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ABSTRACT. Let pn denote the n-th prime, and for any k > 1 and sufficiently large X , define the quantity

Gk(X) := max
pn+k6X

min(pn+1 − pn, . . . , pn+k − pn+k−1),

which measures the occurrence of chains of k consecutive large gaps of primes. Recently, with Green and

Konyagin, the authors showed that

G1(X) ≫
logX log logX log log log logX

log log logX

for sufficiently large X . In this note, we combine the arguments in that paper with the Maier matrix method to

show that

Gk(X) ≫
1

k2

logX log logX log log log logX

log log logX
for any fixed k and sufficiently large X . The implied constant is effective and independent of k.
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1. INTRODUCTION

Let pn denote the nth prime, and for any k > 1 and sufficiently large X , let

Gk(X) := max
pn+k6X

min(pn+1 − pn, . . . , pn+k − pn+k−1),

denote the maximum gap between k consecutive primes less than X . The quantity G1(X) has been exten-

sively studied. The prime number theorem implies that

G1(X) > (1 + o(1)) logX,
1
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with the bound being successively improved in many papers [1], [4], [25], [9], [22], [24], [23],[15], [20],

[18], [10], [11]. The best lower bound currently is1

G1(X) ≫
logX log2X log4X

log3X
,

for sufficiently large X and an effective implied constant, due to [11]. This result may be compared against

the conjecture G1(X) ≍ log2X of Cramér [7] (see also [13]), or the upper bound G1(X) ≪ X0.525 of

Baker-Harman-Pintz [3], which can be improved to G1(X) ≪ X1/2 logX on the Riemann hypothesis [6].

Now we turn to Gk(X) in the regime where k > 1 is fixed, and X assumed sufficiently large depending

on k. Clearly Gk(X) 6 G1(X), and a naive extension of the probabilistic heuristics of Cramér [7] suggest

that Gk(X) ≍ 1
k log

2X as X → ∞. The first non-trivial bound on Gk(X) for k > 2 was by Erdős [9],

who showed that

G2(X)/ logX → ∞

as X → ∞. Using what is now known as the Maier matrix method, together with the arguments of Rankin

[22] on G1(X), Maier [14] showed that

Gk(X) ≫k
logX log2X log4X

(log3X)2

for any fixed k > 1 and a sequence of X going to infinity. Recently, by modifying Maier’s arguments and

using the more recent work on G1(X) in [10], [18], this was improved by Pintz [19] to show that

Gk(X)/

(

logX log2X log4X

(log3X)2

)

→ ∞

for a sequence of X going to infinity.

Our main result here is as follows.

Theorem 1. Let k > 1 be fixed. Then for sufficiently large X , we have

Gk(X) ≫
1

k2
logX log2X log4X

log3X
.

The implied constant is absolute and effective.

Maier’s original argument required one to avoid Siegel zeroes, which restricted his results to a sequence

of X going to infinity, rather than all sufficiently large X . However, it is possible to modify his argu-

ment to remove the effect of any exceptional zeroes, which allows us to extend the result to all sufficiently

large X and also to make the implied constant effective. The intuitive reason for the 1
k2

factor is that our

method produces, roughly speaking, k primes distributed “randomly” inside an interval of length about
logX log2 X log4 X

log3 X
, and the narrowest gap between k independently chosen numbers in an interval of length

L is typically of length about 1
k2
L.

Our argument is based heavily on our previous paper [11], in particular using the hypergraph covering

lemma from [11, Corollary 3] and the construction of sieve weights from [11, Theorem 5]. The main

difference is in refining the probabilistic analysis in [11] to obtain good upper and lower bounds for certain

sifted sets arising in the arguments in [11], whereas in the former paper only upper bounds were obtained.

1As usual in the subject, log2 x := log log x, log3 x := log log log x, and so on. The conventions for asymptotic notation such

as ≪ and o() will be defined in Section 1.2.
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We remark that in the recent paper [2], the methods from [11] were modified to obtain some information

about the limit points of tuples of k consecutive prime gaps normalized by factors slightly slower than
logX log2 X log4 X

log3 X
; see Theorem 6.4 of that paper for a precise statement.
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1.2. Notational conventions. In most of the paper, x will denote an asymptotic parameter going to infinity,

with many quantities allowed to depend on x. The symbol o(1) will stand for a quantity bounded in mag-

nitude by c(x), where c(x) is a quantity that tends to zero as x → ∞. The same convention applies to the

asymptotic notation X ∼ Y , which means X = (1+ o(1))Y , and X . Y , which means X 6 (1+ o(1))Y .

We use X = O(Y ), X ≪ Y , and Y ≫ X to denote the claim that there is a constant C > 0 such that

|X| 6 CY throughout the domain of the quantity X . We adopt the convention that C is independent of any

parameter unless such dependence is indicated, e.g. by subscript such as ≪k. In all of our estimates here,

the constant C will be effective (we will not rely on ineffective results such as Siegel’s theorem). If we can

take the implied constant C to equal 1, we write f = O6(g) instead. Thus for instance

X = (1 +O6(ε))Y

is synonymous with

(1− ε)Y 6 X 6 (1 + ε)Y.

Finally, we use X ≍ Y synonymously with X ≪ Y ≪ X .

When summing or taking products over the symbol p, it is understood that p is restricted to be prime.

Given a modulus q and an integer n, we use n mod q to denote the congruence class of n in Z/qZ.

Given a set A, we use 1A to denote its indicator function, thus 1A(x) is equal to 1 when x ∈ A and zero

otherwise. Similarly, if E is an event or statement, we use 1E to denote the indicator, equal to 1 when E is

true and 0 otherwise. Thus for instance 1A(x) is synonymous with 1x∈A.

We use #A to denote the cardinality of A, and for any positive real z, we let [z] := {n ∈ N : 1 6 n 6 z}
denote the set of natural numbers up to z.

Our arguments will rely heavily on the probabilistic method. Our random variables will mostly be discrete

(in the sense that they take at most countably many values), although we will occasionally use some contin-

uous random variables (e.g. independent real numbers sampled uniformly from the unit interval [0, 1]). As

such, the usual measure-theoretic caveats such as “absolutely integrable”, “measurable”, or “almost surely”

can be largely ignored by the reader in the discussion below. We will use boldface symbols such as X or a

to denote random variables (and non-boldface symbols such as X or a to denote deterministic counterparts

of these variables). Vector-valued random variables will be denoted in arrowed boldface, e.g. ~a = (ap)p∈P
might denote a random tuple of random variables ap indexed by some index set P .

We write P for probability, and E for expectation. If X takes at most countably many values, we define

the essential range of X to be the set of all X such that P(X = X) is non-zero, thus X almost surely takes
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values in its essential range. We also employ the following conditional expectation notation. If E is an event

of non-zero probability, we write

P(F |E) :=
P(F ∧ E)

P(E)

for any event F , and

E(X|E) :=
E(X1E)

P(E)

for any (absolutely integrable) real-valued random variable X. If Y is another random variable taking at

most countably many values, we define the conditional probability P(F |Y) to be the random variable that

equals P(F |Y = Y ) on the event Y = Y for each Y in the essential range of Y, and similarly define the

conditional expectation E(X|Y) to be the random variable that equals E(X|Y = Y ) on the event Y = Y .

We observe the idempotency property

(1.1) E(E(X|Y)) = EX

whenever X is absolutely integrable and Y takes at most countably many values.

We will rely frequently on the following simple concentration of measure result.

Lemma 1.1 (Chebyshev inequality). Let X,Y be independent random variables taking at most countably

many values. Let Y′ be a conditionally independent copy of Y over X; in other words, for every X in

the essential range of X, the random variables Y,Y′ are independent and identically distributed after

conditioning to the event X = X . Let F (X,Y) be a (absolutely integrable) random variable depending on

X and Y. Suppose that one has the bounds

(1.2) EF (X,Y) = α+O(εα)

and

(1.3) EF (X,Y)F (X,Y′) = α2 +O(εα2)

for some α, ε > 0 with ε = O(1). Then for any θ > 0, one has

(1.4) E(F (X,Y)|X) = α+O6(θ)

with probability 1−O( εα
2

θ2
).

Proof. See [11, Lemma 1.2]. �

2. SIEGEL ZEROES

As is common in analytic number theory, we will have to address the possibility of an exceptional Siegel

zero. As we want to keep all our estimates effective, we will not rely on Siegel’s theorem or its consequences

(such as the Bombieri-Vinogradov theorem). Instead, we will rely on the Landau-Page theorem, which we

now recall. Throughout, χ denotes a Dirichlet character.

Lemma 2.1 (Landau-Page theorem). Let Q > 100. Suppose that L(s, χ) = 0 for some primitive character

χ of modulus at most Q, and some s = σ + it. Then either

1− σ ≫
1

log(Q(1 + |t|))
,
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or else t = 0 and χ is a quadratic character χQ, which is unique for any given Q. Furthermore, if χQ exists,

then its conductor qQ is square-free apart from a factor of at most 4, and obeys the lower bound

qQ ≫
log2Q

log22Q
.

Proof. See e.g. [8, Chapter 14]. The final estimate follows from the classical bound 1− β ≫ q−1/2 log−2 q
for a real zero β of L(s, χ) with χ of modulus q. �

We can then eliminate the exceptional character by deleting at most one prime factor of Q.

Corollary 1. Let Q > 100. Then there exists a quantity BQ which is either equal to 1 or is a prime of size

BQ ≫ log2Q

with the property that

1− σ ≫
1

log(Q(1 + |t|))

whenever L(σ + it, χ) = 0 and χ is a character of modulus at most Q and coprime to BQ.

Proof. If the exceptional character χQ from Lemma 2.1 does not exist, then take BQ := 1; otherwise we

take BQ to be the largest prime factor of qQ. As qQ is square-free apart from a factor of at most 4, we have

log qQ ≪ BQ by the prime number theorem, and the claim follows. �

Next, we recall Gallagher’s prime number theorem:

Lemma 2.2 (Gallagher’s prime number theorem). Let q be a natural number, and suppose that L(s, χ) 6= 0
for all characters χ of modulus q and s with 1 − σ 6 δ

log(Q(1+it)) , and some constant δ > 0. Then there is

a constant D > 1 depending only on δ such that

#{p prime : p 6 x; p ≡ a (mod q)} ≫
x

φ(q) log x

for all (a, q) = 1 and x > qD.

Proof. See [14, Lemma 2]. �

This will combine well with Corollary 1 once we remove the moduli divisible by the (possible) excep-

tional prime BQ.

3. SIEVING AN INTERVAL

We now give the key sieving result that will be used to prove Theorem 1.

Theorem 2 (Sieving an interval). There is an absolute constants c > 0 such that the following holds. Fix

A > 1 and ε > 0, and let x be sufficiently large depending on A and ε. Suppose y satisfies

(3.1) y = c
x log x log3 x

log2 x
,

and suppose that B0 = 1 or that B0 is a prime satisfying

log x ≪ B0 6 x.
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Then one can find a congruence class ap mod p for each prime p 6 x, p 6= B0 such that the sieved set

T := {n ∈ [y]\[x] : n 6≡ ap (mod p) for all p 6 x, p 6= B0}

obeys the following size estimates:

• (Upper Bound) One has

(3.2) #T ≪ A
x

log x
.

• (Lower Bound) One has

(3.3) #T ≫ A
x

log x
.

• (Upper bound in short intervals) For any 0 6 α 6 β 6 1, one has

(3.4) #(T ∩ [αy, βy]) ≪ A(|β − α|+ ε)
x

log x
.

We remark that if one lowers y to be of order
x log x log3 x
(log2 x)

2 rather than
x log x log3 x

log2 x
, then this theorem is

essentially [14, Lemma 6]. It is convenient to sieve [y]\[x] instead of [y] for minor technical reasons (we

will use the fact that the residue class 0 mod p avoids all the primes in [y]\[x] whenever p 6 x). The

arguments in [11] already can give much of this theorem, with the exception of the lower bound (3.3), which

is the main additional technical result of this paper that is needed to extend the results of that paper to longer

chains.

We will prove Theorem 2 in later sections. In this section, we show how this theorem implies Theorem

1. Here we shall use the Maier matrix method, following the arguments in [14] closely (although we will

use probabilistic notation rather than matrix notation). Let k > 1 be a fixed integer, let c0 > 0 be a small

constant, and let A > 1 and 0 < ε < 1/2 be large and small quantities depending on k to be chosen later.

We now recall (a slight variant of) some lemmas from [14].

Lemma 3.1. There exists an absolute constant D > 1 such that, for all sufficiently large x, there exists a

natural number B0 which is either equal to 1 or a prime, with

(3.5) log x ≪ B0 6 x,

and is such that the following holds. If one sets P := P (x)/B0 (where we recall that P (x) is the product of

the primes up to x), then one has

(3.6) #{z ∈ [Z] : Pz + a prime} ≫
log x

logZ
Z

for all Z > PD and a ∈ P coprime to P , and

(3.7) #{z ∈ [Z] : Pz + a, Pz + b both prime} ≪

(

log x

logZ

)2

Z

for all Z > PD and all distinct a, b ∈ [P ] coprime to P .

Proof. We first prove (3.6). We apply Corollary 1 with Q := P (x) to obtain a quantity BP (x) with the stated

properties. We set B0 = 1 if BP (x) > x, and B0 := BP (x) otherwise. Then from Mertens’ theorem we

have (3.5) if B0 6= 1. From Corollary 1 and Lemma 2.2, we then have

#{z ∈ [Z] : Pz + a prime} ≫
PZ

φ(P ) log(PZ)
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for any Z > PD and a suitable absolute constant D > 1. Note that log(PZ) ≪ logZ. From Mertens’

theorem (and (3.5)) we also have

(3.8)
P

φ(P )
≍ log x,

and (3.6) follows.

Finally, the estimate (3.7) follows from standard upper bound sieves (cf. [14, Lemma 3]). �

Now set Z := PD with x and D as in Lemma 3.1, and let z be chosen uniformly at random from [Z]. Let

y, T and ap mod p be as in Theorem 2. By the Chinese remainder theorem, we may find m ∈ [P ] such that

m ≡ −ap (mod p) for all p 6 x with p 6= B0. Thus, zP +m+ T consists precisely of those elements of

zP +m+ [y]\[x] that are coprime to P . In particular, any primes that lie in the interval zP +m+ [y]\[x]
lie in zP +m+ T .

From (3.6) and Mertens’ theorem we have

P(zP +m+ a prime) ≫
log x

x

for all a ∈ T (we allow implied constants to depend on D). Similarly, from (3.7) and Mertens’ theorem we

have

(3.9) P(zP +m+ a, zP (x) +m+ b both prime) ≪

(

log x

x

)2

for any distinct a, b ∈ T . If we let N denote the number of primes in zP + m + T (or equivalently, in

zP +m+ [y]\[x]), we thus have from (3.2) and (3.3) that

EN ≫ A

and

EN
2 ≪ A2.

From this we see that with probability ≫ 1, we have

(3.10) A ≪ N ≪ A,

where all implied constants are independent of ε and A. (This is because the contribution to EN when N is

much larger than A is much smaller than A.)

Next, if 0 6 α 6 β 6 1 and β − α 6 2ε, then from (3.9), (3.4) and the union bound we see that the

probability that there are at least two primes in zP +m+ [αy, βy] is at most

O

((

Aε
x

log x

)2( log x

x

)2)

= O(A2ε2).

Note that one can cover [0, 1] with O(1/ε) intervals of length at most 2ε, with the property that any two

elements a, b of [0, 1] with |a− b| 6 ε may be covered by at least one of these intervals. From this and the

union bound, we see that the probability that zP +m+ [y]\[x] contains two primes separated by at most εy
is bounded by O(1εA

2ε2) = O(A2ε). In particular, if we choose ε to be a sufficiently small multiple of 1
A2 ,

we may find z ∈ [Z] such that the interval zP + m + [y]\[x] contains ≫ A primes and has no prime gap

less than εy. If we choose A to be a sufficiently large multiple of k, we conclude that

Gk(ZP +m+ y) > εy ≫
1

k2
y.
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By Mertens’ theorem, we have ZP +m+ y ≪ exp(O(x)), and Theorem 1 then follows from (3.1).

It remains to prove Theorem 2. This is the objective of the remaining sections of the paper.

4. SIEVING A SET OF PRIMES

Theorem 2 concerns the problem of deterministically sieving an interval [y]\[x] of size (3.1) so that the

sifted set T has certain size properties. We use a variant of the Erdős-Rankin method to reduce this problem

to a problem of probabilistically sieving a set Q of primes in [y]\[x], rather than integers in [y]\[x].
Given a real number x > 1, and a natural number B0, define

(4.1) z := xlog3 x/(4 log2 x),

and introduce the three disjoint sets of primes

S := {s prime : log20 x < s 6 z; s 6= B0},(4.2)

P := {p prime : x/2 < p 6 x; p 6= B0},(4.3)

Q := {q prime : x < q 6 y; q 6= B0}.(4.4)

For residue classes ~a = (as mod s)s∈S and ~n = (np mod p)p∈P , define the sifted sets

S(~a) := {n ∈ Z : n 6≡ as (mod s) for all s ∈ S}

and likewise

S(~n) := {n ∈ Z : n 6≡ np (mod p) for all p ∈ P}.

We reduce Theorem 2 to

Theorem 3 (Sieving primes). Let A > 1 be a real number, let x be sufficiently large depending on A, and

suppose that y obeys (3.1). Let B0 be a natural number. Then there is a quantity

(4.5) A′ ≍ A,

and some way to choose the vectors ~a = (as mod s)s∈S and ~n = (np mod p)p∈P at random (not neces-

sarily independent of each other), such that for any fixed 0 6 α < β 6 1 (independent of x), one has with

probability 1− o(1) that

(4.6) #(Q ∩ S(~a) ∩ S(~n) ∩ (αy, βy]) ∼ A′|β − α|
x

log x
.

The o(1) decay rates in the probability error and implied in the ∼ notation are allowed to depend on A,α, β.

In [11, Theorem 2], a weaker version of this theorem was established in which B0 was not present, and

only the upper bound in (4.6) was proven. Thus, the main new contribution of this paper is the lower bound

in (4.6).

We prove Theorem 3 in subsequent sections. In this section, we show how this theorem implies Theorem

2 (and hence Theorem 1). The arguments here are almost identical to those in [11, §2].

Fix A > 1, 0 < ε 6 1. We partition (0, 1] into O(1/ε) intervals [αi, βi] of length between ε/2 and ε.

Applying Theorem 3 with the pairs (α, β) = (αi, βi) and the pair (α, β) = (0, 1), and invoking a union

bound (and the fact that ε is independent of x), we see that if x is sufficiently large (depending on A, ε), there

are A′, y obeying (4.5), (3.1) and tuples of residue classes ~a = (as mod s)s∈S and ~n = (np mod p)p∈P
such that

#(Q ∩ S(~a) ∩ S(~n)) ∼ A′ x

log x
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and

#(Q ∩ S(~a) ∩ S(~n)) ∩ (αiy, βiy]) ≪ Aε
x

log x

for all i. A covering argument then gives

#(Q ∩ S(~a) ∩ S(~n) ∩ [αy, βy]) ≪ A(|β − α|+ ε)
x

log x

for any 0 6 α < β 6 1. Now we extend the tuple ~a to a tuple (ap)p6x of congruence classes ap mod p for

all primes p 6 x by setting ap := np for p ∈ P and ap := 0 for p 6∈ S ∪ P , and consider the sifted set

T := {n ∈ [y]\[x] : n 6≡ ap (mod p) for all p 6 x}.

The elements of T , by construction, are not divisible by any prime in (0, log20 x] or in (z, x/2], except

possibly for B0. Thus, each element must either be a z-smooth number (i.e. a number with all prime

factors at most z) times a power of B0, or must consist of a prime greater than x/2, possibly multiplied

by some additional primes that are all either at least log20 x or equal to B0. However, from (3.1) we know

that y = o(x log x), and by hypothesis we know that B0 ≫ log x. Thus, we see that an element of T is

either a z-smooth number times a power of B0 or a prime in Q. In the second case, the element lies in

Q ∩ S(~a) ∩ S(~n). Conversely, every element of Q ∩ S(~a) ∩ S(~n) lies in T . Thus, T only differs from

Q ∩ S(~a) ∩ S(~n) by a set R consisting of z-smooth numbers in [y] multiplied by powers of B0.

To estimate #R, let

u :=
log y

log z
,

so from (3.1), (4.1) one has u ∼ 4 log2 x
log3 x

. The number of powers of B0 in [y] is O(log x). By standard counts

for smooth numbers (e.g. de Bruijn’s theorem [5]) and (3.1), we thus have

#R ≪ log x× ye−u log u+O(u log log(u+2))

= log x×
y

log4+o(1) x
= o

(

x

log x

)

.

Thus the contribution of R to T is negligible for the purposes of establishing the bounds (3.2), (3.3), (3.4),

and Theorem 2 follows from (4.6).

It remains to establish Theorem 3. This is the objective of the remaining sections of the paper.

5. USING A HYPERGRAPH COVERING THEOREM

In the previous section we reduced matters to obtaining random residue classes ~a, ~n such that the sifted

set Q∩S(~a)∩S(~n) is small. In this section we use a hypergraph covering theorem from [11] to reduce the

task to that of finding random residue classes ~n that have large intersection with Q ∩ S(~a). More precisely,

we will use the following result:

Theorem 4. Let x → ∞. Let P ′, Q′ be sets of primes in (x/2, x] and (x, x log x], respectively, with

#Q′ > (log2 x)
3. For each p ∈ P ′, let ep be a random subset of Q′ satisfying the size bound

(5.1) #ep 6 r = O

(

log x log3 x

log22 x

)

(p ∈ P ′).

Assume the following:
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• (Sparsity) For all p ∈ P ′ and q ∈ Q′,

(5.2) P(q ∈ ep) 6 x−1/2−1/10.

• (Uniform covering) For all but at most 1
(log2 x)

2#Q′ elements q ∈ Q′, we have

(5.3)
∑

p∈P ′

P(q ∈ ep) = C +O6

(

1

(log2 x)
2

)

for some quantity C, independent of q, satisfying

(5.4)
5

4
log 5 6 C ≪ 1.

Then for any positive integer m with

(5.5) m 6
log3 x

log 5
,

we can find random sets e′p ⊆ Q′ for each p ∈ P ′ such that

#{q ∈ Q′ : q 6∈ e
′
p for all p ∈ P ′} ∼ 5−m#Q′

with probability 1− o(1). More generally, for any Q′′ ⊂ Q′ with cardinality at least (#Q′)/
√

log2 x, one

has

#{q ∈ Q′′ : q 6∈ e
′
p for all p ∈ P ′} ∼ 5−m#Q′′

with probability 1− o(1). The decay rates in the o(1) and ∼ notation are uniform in P ′, Q′, Q′′.

Proof. See [11, Corollary 3]. �

In view of the above result, we may now reduce Theorem 3 to the following claim.

Theorem 5 (Random construction). Let x be a sufficiently real number, let B0 be a natural number and

suppose y satisfies (3.1). Then there is a quantity C with

(5.6) C ≍
1

c

with the implied constants independent of c, and some way to choose random vectors ~a = (as mod s)s∈S
and ~n = (np)p∈P of congruence classes as mod s and integers np, obeying the following axioms:

• For every ~a in the essential range of ~a, one has

P(q ≡ np (mod p)|~a = ~a) 6 x−1/2−1/10

uniformly for all p ∈ P .

• For fixed 0 6 α < β 6 1, we have with probability 1− o(1) that

(5.7) #(Q ∩ S(~a) ∩ [αy, βy]) ∼ 80c|β − α|
x

log x
log2 x.

• Call an element ~a in the essential range of ~a good if, for all but at most x
log x log2 x

elements q ∈

Q ∩ S(~a), one has

(5.8)
∑

p∈P

P(q ≡ np (mod p)|~a = ~a) = C +O6

(

1

(log2 x)
2

)

.

Then ~a is good with probability 1− o(1).
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We now show why Theorem 5 implies Theorem 3. By (5.6), we may choose 0 < c < 1/2 small enough

so that (5.4) holds. Let A > 1 be a fixed quantity. Then we can find an integer m obeying (5.5) such that

the quantity

A′ := 5−m × 80c log2 x

is such that A′ ≍ A with implied constants independent of A.

Suppose that we are in the probability 1 − o(1) event that ~a takes a value ~a which is good and such that

(5.7) holds. On each sub-event ~a = ~a of this probability 1 − o(1) event, we may apply Theorem 4 (for the

random variables np conditioned to this event) define the random variables n′
p on this event with the stated

properties. For the remaining events ~a = ~a, we set n′
p arbitrarily (e.g. we could set n′

p = 0). The claim

(4.6) then follows from Corollary 4 and (5.7), thus establishing Theorem 3.

It remains to establish Theorem 5. This will be achieved in the next section.

6. USING A SIEVE WEIGHT

If r is a natural number, an admissible r-tuple is a tuple (h1, . . . , hr) of distinct integers h1, . . . , hr that

do not cover all residue classes modulo p, for any prime p. For instance, the tuple (pπ(r)+1, . . . , pπ(r)+r)
consisting of the first r primes larger than r is an admissible r-tuple.

We will establish Theorem 5 by a probabilistic argument involving a certain weight function. More

precisely, we will deduce this result from the following construction from [11].

Theorem 6 (Existence of good sieve weight). Let x be a sufficiently large real number, let B0 be an integer,

and let y be any quantity obeying (3.1). Let P,Q be defined by (4.3), (4.4). Let r be a positive integer with

(6.1) r0 6 r 6 logc0 x

for some sufficiently small absolute constant c0 and sufficiently large absolute constant r0, and let (h1, . . . , hr)
be an admissible r-tuple contained in [2r2]. Then one can find a positive quantity

(6.2) τ > x−o(1)

and a positive quantity u = u(r) depending only on r with

(6.3) u ≍ log r

and a non-negative function w : P×Z → R
+ supported on P×(Z∩ [−y, y]) with the following properties:

• Uniformly for every p ∈ P , one has

(6.4)
∑

n∈Z

w(p, n) =

(

1 +O

(

1

log102 x

))

τ
y

logr x
.

• Uniformly for every q ∈ Q and i = 1, . . . , r, one has

(6.5)
∑

p∈P

w(p, q − hip) =

(

1 +O

(

1

log102 x

))

τ
u

r

x

2 logr x
.

• Uniformly for every h = O(y/x) that is not equal to any of the hi, one has

(6.6)
∑

q∈Q

∑

p∈P

w(p, q − hp) = O

(

1

log102 x
τ

x

logr x

y

log x

)

.
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• Uniformly for all p ∈ P and n ∈ Z,

(6.7) w(p, n) = O(x1/3+o(1)).

Proof. See2 [11, Theorem 5]. We remark that the construction of the weights and the verification of the

required estimates relies heavily on the previous work of the second author in [17]. �

It remains to show how Theorem 6 implies Theorem 5. The analysis will be based on that in [11, §5],

which used a weight with slightly weaker hypotheses than in Theorem 6 to obtain somewhat weaker con-

clusions than Theorem 5 (in which the condition q ≡ np (mod p) was replaced by the stronger condition

that q = np + hip for some i = 1, . . . , r).

Let x,B0, c, y, z,S,P,Q be as in Theorem 5. Let c0 be a sufficiently small absolute constant. We set r
to be the maximum value permitted by Theorem 6, namely

(6.8) r := ⌊logc0 x⌋

and let (h1, . . . , hr) be the admissible r-tuple consisting of the first r primes larger than r, thus hi = pπ(r)+i

for i = 1, . . . , r. From the prime number theorem we have hi = O(r log r) for i = 1, . . . , r, and so

we have hi ∈ [2r2] for i = 1, . . . , r if x is large enough (there are many other choices possible, e.g.

(h1, . . . , hr) = (12, 32, . . . , (2r − 1)2)). We now invoke Theorem 6 to obtain quantities τ, u and a weight

w : P × Z → R
+ with the stated properties.

For each p ∈ P , let ñp denote the random integer with probability density

P(ñp = n) :=
w(p, n)

∑

n′∈Zw(p, n
′)

for all n ∈ Z (we will not need to impose any independence conditions on the ñp). From (6.4), (6.5) we

have

(6.9)
∑

p∈P

P(q = ñp + hip) =

(

1 +O

(

1

log102 x

))

u

r

x

2y

for every q ∈ Q and i = 1, . . . , r, and similarly from (6.4), (6.6) we have

(6.10)
∑

q∈Q

∑

p∈P

P(q = ñp + hp) ≪
1

log102 x

x

log x

for every h = O(y/x) not equal to any of the hi. Finally, from (6.4), (6.7), (6.2) one has

(6.11) P(ñp = n) ≪ x−1/2−1/6+o(1)

for all p ∈ P and n ∈ Z.

We choose the random vector ~a := (as mod s)s∈S by selecting each as mod s uniformly at random from

Z/sZ, independently in s and independently of the ñp. The resulting sifted set S(~a) is a random periodic

subset of Z with density

σ :=
∏

s∈S

(

1−
1

s

)

.

2The integer B0 was not deleted from the sets P or Q in that theorem, however it is easy to see (using (6.7)) that deleting at

most one prime from either P or Q will not significantly worsen any of the estimates claimed by the theorem.
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From the prime number theorem (with sufficiently strong error term), (4.1) and (4.2),

σ =

(

1 +O

(

1

log102 x

))

log(log20 x)

log z
=

(

1 +O

(

1

log102 x

))

80 log2 x

log x log3 x/ log2 x
,

so in particular we see from (3.1) that

(6.12) σy =

(

1 +O

(

1

log102 x

))

80cx log2 x.

We also see from (6.8) that

(6.13) σr = xo(1).

We have a useful correlation bound:

Lemma 6.1. Let t 6 log x be a natural number, and let n1, . . . , nt be distinct integers of magnitude

O(xO(1)). Then one has

P(n1, . . . , nt ∈ S(~a)) =

(

1 +O

(

1

log16 x

))

σt.

Proof. See [11, Lemma 5.1]. �

Among other things, this gives the claim (5.7):

Corollary 2. For any fixed 0 6 α < β 6 1, we have with probability 1− o(1) that

(6.14) #(Q ∩ [αy, βy] ∩ S(~a)) ∼ σ|β − α|
y

log x
∼ 80c|β − α|

x

log x
log2 x.

Proof. See [11, Corollary 4], replacing Q with Q ∩ [αy, βy]. �

For each p ∈ P , we consider the quantity

(6.15) Xp(~a) := P(ñp + hip ∈ S(~a) for all i = 1, . . . , r),

and let P(~a) denote the set of all the primes p ∈ P such that

(6.16) Xp(~a) =

(

1 +O6

(

1

log3 x

))

σr.

In light of Lemma 6.1, we expect most primes in P to lie in P(~a), and this will be confirmed below

(Lemma 6.2). We now define the random variables np as follows. Suppose we are in the event ~a = ~a for

some ~a in the range of ~a. If p ∈ P\P(~a), we set np = 0. Otherwise, if p ∈ P(~a), we define np to be the

random integer with conditional probability distribution

(6.17) P(np = n|~a = ~a) :=
Zp(~a;n)

Xp(~a)
, Zp(~a;n) = 1n+hjp∈S(~a) for j=1,...,rP(ñp = n).

with the np jointly conditionally independent on the event ~a = ~a. From (6.15) we see that these random

variables are well defined.
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Substituting definition (6.17) into the left hand side of (5.8), and observing that np ≡ q (mod p) is only

possible if p ∈ P(~a), we see that to prove (5.8), it suffices to show that with probability 1 − o(1) in ~a, for

all but at most x
log x log2 x

primes in Q ∩ S(~a), we have

(6.18) σ−r
∑

p∈P(~a)

∑

h

Zp(~a; q − hp) = C +O

(

1

log32 x

)

.

We now confirm that P\P(~a) is small with high probability.

Lemma 6.2. With probability 1 − O(1/ log3 x), P(~a) contains all but O( 1
log3 x

x
log x) of the primes p ∈ P .

In particular, E#P(~a) = #P(1 +O(1/ log3 x)).

Proof. See [11, Lemma 5.3]. �

The left side of relation (6.18) breaks naturally into two pieces, a ‘main term’ consisting of summands

where h = hi for some i, and an ‘error term’ consisting of the remaining summands. We first take care of

the error term.

Lemma 6.3. With probability 1− o(1) we have

(6.19) σ−r
∑

p∈P(~a)

∑

h≪y/x
h 6∈{h1,...,hr}

Zp(~a; q − hp) ≪
1

log32 x

for all but at most x
2 log x log2 x

primes q ∈ Q ∩ S(~a).

Proof. We first extend the sum over all p ∈ P . By Markov’s inequality, it suffices to show that

(6.20) E

∑

q∈Q∩S(~a)

σ−r
∑

p∈P

∑

h≪y/x
h/∈{h1,...,hk}

Zp(~a; q − hp) = o

(

x

log x log42 x

)

.

The left-hand side of (6.20) equals

σ−r
∑

q∈Q

∑

h≪y/x
h/∈{h1,...,hk}

∑

p∈P

P(q ∈ S(~a), q + hjp− hp ∈ S(~a) for j = 1, . . . , r)P(q = ñp + hp).

We note that for any h in the above sum, the r + 1 integers q, q + h1p− hp, . . . , q + hrp− hp are distinct.

Applying Lemma 6.1, followed by (6.10), we may thus bound this expression by

≪
∑

h≪y/x
h/∈{h1,...,hk}

σ
x/ log x

log102 x
≪ σ

1

log102 x

y

log x
.

The claim now follows from (6.12). �

Next, we deal with the main term of (6.18), by showing an analogue of (6.9).

Lemma 6.4. With probability 1− o(1), we have

(6.21) σ−r
r

∑

i=1

∑

p∈P(~a)

Zp(~a; q − hip) =

(

1 +O

(

1

log32 x

))

u

σ

x

2y
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for all but at most x
2 log x log2 x

of the primes q ∈ Q ∩ S(~a).

Proof. We first show that replacing P(~a) with P has negligible effect on the sum, with probability 1− o(1).
Fix i and susbtitute n = q − hip. By Markov’s inequality, it suffices to show that

(6.22) E

∑

n

σ−r
∑

p∈P\P(~a)

Zp(~a;n) = o

(

u

σ

x

2y

1

r

1

log32 x

x

log x log2 x

)

.

By Lemma 6.1, we have

E

∑

n

σ−r
∑

p∈P

Zp(~a;n) = σ−r
∑

p∈P

∑

n

P(ñp = n)P(n+ hjp ∈ S(~a) for j = 1, . . . , r)

=

(

1 +O

(

1

log16 x

))

#P.

Next, by (6.16) and Lemma 6.2 we have

E

∑

n

σ−r
∑

p∈P(~a)

Zp(~a;n) = σ−r
∑

~a

P(~a = ~a)
∑

p∈P(~a)

Xp(~a)

=

(

1 +O

(

1

log3 x

))

E #P(~a) =

(

1 +O

(

1

log3 x

))

#P;

subtracting, we conclude that the left-hand side of (6.22) is O(#P/ log3 x) = O(x/ log4 x). The claim then

follows from (3.1) and (6.1).

By (6.22), it suffices to show that with probability 1 − o(1), for all but at most x
2 log x log2 x

primes q ∈

Q ∩ S(~a), one has

(6.23)

r
∑

i=1

∑

p∈P

Zp(~a; q − hip) =

(

1 +O6

(

1

log32 x

))

σr−1u
x

2y
.

Call a prime q ∈ Q bad if q ∈ Q ∩ S(~a) but (6.23) fails. Using Lemma 6.1 and (6.9), we have

E

[

∑

q∈Q∩S(~a)

r
∑

i=1

∑

p∈P

Zp(~a; q − hip)

]

=
∑

q,i,p

P(q + (hj − hi)p ∈ S(~a) for all j = 1, . . . , r)P(ñp = q − hip)

=

(

1 +O

(

1

log102 x

))

σy

log x
σr−1u

x

2y

and

E

[

∑

q∈Q∩S(~a)

( r
∑

i=1

∑

p∈P

Zp(~a; q − hip)

)2]

=
∑

p1,p2,q
i1,i2

P(q + (hj − hiℓ)pℓ ∈ S(~a) for j = 1, . . . , r; ℓ = 1, 2)

× P(ñ(1)
p1 = q − hi1p1)P(ñ

(2)
p2 = q − hi2p2)

=

(

1 +O

(

1

log102 x

))

σy

log x

(

σr−1u
x

2y

)2

,

where (ñ
(1)
p1 )p1∈P and (ñ

(2)
p2 )p2∈P are independent copies of (ñp)p∈P over ~a. In the last step we used the

fact that the terms with p1 = p2 contribute negligibly.
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By Chebyshev’s inequality (Lemma 1.1) it follows that the number of bad q is ≪ σy
log x

1
log32 x

≪ x
log x log22 x

with probability 1−O(1/ log2 x). This concludes the proof. �

We now conclude the proof of Theorem 5. We need to prove (6.18); this follows immediately from

Lemma 6.3 and Lemma 6.4 upon noting that by (6.8), (6.3) and (6.12),

C :=
u

σ

x

2y
∼

1

c
.
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