EXTREMAL PROPERTIES OF PRODUCT SETS

KEVIN FORD

To Sergei Vladimirovich Konyagin on the occasion of his 60th birthday

ABSTRACT. We find the nearly optimal size of a set $A \subset [N] := \{1, \dots, N\}$ so that the product set AA satisfies either (i) $|AA| \sim |A|^2/2$ or (ii) $|AA| \sim |[N][N]|$. This settles problems recently posed in a paper of Cilleruelo, Ramana and Ramaré.

1. Introduction

For $A, B \subset \mathbb{N}$ let AB denote the product set $\{ab : a \in A, b \in B\}$. In the special case $[N] = \{1, 2, 3, \ldots, N\}$, denote by $M_N = |[N][N]|$ the number of distinct products in an N by N multiplication table. In a recent paper [CRR17] of Cilleruelo, Ramana and Ramaré (see also Problems 15,16 in [CRS18]), the following problems were posed:

- (1) [CRR17, Problem 1.2]. If $A \subset [N]$ and $|AA| \sim |A|^2/2$, is $|A| = o(N/\log^{1/2} N)$?
- (2) [CRR17, Problem 1.4]. If $A \subset [N]$ and $|AA| \sim M_N$, is $|A| \sim N$?

In this note, we answer both questions in the negative. Our results are based on a careful analysis of the structure of [N][N] developed in [For08a] and [For08b]. Let

(1.1)
$$\theta = \frac{1}{2} - \frac{1 + \log \log 2}{\log 4} = 1 - \frac{1 + \log \log 4}{\log 4} = 0.04303566\dots$$

From [For08a], we have

(1.2)
$$M_N \asymp \frac{N^2}{(\log N)^{2\theta} (\log \log N)^{3/2}}.$$

In light of the elementary inequalities $|AA| \leq \min(|A|^2, M_N)$, it follows that if $|AA| \sim \frac{1}{2}|A|^2$, then |A| cannot be of order larger than $M_N^{1/2}$, and if $|AA| \sim M_N$, then |A| cannot have order of growth smaller than $M_N^{1/2}$. As we shall see, $M_N^{1/2}$ turns out to be close the threshhold value of |A| for each of these properties to hold.

Theorem 1. Let D > 7/2. For each $N \ge 10$ there is a set $A \subset [N]$ of size

$$|A| \geqslant \frac{N}{(\log N)^{\theta} (\log \log N)^{D}},$$

for which $|AA| \sim |A|^2/2$ as $N \to \infty$.

Consequently, the largest size $T_N(\varepsilon)$ of a set A with $|AA| \ge (1-\varepsilon)|A|^2/2$ satisfies

$$\frac{N}{(\log N)^{\theta}(\log\log N)^{7/2+o(1)}} \ll T_N(\varepsilon) \ll \frac{N}{(\log N)^{\theta}(\log\log N)^{3/4}}.$$

1

¹Research of the author supported in part by individual NSF grant DMS-1501982. Some of this work was carried out at MSRI, Berkeley during the Spring semester of 2017, partially supported by NSF grant DMS-1440140.

2 KEVIN FORD

Theorem 2. For each $N \ge 10$ there is a set $A \subset [N]$ of size

$$|A| \leqslant \frac{N}{(\log N)^{\theta}} \exp\left\{ (2/3) \sqrt{\log \log N \log \log \log N} \right\},\,$$

for which $|AA| \sim M_N$ as $N \to \infty$.

The construction of extremal sets satisfying the required properties in either Theorem 1 or 2 requires an analysis of the structure of integers in the "multiplication table" [N][N], as worked out in [For08a]. From this work, we know that most elements of [N][N] have $\frac{\log \log N}{\log 2} + O(1)$ prime factors, and moreover, these prime factors are not "compressed at the bottom", meaning that for most $n \in [N][N]$ we have

$$\#\{p|n: p \leqslant t\} \leqslant \frac{\log\log t}{\log 2} + O(1) \qquad (3 \leqslant t \leqslant N).$$

Here the terms O(1) should be interpreted as being bounded by a sufficiently large constant $C = C(\epsilon)$, where ϵ is the relative density of exceptional elements of [N][N]. This suggests that candidate extremal sets A should consist of integers with about half as many prime factors; that is, $\omega(n) \approx \frac{\log \log N}{\log \log N}$.

In a sequel paper, we will refine the estimates in Theorems 1 and 2. In particular, we will show that the threshold size of A for the property $|AA| \sim |A|^2/2$ is genuinely smaller than the threshold size of |A| for the property $|AA| \sim M_N$. More precisely, we will show that if $|A| \leq \frac{N}{(\log N)^{\theta}} \exp\{O(\sqrt{\log \log N})\}$, then $|AA| \not\sim M_N$. The proof requires a much more intricate analysis of the arguments in the papers [For08a] and [For08b].

Acknowledgements. The author is grateful to Sergei Konyagin for bringing the paper [CRR17] to his attention, and for helpful conversations. The author thanks Yuri Shteinikov for pointing out an error in the proof of Lemma 3.2 in an earlier version of the paper.

2. Preliminaries

Here $\omega(n)$ is the number of distinct prime factors of n, $\omega(n,t)$ is the number of prime factors p|n with $p\leqslant t$, $\Omega(n)$ is the number of prime power divisors of n, $\Omega(n,t)$ is the number of prime powers $p^a|n$ with $p\leqslant t$. We analyze the distribution of these functions using a simple, but powerful technique known as the parametric method (or the "tilting method" in probability theory).

For brevity, we use the notation $\log_k x$ for the k-th iterate of the logarithm of x.

Lemma 2.1. Let f be a real valued multiplicative function such that $0 \le f(p^a) \le 1.9^a$ for all primes p and positive integers a. Then, for all x > 1 we have

$$\sum_{n \leqslant x} f(n) \ll \frac{x}{\log x} \exp\Big(\sum_{p \leqslant x} \frac{f(p)}{p}\Big).$$

Proof. This is a corollary of a more general theorem of Halberstam and Richert; see Theorem 01 of [HT88] and the following remarks.

In the special case $f(n)=\lambda^{\Omega(n)}$, where $0<\lambda\leqslant 1.9$, we get by Mertens' estimate the uniform bound

(2.1)
$$\sum_{n \le x} \lambda^{\Omega(n,t)} \ll x (\log t)^{\lambda - 1}.$$

This is useful for bounding the tails of the distribution of $\Omega(n,t)$.

3. Proof of Theorem 1

Define

$$k = \left| \frac{\log_2 N}{\log 4} \right|$$

and let

$$B = \left\{ N/2 < m \leqslant N : m \text{ squarefree}, \ \omega(m) = k, \ \omega(m,t) \leqslant \frac{\log_2 t}{\log 4} + 2 \ (3 \leqslant t \leqslant N) \right\}.$$

Our proof of Theorem 1 has three parts:

- (i) establish a lower bound on the size of B, showing that the upper bound on $\omega(n,t)$ affects the size of B only mildly;
- (ii) give an upper bound on the multiplicative energy E(B), which shows that there are few nontrivial solutions of $b_1b_2=b_3b_4$; consequently, the product set BB is large; and
- (iii) select a thin random subset A of B that has the desired properties, an idea borrowed from Proposition 3.2 of [CRR17].

Lemma 3.1. We have

$$|B| \gg \frac{N}{(\log N)^{\theta} (\log_2 N)^{3/2}}.$$

Lemma 3.2. Let $E(B) = |\{(b_1, b_2, b_3, b_4) \in B^4 : b_1b_2 = b_3b_4\}|$ be the multiplicative energy of B. Then

$$E(B) \ll |B|^2 (\log_2 N)^4.$$

Lemma 3.3. Given $B \subset [N]$ with $E(B) \leqslant |B|^2 f(N)$ and $f(N) \leqslant |B|^{1/2}$, let A be a subset of B where the elements of A are chosen at random, each element $b \in B$ chosen with probability ρ satisfying $\rho^2 = o(1/f(N))$ and $\rho |B|^2 \gg |N|^{1.1}$ as $N \to \infty$. Then with probability $\to 1$ as $N \to \infty$, we have $|A| \sim \rho |B|$ and $|AA| \sim \frac{1}{2}|A|^2$.

Assuming these three lemmas, it is easy to prove Theorem 1. We apply Lemma 3.3 with $f(N) = C(\log_2 N)^4$, invoking the energy estimate from Lemma 3.2 and the size bound from Lemma 3.1. For any function $g(N) \to \infty$ as $N \to \infty$, we take

$$\rho = \frac{1}{(\log_2 N)^2 g(N)}$$

and deduce that there is a set $A \subset [N]$ of size

$$|A| \sim \rho |B| \gg \frac{N}{(\log N)^{\theta} (\log_2 N)^{7/2} q(N)},$$

such that $|AA| \sim \frac{1}{2}|A|^2$.

Now we prove the three lemmas.

4 KEVIN FORD

Proof of Lemma 3.1. If $p_j(m)$ denotes the j-th smallest (distinct) prime factor of m, for $1 \le j \le \omega(m)$, then the condition $\omega(m,t) \le \frac{\log_2 t}{\log 4} + 2$ $(3 \le t \le N)$ is implied by

$$\log_2 p_j(m) \geqslant (j-2)\log 4 \quad (1 \leqslant j \leqslant \omega(m)).$$

Indeed, the assertion is trivial if $t < p_1(m)$ since in this case $\omega(m,t) = 0$. If $p_1(m) \le t \le N$, set $j = \max\{i : t \ge p_i(m)\}$. Then

$$\omega(m,t) = j \leqslant \frac{\log_2 p_j(m)}{\log 4} + 2 \leqslant \frac{\log_2 t}{\log 4} + 2.$$

Thus,

 $|B| \ge |\{N/2 < m \le N : \omega(m) = k, m \text{ squarefree}, \log_2 p_j(m) \ge j \log 4 - 2 \log 4 \ (1 \le j \le \omega(m))\}|.$

This is closely related to the quantity

$$N_k(x; \alpha, \beta) = |\{m \leqslant x : \omega(m) = k, \log_2 p_j(m) \geqslant \alpha j - \beta (1 \leqslant j \leqslant k)\}|,$$

as defined in [For07]. In fact, the lower bound in [For07, Theorem 1] for $N_k(x; \alpha, \beta)$ is proved under the additional conditions that m is squarefree and lies in a dyadic range ([For07, §4]), although this is not stated explicitly. Thus, the proof of [For07, Theorem 1] applies to lower-bounding |B|. In the notation of [For07], we have

$$k = \left| \frac{\log_2 N}{\log 4} \right|, \ A = \frac{1}{\log 4}, \ \alpha = \log 4, \ \beta = 2\log 4, \ u = 2, \ v = \frac{\log_2 N}{\log 4}, \ w = \frac{\log_2 N}{\log 4} - k + 3.$$

Taking $\varepsilon = 0.1$, one easily verifies the required conditions for [For07, Theorem 1]:

$$\alpha - \beta \leqslant A$$
, $w \geqslant 1 + \varepsilon$, $e^{\alpha(w-1)} - e^{\alpha(w-2)} \geqslant 1 + \varepsilon$.

Hence, by the proof of the aforementioned theorem, we obtain

$$|B| \gg \frac{N(\log_2 N)^{k-2}}{(\log N)(k-1)!},$$

from which the conclusion follows by Stirling's formula.

Proof of Lemma 3.2. In the equation $b_1b_2 = b_3b_4$, let $c = (b_1, b_2)$. Then $c|b_i$ for all i and, setting $b'_i = b_i/c$ for $1 \le i \le 4$, we have

$$(3.1) b_1'b_2' = b_3'b_4' (b_1', b_2') = (b_3', b_4') = 1.$$

Set M=N/c, and observe that for $M< N^{1/2}$ the number of solutions of (3.1) is $O(M^3)$. Summing over c yields $O(N^{3/2})$ solutions. From now on, assume that $M\geqslant N^{1/2}$, let

$$\beta_{13} = \gcd(b'_1, b'_3), \ \beta_{14} = \gcd(b'_1, b'_4), \ \beta_{23} = \gcd(b'_2, b'_3), \ \beta_{24} = \gcd(b'_2, b'_4),$$

so that

$$b'_1 = \beta_{13}\beta_{14}, \quad b'_2 = \beta_{23}\beta_{24}, \quad b'_3 = \beta_{13}\beta_{23}, \quad b'_4 = \beta_{14}\beta_{24}.$$

Since $1/2 \le b_1/b_4 \le 2$, it follows that $1/2 \le \beta_{13}/\beta_{24} \le 2$ and likewise that $1/2 \le \beta_{14}/\beta_{23} \le 2$. By reordering variables, we may assume without loss of generality that $\min(\beta_{13}, \beta_{24}) \gg M^{1/2}$. For some parameter T, which is a power of 2 and satisfies $T = O(M^{1/2})$, we have

(3.2)
$$T \leqslant \beta_{14} < 2T$$
.

This implies that $T/2 \le \beta_{23} \le 4T$ and $M/8T \le \beta_{13}, \beta_{24} \le 2M/T$. We also note that

(3.3)
$$\omega(b'_j, 4T) \leqslant \omega(b_j, 4T) = \Omega(b_j, 4T) \leqslant z_T \ (1 \leqslant j \leqslant 4), \qquad z_T = \frac{\log_2(4T)}{\log 4} + 2.$$

Let $\lambda_1, \lambda_2 \in (0,1)$ be two parameters to be chosen later. Let $U_T(c)$ be the number of solutions of

$$b_1'b_2' = b_3'b_4'$$
 $(cb_i \in B, 1 \leqslant j \leqslant 4, (b_1', b_2') = (b_3', b_4') = 1)$

also satisfying (3.2). Using (3.3), we see that

$$\begin{split} U_{T}(c) \leqslant \sum_{\beta_{14},\beta_{23} \leqslant 4T} \sum_{\beta_{24},\beta_{13} \leqslant 2M/T} \prod_{j=1}^{2} \lambda_{1}^{\Omega(\beta_{j3}\beta_{j4},4T) - z_{T}} \lambda_{2}^{\Omega(\beta_{j3}\beta_{j4}) - k} \prod_{j=3}^{4} \lambda_{1}^{\Omega(\beta_{1j}\beta_{2j},4T) - z_{T}} \lambda_{2}^{\Omega(\beta_{1j}\beta_{2j}) - k} \\ &= \lambda_{1}^{-4z_{T}} \lambda_{2}^{-4k} \sum_{\beta_{14},\beta_{23} \leqslant 4T} \sum_{\beta_{24},\beta_{13} \leqslant 2M/T} \lambda_{1}^{2\Omega(\beta_{14}\beta_{23}) + 2\Omega(\beta_{13}\beta_{24},4T)} \lambda_{2}^{2\Omega(\beta_{13}\beta_{14}\beta_{23}\beta_{24})} \\ &= \lambda_{1}^{-4z_{T}} \lambda_{2}^{-4k} \left(\sum_{\beta \leqslant 4T} (\lambda_{1}^{2}\lambda_{2}^{2})^{\Omega(\beta)} \right)^{2} \left(\sum_{\beta \leqslant 2M/T} \lambda_{1}^{2\Omega(\beta,4T)} \lambda_{2}^{2\Omega(\beta)} \right)^{2}. \end{split}$$

An application of Lemma 2.1 yields

$$U_T(c) \ll \lambda_1^{-4z_T} \lambda_2^{-4k} \left(T(\log T)^{\lambda_1^2 \lambda_2^2 - 1} \right)^2 \left(\frac{M}{T} (\log M)^{\lambda_2^2 - 1} (\log T)^{\lambda_1^2 \lambda_2^2 - \lambda_2^2} \right)^2$$
$$= \lambda_1^{-4z_T} \lambda_2^{-4k} M^2 (\log M)^{2\lambda_2^2 - 2} (\log T)^{4\lambda_1^2 \lambda_2^2 - 2\lambda_2^2 - 2}.$$

We optimize by taking $\lambda_1^2 = \frac{1}{2}$ and $\lambda_2^2 = \frac{1}{\log 4}$, so that

$$U_T(c) \ll \frac{M^2}{(\log M)^{2\theta}(\log T)}.$$

Summing over $T = 2^r \ll M^{1/2}$ and then over c yields

$$E(B) \ll \sum_{\alpha} \frac{M^2 \log_2 N}{(\log M)^{2\theta}} \ll \frac{N^2 \log_2 N}{(\log N)^{2\theta}} \ll |B|^2 (\log_2 N)^4,$$

using Lemma 3.1.

Proof of Proposition 3.3. This is similar to the proof of Proposition 3.2 of [CRR17]. First, if elements of A are chosen from B with probability ρ , then by easy first and second moment calculations,

$$\mathbf{E}|A| = \rho|B|, \qquad \mathbf{E}(|A| - \rho|B|)^2 = O(\rho|B|),$$

where **E** denotes expectation. By Chebyshev's inequality, $|A| \sim \rho |B|$ with probability tending to 1 as $N \to \infty$. By the proof of Proposition 3.2 of of [CRR17], we also have

$$\mathbf{E}|AA| = \sum_{x} \left(1 - (1 - \rho^2)^{\tau_B(x)/2}\right) + O(\rho N),$$

where

$$\tau_B(x) = |\{x = b_1b_2 : b_1, b_2 \in B\}|.$$

6 KEVIN FORD

Now $(1-z)^k = 1 - kz + O((kz)^2)$ uniformly for $0 \le z \le 1$ and $k \ge 1$, and so

$$\mathbf{E}|AA| = (\rho^2/2) \sum_{x} \tau_B(x) + O\left(\rho^4 \sum_{x} \tau_B^2(x)\right) + O(\rho N)$$

$$= (\rho^2/2)|B|^2 + O(\rho^4 E(B) + \rho N)$$

$$= \left(\frac{1}{2} + o(1)\right) (\rho |B|)^2.$$

Since $|A| \sim \rho |B|$ with probability tending to 1 as $N \to \infty$, and also $|AA| \leqslant \frac{1}{2}|A|(|A|+1)$ for all |A|, we conclude that $|AA| \sim \frac{1}{2}|A|^2$ with probability tending to 1 as $N \to \infty$.

4. Proof of Theorem 2

Again let

$$k = \left| \frac{\log_2 N}{\log 4} \right|.$$

Define

$$A = \{ m \leqslant N : \Omega(m) \leqslant k + r \}, \quad r = 2\sqrt{\log_2 N \log_3 N}.$$

By (2.1), we have the size bound

$$|A| \leqslant \sum_{m \leqslant N} \left(\frac{1}{\log 4} \right)^{\Omega(m) - (k+r)} \ll \frac{N (\log 4)^r}{(\log N)^{\theta}} \ll \frac{N}{(\log N)^{\theta}} \exp\{(2/3) \sqrt{\log_2 N \log_3 N}\}$$

using (1.1). Next, we show that $|AA| \sim M_N$. Let $B = [N] \setminus A$. It suffices to show that

$$|B[N]| \leqslant |AB| + |BB| = o(M_N).$$

Let c=ab, where $a\leqslant N$ and $b\in B$, and consider two cases: (i) $\Omega(c)>2k+h$, where $h=\lfloor 5\log_3 N\rfloor$, and (ii) $\Omega(c)<2k+h$. We then have $|B[N]|\leqslant D_1+D_2$, where D_1 is the number of integers $c\leqslant N^2$ with $\Omega(c)>2k+h$, and D_2 is the number of pairs $(a,b)\in [N]^2$ with $\Omega(ab)\leqslant 2k+h$ and $\Omega(b)\geqslant k+r$. We will show that each of these is small, essentially by exploiting the imbalance in prime factors of a and b implied in the conditions on D_2 . By (2.1) and (1.1),

$$D_1 \leqslant \sum_{c \in \mathbb{N}^2} \left(\frac{1}{\log 2} \right)^{\Omega(c) - (2k+h)} \ll \frac{N^2}{(\log N)^{2\theta} (1/\log 2)^h} = o(M_N),$$

in light of estimate (1.2). Next, choose parameters $0 < \lambda_2 < 1 < \lambda_1 < 1.9$. Then

$$D_2 \leqslant \sum_{a,b \leqslant N} \lambda_2^{\Omega(ab) - (2k+h)} \lambda_1^{\Omega(b) - (k+r)} \ll \lambda_1^{-(k+r)} \lambda_2^{-(2k+h)} N^2 (\log N)^{\lambda_2 + \lambda_1 \lambda_2 - 2},$$

invoking (2.1) again. A near-optimal choice for the parameters is

$$\lambda_2 = \frac{1-x}{\log 4}, \quad \lambda_1 = \frac{1+x}{1-x}, \quad x = \frac{r \log 4}{\log_2 N}.$$

A little algebra reveals that the previous upper bound on D_2 is bounded by

$$\ll N^2 (\log N)^{-2\theta - \frac{1}{\log 4} ((1+x)\log(1+x) + (1-x)\log(1-x)) - \frac{h}{\log_2 N} \log \frac{1-x}{\log 4}}.$$

By Taylor's expansion,

$$(1+x)\log(1+x) + (1-x)\log(1-x) \geqslant x^2 \quad (|x|<1)$$

and therefore the exponent of $\log N$ is at most

$$-2\theta - \frac{x^2}{\log 4} + \frac{h \log \log (4 + o(1))}{\log_2 N} \leqslant -2\theta - 4 \log 4 \frac{\log_3 N}{\log_2 N} + 1.7 \frac{\log_3 N}{\log_2 N} \leqslant -2\theta - 3.8 \frac{\log_3 N}{\log_2 N}.$$

We get that $D_2 \ll N^2 (\log N)^{-2\theta} (\log_2 N)^{-3.8} = o(M_N)$ and Theorem 2 follows. REFERENCES

- [CRR17] J. Cilleruelo, D. S. Ramana, and O. Ramaré. Quotient and product sets of thin subsets of the positive integers. *Tr. Mat. Inst. Steklova*, 296(Analiticheskaya i Kombinatornaya Teoriya Chisel):58–71, 2017.
- [CRS18] Pablo Candela, Juanjo Rué, and Oriol Serra. Memorial to Javier Cilleruelo: A problem list. *INTEGERS: The electronic journal of combinatorial number theory*, 18(A28):1–9, 2018.
- [For07] Kevin Ford. Generalized Smirnov statistics and the distribution of prime factors. *Funct. Approx. Comment. Math.*, 37(part 1):119–129, 2007.
- [For08a] K. Ford. The distribution of integers with a divisor in a given interval. *Ann. of Math.* (2), 168(2):367–433, 2008.
- [For08b] K. Ford. Integers with a divisor in (y, 2y]. In Anatomy of integers, volume 46 of CRM Proc. Lecture Notes, pages 65–80. Amer. Math. Soc., Providence, RI, 2008.
- [HT88] Richard R. Hall and Gérald Tenenbaum. *Divisors*, volume 90 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge, 1988.

DEPARTMENT OF MATHEMATICS, 1409 WEST GREEN STREET, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801, USA

E-mail address: ford@math.uiuc.edu