ẽi)Pm−1(êi)Pm−1(e)

= dIm(v)2 +O(δ
1

10m ).

The quantity Pm−1(v)2Pm−1(ẽi∪êi∪e)
Pm−1(ẽi)Pm−1(êi)Pm−1(e)

is equal to 1 when the intersection of any two of ẽi, êi and e is {v},
and is O(κ−2r) otherwise thanks to (5.5). Hence we may estimate this ratio by

1 +O

κ−2r ∑
w∈e\{v}

(1w∈ẽi + 1w∈êi)

+O

κ−2r ∑
w∈ẽi\{v}

1w∈êi

 .

From (4.5) one has ∑
i,i′∈Im

P(v ∈ ei)P(v ∈ ei′) = dIm(v)2,

so from (5.6) it suffices to show that∑
i,i′∈Im

∑
w∈e\{v}

P (v ∈ ei, v ∈ ei′ , w ∈ ei) 6 DAδ,(5.20)

∑
i,i′∈Im

∑
w∈e\{v}

P (v ∈ ei, v ∈ ei′ , w ∈ ei′) 6 DAδ,(5.21)

∑
i,i′∈Im

E
[
1v∈ei,v∈ei′ (#(ei ∩ ei′)− 1)

]
6 Drδ.(5.22)

For (5.20), we use (4.5) to write the left-hand side as

dIm(v)
∑

w∈e\{v}

∑
i∈Im

P(v, w ∈ ei),

which by (4.8), (5.12), (4.4) is bounded by DAδ, as desired. Similarly for (5.21). For (5.22), we take
expectations in ei′ first using (2.1), (4.4) to upper bound the left-hand side of (5.22) by

∑
i∈Im

E

1v∈ei
∑

w∈ei\{v}

δ

 ,

which by (4.2), (4.5), (4.8) is bounded by Drδ, as desired. This proves (5.19), which implies (5.15) and in
turn (5.14). The proof of Theorem 3 is now complete.

6. USING A SIEVE WEIGHT

If r is a natural number, an admissible r-tuple is a tuple (h1, . . . , hr) of distinct integers h1, . . . , hr that
do not cover all residue classes modulo p, for any prime p. For instance, the tuple (pπ(r)+1, . . . , pπ(r)+r)
consisting of the first r primes larger than r is an admissible r-tuple.

We will establish Theorem 4 by a probabilistic argument involving a certain weight function, the details
of which may be found in the following.
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Theorem 5 (Existence of good sieve weight). Let x be a sufficiently large real number and let y be defined
by (3.1). Let P,Q be defined by (3.4), (3.5). Let r be a positive integer with

(6.1) r0 6 r 6 log1/5 x

for some sufficiently large absolute constant r0, and let (h1, . . . , hr) be an admissible r-tuple contained in
[2r2]. Then one can find a positive quantity

(6.2) τ > x−o(1)

and a positive quantity u = u(r) depending only on r with

(6.3) u � log r

and a non-negative function w : P×Z→ R+ supported on P×(Z∩ [−y, y]) with the following properties:
• Uniformly for every p ∈ P , one has

(6.4)
∑
n∈Z

w(p, n) =

(
1 +O

(
1

log102 x

))
τ

y

logr x
.

• Uniformly for every q ∈ Q and i = 1, . . . , r, one has

(6.5)
∑
p∈P

w(p, q − hip) =

(
1 +O

(
1

log102 x

))
τ
u

r

x

2 logr x
.

• Uniformly for every h = O(y/x) that is not equal to any of the hi, one has

(6.6)
∑
q∈Q

∑
p∈P

w(p, q − hp) = O

(
1

log102 x
τ

x

logr x

y

log x

)
.

• Uniformly for all p ∈ P and n ∈ Z,

(6.7) w(p, n) = O(x1/3+o(1)).

Remark 2. One should think of w(p, n) as being a smoothed out indicator function for the event that n +
h1p, . . . , n+ hrp are all almost primes in [y]. As essentially discovered in [33], by choosing the smoothing
correctly, one can ensure that approximately log r of the elements of this tuple n + h1p, . . . , n + hrp are
genuinely prime rather than almost prime, when weighted by w(p, n); this explains the presence of the
bounds (6.3). The estimate (6.6) is not, strictly speaking, needed for our current argument; however, it
is easily obtained by our methods, and will be of use in a followup work [15] to this paper in which the
analogue of Theorem 1 for chains of large gaps is established.

The proof of this theorem will rely on the estimates for multidimensional prime-detecting sieves estab-
lished by the fourth author in [34], and will be the focus of subsequent sections. In this section, we show
how Theorem 5 implies Theorem 4.

Let x, c, y, z,S,P,Q be as in Theorem 4. We set r to be the maximum value permitted by Theorem 5,
namely

(6.8) r := blog1/5 xc
and let (h1, . . . , hr) be the admissible r-tuple consisting of the first r primes larger than r, thus hi = pπ(r)+i
for i = 1, . . . , r. From the prime number theorem we have hi = O(r log r) for i = 1, . . . , r, and so
we have hi ∈ [2r2] for i = 1, . . . , r if x is large enough (there are many other choices possible, e.g.
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(h1, . . . , hr) = (12, 32, . . . , (2r − 1)2)). We now invoke Theorem 5 to obtain quantities τ, u and a weight
w : P × Z→ R+ with the stated properties.

For each p ∈ P , let ñp denote the random integer with probability density

P(ñp = n) :=
w(p, n)∑

n′∈Zw(p, n′)

for all n ∈ Z (we will not need to impose any independence conditions on the ñp). From (6.4), (6.5) we
have

(6.9)
∑
p∈P

P(q = ñp + hip) =

(
1 +O

(
1

log102 x

))
u

r

x

2y
(q ∈ Q, 1 6 i 6 r).

Also, from (6.4), (6.7), (6.2) and (3.1), one has

(6.10) P(ñp = n)� x−1/2−1/6+o(1)

for all p ∈ P and n ∈ Z.
We choose the random vector ~a := (as mod s)s∈S by selecting each as mod s uniformly at random from

Z/sZ, independently in s and independently of the ñp. The resulting sifted set S(~a) is a random periodic
subset of Z with density

σ :=
∏
s∈S

(
1− 1

s

)
.

From the prime number theorem (with sufficiently strong error term), (3.2) and (3.3),

σ =

(
1 +O

(
1

log102 x

))
log(log20 x)

log z
=

(
1 +O

(
1

log102 x

))
80 log2 x

log x log3 x/ log2 x
,

so in particular we see from (3.1) that

(6.11) σy =

(
1 +O

(
1

log102 x

))
80cx log2 x.

We also see from (6.8) that

(6.12) σr = xo(1).

We have a useful correlation bound:

Lemma 6.1. Let t 6 log x be a natural number, and let n1, . . . , nt be distinct integers with |ni| 6 x2 for
each i. Then one has

P(n1, . . . , nt ∈ S(~a)) =

(
1 +O

(
1

log16 x

))
σt.

Proof. For each s ∈ S, the integers n1, . . . , nt occupy t distinct residue classes modulo s, unless s divides
one of ni − nj for 1 6 i < j 6 t. Since s > log20 x and |ni − nj | 6 2x2, the latter possibility occurs
at most O(t2 log x) = O(log3 x) times. Thus the probability that as mod s avoids all of the n1, . . . , nt is
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equal to 1− t
s except for O(log3 x) values of s, where it is instead (1 +O( 1

log19 x
))(1− t

s). Thus,

P(n1, . . . , nt ∈ S(~a)) =

(
1 +O

(
1

log19 x

))O(log3 x)∏
s∈S

(
1−

(
t

s

))

=

(
1 +O

(
1

log16 x

))
σt
∏
s∈S

(
1 +O

(
t2

s2

))
=

(
1 +O

(
1

log16 x

))
σt. �

Among other things, this gives the claim (4.28):

Corollary 5. With probability 1− o(1), we have

(6.13) #(Q∩ S(~a)) ∼ σ y

log x
∼ 80c

x

log x
log2 x.

Proof. From Lemma 6.1, we have

E#(Q∩ S(~a)) =

(
1 +O

(
1

log16 x

))
σ#Q

and

E#
(
(Q∩ S(~a))

)2
=

(
1 +O

(
1

log16 x

))
(σ#Q+ σ2(#Q)(#Q− 1)),

and so by the prime number theorem we see that the random variable #Q∩S(~a) has mean (1+o( 1
log2 x

))σ y
log x

and variance O
(

1
log16 x

(σ y
log x)2

)
. The claim then follows from Lemma 2.1 (with plenty of room to

spare). �

For each p ∈ P , we consider the quantity

(6.14) Xp(~a) := P(ñp + hip ∈ S(~a) for all i = 1, . . . , r),

and let P(~a) denote the set of all the primes p ∈ P such that

(6.15) Xp(~a) =

(
1 +O6

(
1

log3 x

))
σr.

In light of Lemma 6.1, we expect most primes in P to lie in P(~a), and this will be confirmed below
(Lemma 6.3). We now define the random variables np as follows. Suppose we are in the event ~a = ~a for
some ~a in the range of ~a. If p ∈ P\P(~a), we set np = 0. Otherwise, if p ∈ P(~a), we define np to be the
random integer with conditional probability distribution

(6.16) P(np = n|~a = ~a) :=
Zp(~a;n)

Xp(~a)
, Zp(~a;n) = 1n+hjp∈S(~a) for j=1,...,rP(ñp = n),

with the np (p ∈ P(~a)) jointly independent, conditionally on the event ~a = ~a. From (6.14) we see that these
random variables are well defined.

The first claim (4.27) of Theorem 4 now follows immediately from (6.10), (6.16) and (6.15), and so we
are left to establish the final two assertions.
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Lemma 6.2. With probability 1− o(1), we have

(6.17) σ−r
r∑
i=1

∑
p∈P(~a)

Zp(~a; q − hip) =

(
1 +O

(
1

log32 x

))
u

σ

x

2y

for all but at most x
2 log x log2 x

of the primes q ∈ Q ∩ S(~a).

Let ~a be good (recall the definition from Theorem 4) and q ∈ Q∩S(~a). Substituting definition (6.16) into
the left hand side of of (6.17), using (6.15), and observing that q = np + hip is only possible if p ∈ P(~a)
(since np = 0 for p ∈ P\P(~a)), we find that

σ−r
r∑
i=1

∑
p∈P(~a)

Zp(~a; q − hip) = σ−r
r∑
i=1

∑
p∈P(~a)

Xp(~a)P(np = q − hip|~a = ~a)

=

(
1 +O

(
1

log3 x

)) r∑
i=1

∑
p∈P(~a)

P(np = q − hip|~a = ~a)

=

(
1 +O

(
1

log3 x

))∑
p∈P

P(q ∈ ep(~a)|~a = ~a),

where ep(~a) = {np + hip : 1 6 i 6 r} ∩Q∩ S(~a) is as defined in Theorem 4. Relation (4.29) (that is, ~a is
good with probability 1− o(1)) follows upon noting that by (6.8), (6.3) and (6.11),

C :=
u

σ

x

2y
� 1

c
.

Before proving Lemma 6.2, we first confirm that P\P(~a) is small with high probability.

Lemma 6.3. With probability 1 − O(1/ log3 x), P(~a) contains all but O( 1
log3 x

x
log x) of the primes p ∈ P .

In particular, E#P(~a) = #P(1 +O(1/ log3 x)).

Proof. By linearity of expectation and Markov’s inequality, it suffices to show that for each p ∈ P , we have
p ∈ P(~a) with probability 1−O( 1

log6 x
). By Lemma 2.1, it suffices to show that

(6.18) EXp(~a) = P(ñp + hip ∈ S(~a) for all i = 1, . . . , r) =

(
1 +O

(
1

log12 x

))
σr

and

(6.19) EXp(~a)2 = P(ñ(1)
p + hip, ñ

(2)
p + hip ∈ S(~a) for all i = 1, . . . , r) =

(
1 +O

(
1

log12 x

))
σ2r,

where ñ
(1)
p , ñ

(2)
p are independent copies of ñp that are also independent of ~a.

The claim (6.18) follows from Lemma 6.1 (performing the conditional expectation over ñp first). A
similar application of Lemma 6.1 allows one to write the left-hand side of (6.19) as(

1 +O

(
1

log16 x

))
Eσ#{ñ

(l)
p +hip:i=1,...,r;l=1,2}.

From (6.10) we see that the quantity #{ñ(l)
p + hip : i = 1, . . . , r; l = 1, 2} is equal to 2r with probability

1−O(x−1/2−1/6+o(1)), and is less than 2r otherwise. The claim now follows from (6.12). �
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Proof of Lemma 6.2. We first show that replacing P(~a) with P has negligible effect on the sum, with prob-
ability 1− o(1). Fix i and substitute n = q − hip. By Markov’s inequality, it suffices to show that

(6.20) E
∑
n

σ−r
∑

p∈P\P(~a)

Zp(~a;n) = o

(
u

σ

x

2y

1

r

1

log32 x

x

log x log2 x

)
.

By Lemma 6.1, we have

E
∑
n

σ−r
∑
p∈P

Zp(~a;n) = σ−r
∑
p∈P

∑
n

P(ñp = n)P(n+ hjp ∈ S(~a) for j = 1, . . . , r)

=

(
1 +O

(
1

log16 x

))
#P.

Next, by (6.15) and Lemma 6.3 we have

E
∑
n

σ−r
∑

p∈P(~a)

Zp(~a;n) = σ−r
∑
~a

P(~a = ~a)
∑

p∈P(~a)

Xp(~a)

=

(
1 +O

(
1

log3 x

))
E #P(~a) =

(
1 +O

(
1

log3 x

))
#P;

subtracting, we conclude that the left-hand side of (6.20) isO(#P/ log3 x) = O(x/ log4 x). The claim then
follows from (3.1) and (6.1).

By (6.20), it suffices to show that with probability 1 − o(1), for all but at most x
2 log x log2 x

primes q ∈
Q ∩ S(~a), one has

(6.21)
r∑
i=1

∑
p∈P

Zp(~a; q − hip) =

(
1 +O6

(
1

log32 x

))
σr−1u

x

2y
.

Call a prime q ∈ Q bad if q ∈ Q ∩ S(~a) but (6.21) fails. Using Lemma 6.1 and (6.9), we have

E
[ ∑
q∈Q∩S(~a)

r∑
i=1

∑
p∈P

Zp(~a; q − hip)
]

=
∑
q,i,p

P(q + (hj − hi)p ∈ S(~a) for all j = 1, . . . , r)P(ñp = q − hip)

=

(
1 +O

(
1

log102 x

))
σy

log x
σr−1u

x

2y

and

E
[ ∑
q∈Q∩S(~a)

( r∑
i=1

∑
p∈P

Zp(~a; q − hip)
)2]

=
∑
p1,p2,q
i1,i2

P(q + (hj − hi`)p` ∈ S(~a) for j = 1, . . . , r; ` = 1, 2)

× P(ñ(1)
p1 = q − hi1p1)P(ñ(2)

p2 = q − hi2p2)

=

(
1 +O

(
1

log102 x

))
σy

log x

(
σr−1u

x

2y

)2

,

where (ñ
(1)
p1 )p1∈P and (ñ

(2)
p2 )p2∈P are independent copies of (ñp)p∈P over ~a. In the last step we used the

fact that the terms with p1 = p2 contribute negligibly.
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By Lemma 2.1 it follows that the number of bad q is � σy
log x

1
log32 x

� x
log x log22 x

with probability 1 −
O(1/ log2 x). This concludes the proof. �

It remains to establish Theorem 5. This is the objective of the remaining sections of the paper.

7. MULTIDIMENSIONAL SIEVE ESTIMATES

We now recall a technical multidimensional sieve estimate from [34] (a minor variant of [34, Proposition
6.1]). In this section we will follow the notation from [34], which is a little different from that in the rest of
this paper, with the exception that we will take the set denoted P in that paper to be equal to the set P of
all primes from the outset.

A linear form will be a function L : Z → Z of the form L(n) = l1n + l2 with integer coefficients l1, l2
and l1 6= 0. Let A be a set of integers. Given a linear form L(n) = l1n+ l2, we define the sets

A(x) := {n ∈ A : x 6 n 6 2x},
A(x; q, a) := {n ∈ A(x) : n ≡ a (mod q)},
PL,A(x) := L(A(x)) ∩P,

PL,A(x; q, a) := L(A(x; q, a)) ∩P,

for any x > 0 and congruence class a mod q, and define the quantity

ϕL(q) := ϕ(|l1|q)/ϕ(|l1|),

where ϕ is the Euler totient function. We recall the standard bounds

(7.1) X > ϕ(X)� X

log2X

since ϕ(X)/X is smallest when X is composed only of primes � logX . Thanks to this bound, most
factors of the form X

ϕ(X) appearing below become relatively harmless, and we recommend that they may be
ignored for a first reading.

A finite set L = {L1, . . . , Lk} of linear forms is said to be admissible if
∏k
i=1 Li(n) has no fixed prime

divisor; that is, for every prime p there exists an integer np such that
∏k
i=1 Li(np) is not divisible by p.

Definition 2. [34] Let x be a large quantity, let A be a set of integers, L = {L1, . . . , Lk} a finite set of
linear forms, and B a natural number. We allow A,L, k, B to vary with x. Let 0 < θ < 1 be a quantity
independent of x. Let L′ be a subset of L. We say that the tuple (A,L,P, B, x, θ) obeys Hypothesis 1 at
L′ if we have the following three estimates:

(1) (A(x) is well-distributed in arithmetic progressions) We have∑
q6xθ

max
a

∣∣∣∣#A(x; q, a)− #A(x)

q

∣∣∣∣� #A(x)

log100k
2
x
.

(2) (PL,A(x) is well-distributed in arithmetic progressions) For any L ∈ L′, we have∑
q6xθ; (q,B)=1

max
a:(L(a),q)=1

∣∣∣∣#PL,A(x; q, a)−
#PL,A(x)

ϕL(q)

∣∣∣∣� #PL,A(x)

log100k
2
x
.
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(3) (A(x) not too concentrated) For any q < xθ and a ∈ Z we have

#A(x; q, a)� #A(x)

q
.

In [34] this definition was only given in the case L′ = L, but we will need the (mild) generalization to
the case in which L′ is a (possibly empty) subset of L.

As is common in analytic number theory, we will have to address the possibility of an exceptional Siegel
zero. As we want to keep all our estimates effective, we will not rely on Siegel’s theorem or its consequences
(such as the Bombieri-Vinogradov theorem). Instead, we will rely on the Landau-Page theorem, which we
now recall. Throughout, χ denotes a Dirichlet character.

Lemma 7.1 (Landau-Page theorem). Let Q > 100. Suppose that L(s, χ) = 0 for some primitive character
χ of modulus at most Q, and some s = σ + it. Then either

1− σ � 1

log(Q(1 + |t|))
,

or else t = 0 and χ is a quadratic character χQ, which is unique. Furthermore, if χQ exists, then its
conductor qQ is square-free apart from a factor of at most 8, and obeys the lower bound

qQ �
log2Q

log42Q
.

Proof. See e.g. [9, Chapter 14]. The final estimate follows from the bound 1−β � q−1/2 log−2 q for a real
zero β of L(s, χ) with χ of modulus q, which can also be found in [9, Chapter 14]. �

We can then eliminate the exceptional character by deleting at most one prime factor of qQ - an idea used
previously by Hildebrand and Maier [27].

Corollary 6. Let Q > 100. Then there exists a quantity BQ which is either equal to 1 or is a prime of size

BQ � log2Q

with the property that

1− σ � 1

log(Q(1 + |t|))
whenever L(σ + it, χ) = 0 and χ is a character of modulus at most Q and coprime to BQ.

Proof. If the exceptional character χQ from Lemma 7.1 does not exist, then take BQ := 1; otherwise we
take BQ to be the largest prime factor of qQ. As qQ is square-free apart from a factor of at most 8, we have
log qQ � BQ by the prime number theorem, and the claim follows. �

We will only need the above definition in the following special case:

Lemma 7.2. Let x be a large quantity. Then there exists a natural number B 6 x, which is either 1 or
a prime, such that the following holds. Let A := Z, let θ := 1/3, and let L = {L1, . . . , Lk} be a finite
set of linear forms Li(n) = ain + bi (which may depend on x) with k 6 log1/5 x, 1 6 |ai| 6 log x, and
|bi| 6 x log2 x. Let x 6 y 6 x log2 x, and let L′ be a subset of L such that Li is non-negative on [y, 2y] and
ai is coprime to B for all Li ∈ L′. Then (A,L,P, B, y, θ) obeys Hypothesis 1 at L′ with absolute implied
constants (i.e. the bounds in Hypothesis 1 are uniform over all such choices of L and y).
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Proof. Parts (1) and (3) of Hypothesis 1 are easy; the only difficult verification is (2). We apply Corollary 6
with Q := exp(c1

√
log x) for some small absolute constant c1 to obtain a quantity B := BQ with the stated

properties. By the Landau-Page theorem (see [9, Chapter 20]), we have that if c1 is sufficiently small then
we have the effective bound

(7.2) φ(q)−1
∑∗

χ

|ψ(z, χ)| � x exp(−3c
√

log x)

for all 1 < q < exp(2c
√

log x) with (q,B) = 1 and all z 6 x log4 x. Here the summation is over all prim-
itive χ mod q and ψ(z, χ) =

∑
n6z χ(n)Λ(n). Following a standard proof of the Bombieri-Vinogradov

Theorem (see [9, Chapter 28], for example), we have (for a suitable constant c > 0)
(7.3)∑
q<x1/2−ε

(q,B)=1

sup
(a,q)=1

z6x log4 x

∣∣∣π(z; q, a)− π(z)

φ(q)

∣∣∣� x exp(−c
√

log x) + log x
∑

q<exp(2c
√
log x)

(q,B)=1

∑∗

χ

sup
z6x log4 x

|ψ(z, χ)|
φ(q)

.

Combining these two statements and using the triangle inequality gives the bound required for (2). �

We now recall the construction of sieve weights from [34, Section 7]. On first reading we recommend
the reader not pay too much attention to the details; the key point is the existence of a weight w(n) which
will establish Theorem 5. The reason it is necessary to know the construction is the technical issue that
the weights w(n) depend on a given admissible set of linear forms, and we require that the final estimates
obtained are essentially uniform over similar admissible sets.

Let W :=
∏
p62k2; p-B p. For each prime p not dividing B, let rp,1(L) < · · · < rp,ωL(p)(L) be the

elements n of [p] for which p|
∏k
i=1 Li(n). If p is also coprime to W , then for each 1 6 a 6 ωL(p), let

jp,a = jp,a(L) denote the least element of [k] such that p|Ljp,a(rp,a(L)).
Let Dk(L) denote the set

Dk(L) := {(d1, . . . , dk) ∈ Nk : µ2(d1 . . . dk) = 1; (d1 . . . dk,WB) = 1;

(dj , p) = 1 whenever p - BW and j 6= jp,1, . . . , jp,ωL(p)}.
Define the singular series

S(L) :=
∏
p-B

(
1− ωL(p)

p

)(
1− 1

p

)−k
,

and

SWB(L) :=
∏
p-WB

(
1− ωL(p)

p

)(
1− 1

p

)−k
,

the function
ϕωL(d) :=

∏
p|d

(p− ωL(p)),

and let R be a quantity of size
xθ/10 6 R 6 xθ/3.

Let F : Rk → R be a smooth function supported on the simplex

Rk = {(t1, . . . , tk) ∈ Rk+ : t1 + · · ·+ tk 6 1}.
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For any (r1, . . . , rk) ∈ Dk(L) define

y(r1,...,rk)(L) :=
1Dk(L)(r1, . . . , rk)W

kBk

ϕ(WB)k
SWB(L)F

(
log r1
logR

, . . . ,
log rk
logR

)
.

For any (d1, . . . , dk) ∈ Dk(L), define

λ(d1,...,dk)(L) := µ(d1 . . . dk)d1 . . . dk
∑

di|ri for i=1,...,k

y(r1,...,rk)(L)

ϕωL(r1 . . . rk)
,

and then define the function w = wk,L,B,R : Z→ R+ by

(7.4) w(n) :=

 ∑
d1,...,dk:di|Li(n) for all i

λ(d1,...,dk)(L)

2

.

We note that the restriction of the support of F toRk means that λ(d1,...,dk)(L) and y(r1,...,rk) are supported
on the set

Sk(L) = Dk(L) ∩ {(d1, . . . , dk) :

k∏
i=1

di 6 R}.

We then have the following result, a slightly modified form of Proposition 6.1 from [34]:

Theorem 6. Fix θ, α > 0. Then there exists a constant C depending only on θ, α such that the following
holds. Suppose that (A,L,P, B, x, θ) obeys Hypothesis 1 at some subset L′ of L. Write k := #L, and
suppose that x > C, B 6 xα, and C 6 k 6 log1/5 x. Moreover, assume that the coefficients ai, bi of the
linear forms Li(n) = ain + bi in L obey the size bound |ai|, |bi| 6 xα for all i = 1, . . . , k. Then there
exists a smooth function F : Rk → R depending only on k and supported on the simplexRk, and quantities
Ik, Jk depending only on k with

Ik � (2k log k)−k

and

(7.5) Jk �
log k

k
Ik

such that, for w(n) given in terms of F as above, the following assertions hold uniformly for xθ/10 6 R 6
xθ/3.

• We have

(7.6)
∑

n∈A(x)

w(n) =

(
1 +O

(
1

log1/10 x

))
Bk

ϕ(B)k
S(L)#A(x)(logR)kIk.

• For any linear form L(n) = aLn + bL in L′ with aL coprime to B and L(n) > R on [x, 2x], we
have∑

n∈A(x)

1P(L(n))w(n) =

(
1 +O

(
1

log1/10 x

))
φ(|aL|)
|aL|

Bk−1

ϕ(B)k−1
S(L)#PL,A(x)(logR)k+1Jk

+O

(
Bk

ϕ(B)k
S(L)#A(x)(logR)k−1Ik

)
.

(7.7)
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• Let L(n) = a0n+ b0 be a linear form such that the discriminant

∆L := |a0|
k∏
j=1

|a0bj − ajb0|

is non-zero (in particular L is not in L). Then

(7.8)
∑

n∈A(x)

1P∩[xθ/10,+∞)(L(n))w(n)� ∆L

ϕ(∆L)

Bk

ϕ(B)k
S(L)#A(x)(logR)k−1Ik.

• We have the crude upper bound

(7.9) w(n)� x2θ/3+o(1)

for all n ∈ Z.
Here all implied constants depend only on θ, α and the implied constants in the bounds of Hypothesis 1.

Proof. The first estimate (7.6) is given by [34, Proposition 9.1], (7.7) follows from [34, Proposition 9.2] in
the case (aL, B) = 1, (7.8) is given by [34, Proposition 9.4] (taking ξ := θ/10 and D := 1), and the final
statement (7.9) is given by part (iii) of [34, Lemma 8.5]. The bounds for Jk and Ik are given by [34, Lemma
8.6]. �

We remark that the estimate (7.8) is only needed here to establish the estimate (6.6) which is not, strictly
speaking, necessary for the results of this paper, but will be useful in a subsequent work [15] based on this
paper.

8. VERIFICATION OF SIEVE ESTIMATES

We can now prove Theorem 5. Let x, y, r, h1, . . . , hr be as in that theorem.
We set

A := Z,
α := 2,

θ := 1/3,

k := r,

R := (x/4)θ/3,

and let B = xo(1) be the quantity from Lemma 7.2.
We define the function w : P × Z→ R+ by setting

w(p, n) := 1[−y,y](n)wk,Lp,B,R(n)

for p ∈ P and n ∈ Z, where Lp is the (ordered) collection of linear forms n 7→ n + hip for i = 1, . . . , r,
and wk,Lp,B,R was defined in (7.4). Note that the admissibility of the r-tuple (h1, . . . , hr) implies the
admissibility of the linear forms n 7→ n+ hip.

A key point is that many of the important components of wk,Lp,B,R are essentially uniform in p. Indeed,
for any prime s, the polynomial

∏k
i=1(n + hip) is divisible by s only at the residue classes −hip mod s.

From this we see that
ωLp(s) = #{hi (mod s)} whenever s 6= p.
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In particular, ωLp(s) is independent of p as long as s is distinct from p, so

S(Lp) =

(
1 +O

(
k

x

))
S,(8.1)

SBW (Lp) =

(
1 +O

(
k

x

))
SBW ,

for some S, SBW independent of p, with the error terms uniform in p. Moreover, if s -WB then s > 2k2,
so all the hi are distinct mods (since the hi are less than 2k2). Therefore, if s - pWB we have ωLp(s) = k
and

{js,1(Lp), . . . , js,ω(s)(Lp)} = {1, . . . , k}.
Since all p ∈ P are at least x/2 > R, we have s 6= p whenever s 6 R. From this we see that Dk(Lp) ∩
{(d1, . . . , dk) :

∏k
i=1 di 6 R} is independent of p, and so we have

λ(d1,...,dk)(Lp) =
S(Lp)
S

λ(d1,...,dk) =

(
1 +O

(
k

x

))
λ(d1,...,dk),

for some λ(d1,...,dk) independent of p, and where the error term is independent of d1, . . . , dk.
It is clear that w is non-negative and supported on P × [−y, y], and from (7.9) we have (6.7). We set

(8.2) τ := 2
Bk

ϕ(B)k
S(logR)k(log x)kIk

and

(8.3) u :=
ϕ(B)

B

logR

log x

kJk
2Ik

.

Since B is either 1 or prime, we have
ϕ(B)

B
� 1,

and from the definition of R we also have

(8.4)
logR

log x
� 1.

From (7.5) we thus obtain (6.3). From [34, Lemma 8.1(i)] we have

S > x−o(1),

and from [34, Lemma 8.6] we have
Ik = xo(1),

and so we have the lower bound (6.2). (In fact, we also have a matching upper bound τ 6 xo(1), but we will
not need this.)

It remains to verify the estimates (6.4), (6.5) and (6.6). We begin with (6.4). Let p be an element of P .
We shift the n variable by 3byc and rewrite∑

n∈Z
w(p, n) =

∑
n∈A(2byc)

wk,Lp−3byc,B,R(n)
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where Lp − 3byc denotes the set of linear forms n 7→ n + hip − 3byc for i = 1, . . . , k. This set of linear
forms remains admissible, and

S(Lp − 3byc) = S(Lp) =

(
1 +O

(
k

x

))
S.

The claim (6.4) now follows from (8.2) and the first conclusion (7.6) of Theorem 6 (with x replaced by 2byc,
L′ = ∅, and L = Lp − 3byc), using Lemma 7.2 to obtain Hypothesis 1.

Now we prove (6.5). Fix q ∈ Q and i ∈ {1, . . . , k}. We introduce the set L̃q,i of linear forms
L̃q,i,1, . . . , L̃q,i,k, where

L̃q,i,i(n) := n

and

L̃q,i,j(n) := q + (hj − hi)n (1 6 j 6 k, j 6= i)

We claim that this set of linear forms is admissible. Indeed, for any prime s 6= q, the solutions of

n
∏
j 6=i

(q + (hj − hi)n) ≡ 0 (mod s)

are n ≡ 0 and n ≡ −q(hj − hi)−1 (mod s) for hj 6≡ hi (mod s), the number of which is equal to #{hj
(mod s)}. Thus,

S(L̃q,i) =

(
1 +O

(
k

x

))
S,

SBW (L̃q,i) =

(
1 +O

(
k

x

))
SBW ,

as before. Again, for s - WB we have that the hi are distinct (mod s), and so if s < R and s - WB we
have ωL̃q,i(s) = k and

{js,1(L̃q,i), . . . , js,ω(s)(L̃q,i)} = {1, . . . , k}.

In particular, Dk(L̃q,i) ∩ {(d1, . . . , dk) :
∏k
i=1 di 6 R} is independent of q, i and so

λ(d1,...,dk)(L̃q,i) =

(
1 +O

(
k

x

))
λ(d1,...,dk),

where again the O(kx) error is independent of d1, . . . , dk. From this, since q − hip takes values in [−y, y],
we have that

wk,L̃q,i,B,R(p) =

(
1 +O

(
k

x

))
wk,Lp,B,R(q − hip)

whenever p ∈ P (note that the di summation variable implicit on both sides of this equation is necessarily
equal to 1). Thus, recalling that P = P ∩ (x/2, x], we can write the left-hand side of (6.5) as(

1 +O

(
k

x

)) ∑
n∈A(x/2)

1P(L̃q,i,i(n))wk,L̃q,i,B,R(n).
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Applying the second conclusion (7.7) of Theorem 6 (with x replaced by x/2, L′ = {L̃q,i,i}, and L = L̃q,i)
and using Lemma 7.2 to obtain Hypothesis 1, this expression becomes(

1 +O

(
1

log102 x

))
Bk−1

ϕ(B)k−1
S#PL̃q,i,i,A(x/2)(logR)k+1Jk

+O

(
Bk

ϕ(B)k
S#A(x/2)(logR)k−1Ik

)
.

Clearly #A(x/2) = O(x), and from the prime number theorem one has

#PL̃q,i,i,A(x/2) =

(
1 +O

(
1

log102 x

))
x

2 log x
.

for any fixed C > 0. Using (8.2), (8.3), we can thus write the left-hand side of (6.5) as(
1 +O

(
1

log102 x

))
u

k
τ

x

2 logk x
+O

(
1

logR
τ

x

logk x

)
.

From (6.1), (6.3), the second error term may be absorbed into the first, and (6.5) follows.
Finally, we prove (6.6). Fix h = O(y/x) not equal to any of the hi, and fix p ∈ P . By the prime number

theorem, it suffices to show that ∑
q∈Q

w(p, q − hp)� 1

log102 x
τ

y

logk x
.

By construction, the left-hand side is the same as∑
x−hp<n6y−hp

1P(n+ hp)wk,Lp,B,R(n)

which we can shift as∑
n∈A(byc−bxc)

1P∩[xθ/10,+∞)(n− byc+ 2bxc)wk,Lp−byc+2bxc−hp,B,R(n).

Applying (7.8), we may then bound this by

� ∆

ϕ(∆)

Bk

ϕ(B)k
S(Lp − byc+ 2bxc − hp)y(logR)k−1Ik =

∆

ϕ(∆)

Bk

ϕ(B)k
S(Lp)y(logR)k−1Ik

where

∆ :=
k∏
i=1

|hp− hip|.

Applying (8.1), (8.2), we may simplify the above upper bound as

� ∆

ϕ(∆)

y

(logR)(log x)k
τ.

Now h − hi = O(y/x) = O(log x) for each i, hence ∆ 6 (O(x log x))k, and it follows from (7.1), (8.4)
and (6.1) that

∆

ϕ(∆)
� log2 ∆� log2 x�

logR

log102 x
.

This concludes the proof of Theorem 5, and hence Theorem 1.
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