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ABSTRACT. Suppose€P is a set of primes, such that for evene P, every prime factor op — 1 is also inP.
We apply a new sieve method to show that eitRecontains all of the primes or the counting functionfis
O(z*~°) for somec > 0, wherec depends only on the smallest prime nofinOur proof makes use of results
connected with Artin’s primitive root conjecture.

1 Introduction
Consider a seP of primes satisfying the condition:
1.1) peEP = Yq|(p—1),q € P.

Here and throughout, the lettessq andr denote primes. Trivial examples of s@sare the empty set and
the set of all primes.

We are concerned in this note with nontrivial examples, that is, nonefgiyitting at least one prime
(since2 ¢ P implies thatP is empty, the smallest omitted prime must be odd). getlenote the smallest
primenotin P and letP(z) = #{p € P : p < x} be the associated counting function. Our main result is
the following.

Theorem 1. LetP be a set of primes satisfyirfd.1) that does not contain the primg. There are constants
§ > 0 andc > 0, depending only op,, such thatP(x) < cz! 9.

Theorem 1 implies that eithé? is the set of all primes 0P is a very “thin” set of primes. The elements
of P have the property that for every prime¢ P, P omits the residue class@s1 mod p. Standard
application of sieve methods produce only the much weaker b&{nd < z/log? = (See Proposition 1
below). The weakness stems from the fact that sieve methods ignoreieatigl restrictions for “large”
primes (i.e., those primes /z, when bounding the number of elements of a set thakarg. With our
new method, we are able exploit these large prime restrictions.

To the author’s knowledge, sets of primes satisfying (1.1) were firgtidered by R. D. Carmichael [2, 3]
in his work on the conjecture that now bears his name. kaseEuler’s “totient” function.

Conjecture 1 (Carmichael’'s Conjecture)or every positive integet, there is a positive integeér# a such
thato(b) = ¢(a).

The conjecture remains open, although the smallest counterexanifileere is one, is known to exceed
1019" [6]. Assuming a counterexampleexists, Carmichael [3] attacked the problem with the following
simple result.

(1.2) It d ] | p dividesa andp = 1 + d is prime, therp?|a.
pld
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Applying (1.2) successively witid = 1,2,6 and42, it follows immediately tha223272432|a. From
here, Carmichael considers two cases: 3{i)ja, which easily implies13?|a, and (ii) 3%|a, which im-
plies by (1.2) thatl9?|a. In each case, one can use (1.2) to produce many more primes whick divid
a. More precisely, in case (i3 must be divisible by all primes i®’, whereP’ contains2, 3, 7,13, 43
and for other primeg, p € P’ if and only if p — 1 is squarefree and for evewj(p — 1), ¢ € P'.
ThenP’ = {2,3,7,13,43,79,547,3319,6163,...}. Similarly, in case (ii),a is divisible by every prime
in P”, where2,3,7,19,43 are inP” and for other prime®, p € P” if and only if (a)p — 1 is ei-
ther squarefree 032|(p — 1) and 25+ is squarefree and (b) for evety(p — 1), ¢ € P”. ThenP” =
{2,3,7,19,43,127,2287,4903, 5419, . ..}. Thus, the set®’ andP” each satisfy (1.1) and omit the prime
5. By Theorem 1, each g?’ andP” has counting function satisfying(z) < z'~¢ for somec > 0.
Carmichael’s conjecture follows if both’ andP” are infinite.

In a similar spirit, Pomerance [15] showed thatifatisfiesp?|> whenever(p — 1)|#(x), then there is
no numbemn # x with ¢(b) = ¢(x). However, Pomerance argued heuristically that:math this property
exists.

Sets satisfying (1.1) also arise in the distribution of iterates of Euler’s fumdtiet ¢ (n) denote the:-th
iterate of¢ (e.9.,¢2(n) = ¢(¢(n))), and letF'(n) = [];; ¢x(n) (the product is finite, sincey(n) = 1
for large k). Divisibility properties of F'(n) were considered by Luca and Pomerance [13] in connection
with construction of irreducible, radical extensions@f The prime factors of’(p), wherep runs over the
primes, were considered by Bayless [1]. Further resultg,gn) may be found in [4].

Corollary 1. For every primer > 3, there is a constant < 1 sothat#{n < x:r{ F(n)} < z°.

Proof. Let P, be the largest set satisfying (1.1) such that P,; i.e., P, contains all primes less than
r ¢ P, and a prime > r lies in P, if and only if for all ¢|(p — 1), ¢ € P,.. For example,

Ps = {2,5,11,17,23,41,43,83,89, 101, 137,167, 179, 251,257, .. .},

Ps ={2,3,7,13,17,19,29, 37,43,53,59, 73,79,97,103, .. .}.
Sinceg(p®) = p*»~(p — 1), for eachn the (finite) setP of prime factors ofF'(n) satisfies (1.1). Hence, if
r 1 F(n), then all the prime factors of belong toP,.. By Theorem 1, for some > 0, depending om, there

are< x!=¢ primes inP, that are less than. For anys > 1 — ¢, it follows by partial summation that the
number ofn < = with r t F(n) is at most

Z (%)S =z H (1 —p*S)fl < xsexp{ Z psl_ 1} Ly s T°. O

pln = pePr PEPr pEPr

The setP,. is also the set of all primgs for which thePratt treefor p has no node labeled The Pratt
tree for a primep is recursively defined as the tree with root labefednd belowp are links to the Pratt
trees of eacly|(p — 1). Properties of Pratt trees (e.g. the distribution of the hel§ifyi), number of nodes,
etc.) were extensively studied in [7]. In alternative terminoldgyis the set of primeg for which there is
no prime chainr < py < -+ < p < p, wherea < b means =1 (mod a), andpy, . .., p are primes.

A finite group@ is said to have Perfect Order Subsets (POS) ifilmaberof elements of of any given
order dividegG|. This notion was introduced by Finch and Jones [5] in 2002. In the daSiestian groups,
Finch and Jones reduced the problem of determining which groups I&ed>studying those of the form
G = (Z/;Z)* x --- x (Z/p;Z)% , wherepy, ..., p; are distinct primes. This group has POS if and only
if f(n)|n, wheren = pi*-- ~p§j = |Gl andf(n) = [[,e),(p* — 1). Suppose thak { n. It follows quickly
that the primes dividing: must lie in/P3. Developing explicit estimates for the counting functioriaf it
was shown in [8] that an Abelian group with POS is eitfigRZ or has order divisible by 3. This answered
a question posed in [5].
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It is intractible with existing methods to prove nontrivial lower bounds Rirz) even in the “easiest”
cases wheP = P,. The difficulty, now evident from Theorem 1, is to show that many primest &xth
the prime factors op — 1 restricted to a very thin set.

Conjecture 2. Each setp, is infinite.

This conjecture follows, for instance, if there are infinitely many primes ofdh@ 2¢3° + 1 and infin-
itely many primes of the form?5? + 1. Each of these latter statements appears to be plausible, based on
computations.

The author computed the elements/fup to 2% (=~ 1.7 x 10'3) for use in [8], andP(x) ~ x°62 in
this range. The recursive nature of the sefhowever, does not lead to any natural heuristic argument for
the size ofP(x). The growth appears to be highly dependent on which small primes are ofnittedhe
set. For an extreme example, consi@eto be the “largest ” set omitting the primasbs, 17, 257, 65537 (the
list of known Fermat primes — primes that are 1 more than a power of 2). faisiaus unsolved problem
whether or not there are additional Fermat primes. If there are no furérenat primes the® = {2},
while if another Fermat prime exists théhcould potentially be infinite.

Based partly on the computations 85, we make an educated guess for the growt of).

Conjecture 3. For eachr, there is a numbef, > 0 such thatP(z) = z'~%+°() asz — oo.

We further guess that. — 0 asr — cc.

Outline of the paper. The next section contains relatively simple estimateg™ar) which are needed to
bootstrap the more complicated iterative method in Sections 3 and 4. Basicdilydwecursive inequalities
for the density of primes whose Pratt tree has heigljt for j = 0,1, 2, .. .. The main iteration inequalities
are proved in Section 3, together with a conditional result that implies Thebrender the assumption that
a certain matrix has eigenvalues all inside the unit circle. Section 4 condluelggoof of Theorem 1 by
showing that indeed the matrix has this property. Our method uses resuitsHeocircle of ideas used to
attack Artin’s primitive root conjecture.

2 Simple sieve estimates

From now on, we always assume tlRis a set of primes satisfying (1.1) and that there is some prime
not in P, the smallest such we denote py. All estimates using the Landal—symbol and Vinogradov
< —symbol may depend op,, but not on any other quantity. The symbglsan ¢, with or without
subscripts, always denote primes.

. 1
Proposition 1. We haveP(z) < z/log’ zand )~ — < 1.
peEP

Proof. By (1.1) and standard application of sieve methods [10, Theorem 4.2],
11 (1 - 1) .

<$1/4 q

q¥P

SinceP omits all primes; = 1 (mod p,), (2.1) and Mertens’ estimate for primes in arithmetic progressions
imply that

(2.1) P(r) <« log
q

P(x) <

X
(log )11/ (po=1)
By partial summation) . 1/p < 1 and thus|[,.p(1 — 1/p) > 1. Applying (2.1) again and Mertens’
bound, we find thaP(z) < z/log? z. O
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Our proof of Theorem 1 requires a slight improvement to Proposition 1atstrap the method.
Lemma2.1. We haveP(z) < z(logz) /2.

Proof. Forp € P with p < z, let ¢ be the largest prime factor @f — 1, write p = 1 + ¢gm and define
y = x1/(10loglogz) - By standard counts of smooth numbers (see e.g., Theoren§lll.B of [16]), the
number ofp with ¢ < yis < z/log® . Next, fixm < z/y, and observe that# 1 (mod r) for each prime
r ¢ P. By sieve methods [10, Theorem 4.2] and Proposition 1, the numbexaf is bounded above by

% o )
n < z/m:Vr ,r1n(n mn —_— i
u / gP,rfn(n+1)(mn+1)} < log®(/m) W%n (1 p)

x/m m? +m
log?(z/y) d(m? +m)
z(loglog z)*

<
mlog® z

Sincem is composed of prime factors A, Proposition 1 implies
1 1\t
SL<qI(1-1) <o
m p
m peEP

The claimed bound follows. O

3 Themain iteration

The proof of Theorem 1 is based on recursive inequalities for sunrssobsets of?. We partition the
primesp € P according to the height! (p) of their Pratt trees. The height may be defined iteratively by

H(2) =1, H(p) =1+ max H(q).
ql(p—1)

We denote
Pn={peP:H(pp)<h} (heN)
and also define, fot € N and reals > 0,

1
Vh(s): ZW, Th:{HENMn :>p€77h}
PEPL P

We also allowh = oo in the above notations. In particulg?; = {2} andP,, = P. A trivial, but very
useful observation, is that

(3.2) peEP, = p—1€Th_1.

Our goal is to show that(s) is finite for somes < 1, which is clearly equivalent to Theorem 1.
A trivial bound which we will use often is
=1 1 A(s) 1

3.2 — = < . As) =
(3:2) @ ¢¢=1 " (¢-1) =57

(0<s<1).

a=1

Lemma 3.1. For everyh > 1, V,(s) is continuous fof < s < 1.
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Proof. It suffices to show thaV},(s) is finite. This follows by induction ok, starting fromV;(s) = 1 for
all s, and using (3.1) and (3.2) to obtain the iterative bound

Vi(s) < Y %: 11 Lo_ 1T <1+p81_1)

1—p—s

(33) meTy_1 PEPL_1 PEPL—1
< TI <1+ Als) ><ex<s>vh_1<s)_
(p—1)°
PEPh -1

We next develop more sophisticated bounds¥fpfs) in terms ofV},_;(s). It turns out that whem is
close to 1,V;(s) is dominated by primeg € Py, for whichp — 1 has only a single “large” prime factor
(meaning a prime with large heightd (¢)). Fork > j > 1, denote

Tjp={neTy \ T; : p*|n for somep € P, \ P;, or n has at least 2 prime factors®; \ P;},

Lemma3.2. Fork > j > 1 ands > 0, we have

S L < on()? (Vils) — V(5))2 %)

ns
nef“j,k
Proof. Forn € Tjk letq,, ..., qq be the prime factors of that are irP;, \ P; (“large” prime factors). Then
n = qi* - ¢;*m, wherem € Tj anday, ..., a4 are positive integers. Also, either ()> 2 or (ii) d = 1

andg?|n. We deduce that

Jr szl

nefjk qEPL\P; a= 24 qEPL\P; a= 14

Using (3.2) multiple times, we see that the first double sum on the right side issat mo

1 A(s

D DI YOI AR
¢*(¢° 1) (g—1)
qG’Pk\PJ qEPk\P]
the second double sum owganda is at most
A(s
S 2 A6 (Wls) ~ Vi),
(g—1)
qEPk\P]

and the sum om is bounded above by

H (1—1/p°)"' < Vi)

pEP;

Thus,

o0

Z 1 < Vi) (Vi(s) — V(s )) s) + A(s 22 (Vie(s

ns
TLETjA’k =2

AU Ui

Finally, d! > (d — 2)! and so the sum odhis less than &) (Vi(s)=V;(s)), 0
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We now come to the main iteration inequality. Instead of descending just orleakeue the proof of
Lemma 3.1 (that is, examining the prime factorspof 1), we descend a finite (and bounded) number of
levels, examining the prime factogs of p — 1, the prime factorg, of eachq; — 1, etc. To state our result,
we introduce a family of matrices/; ; o. Let

(3.4) Ug={1<n<Q:(nQ) =1andVp|Q suchthap € P,n # 1 (mod p)}.
By (1.1), for any@ andp € P with p { @, we havep mod Q € Ug. Forj > 1,s > 0and@ € N, let
M; ; o be theQ x @ matrix whose entries are given by

(3.5) Mojqlab)= > m™®

mETj
am=b (mod Q)

if a € Ug andb € Ug, andM, ; o(a,b) = 0 otherwise. For a generic square matkikwith non-negative
entries, we introduce notation for row sums and column sums:

Ro(M) =Y M(a,b), R(M)= max Ro(M),  Cy(M) = > M(a,b), C(M)= max Cy(M).
b a

Lemma 3.3. Suppose that € N, h > j > n, @ € NandP;_,, contains every prime i® which divides
Q. Then, forM = M ; o,

mo Mn
G <V + Y Remed @O o )2 (1 (9) = Vi (9)°.
qefphfn\’ijn

Proof. We'll first show, by induction om, that for any integergé and; satisfyingh > j > n,

(3.6) Vi(s) < Vj(s) + 2nA(s)2€ Vi1 (V;,_y (s) — Vj_n(s))?

DD DR D DR D

s s
q}SL n—1

Gn€PL—n\Pj—n mnp€Tj n n Mp—1€Tj _ni1 my €T _1
mn‘]n“l‘lzlqn.fl mn71Qn71+‘1ZQn72 m1q1+1:q0
gn—1 prime gn—2 prime @ prime
To begin the induction, we use (3.1) and Lemma 3.2 to obtain
1
Vi(s) = V;(s) + Z @=1°
qo—lEThfl\Tj,1 0
1
< ‘/j(s)+2)\(8)2e)\(s)v}171(5) (Vi1 (s) —‘/}‘_1(8))2—1— Z W
qo —

do—1€T;_1 h-1

In the final sum, we may writg, = 1 + m,q,, wherem; € T;_; andq; € Py_1 \ Pj—1. This proves (3.6)
whenn = 1.

Now suppose that (3.6) holds for somgand assume that > j > n + 1. In the multiple sum in (3.6),
replacey;, ® with (¢, — 1)~* and observe that, — 1 € T},_,,_1 \ Tj_,—1. The contribution to the multiple

sum from those summands with — 1 € Tj_,,_1 r—n—1 IS, by Lemma 3.2 and (3.3), at most

2A(5)2@ Vi) (Vi () = Vi () Y myt e S g

mnEijn TI’LlETj,1
2X(s5)2Vi105) (1, () — Vien_1(s))? &) (Vien(s)++Vj-1(s))
2(5)? DV E) (V) (5) = Vimna(5))*.

NN
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If gn—1€Tj_p_1h—n—1,theng, = 1+gui1mui1, Whereg, 11 € Ph_pn—1\Pj_pn—1 andmy 41 € Tj_p_1.
This proves (3.6) witm replaced by: + 1. By induction, (3.6) follows for alh.

In (3.6), we enlarge the range of all sums-.ento m; € T;_;. Also, for0 < 7 < n — 1, we relax the
condition thatg; is prime tog; = a; (mod Q), wherea; € Ug. Recalling (3.5), we find that the multiple
sum in (3.6) is at most

X @ > myte Y > my

Gn€PL—n\Pj—n an—1€Uqg mp €Ty 1 ay€Uq my €T _1
Mpgn+1=a,_1 (mod Q) mya;+1=a, (mod Q)
= > @ Y M(gomod Q an1)M(an_1,an-2) - M(ay,ap)
QHE'Ph—n\ij’n An—15---H (IOEUQ
= D 4Ry mod (M)
Qneph—n\Pj—n
This completes the proof of the lemma. O

AssumingV(s) exists anch andj are largeV,_1(s) — Vj_,(s) will be very small if j is large. Con-
sequently, of the three terms on the right side of the inequality in Lemma 3.3, therthir be regarded as
“small”, since itis quadratic i¥},—_1 (s) — V;_,(s). The second term is at magt;,_; (s) — V;_n(s))R(M™),
and can be regarded as larger than the third term. It can also be madsnadhyprovided thal/ is a con-
tracting matrix (all eigenvalues lie inside the unit circle) anis large enough. Under this assumption on
M, it follows that

Vi(s) < Vj(s) + (Vh—1(s) — Vj-n(9))e,
wheres is small. Iteration of this inequality, withandn fixed, then shows that the sequefigés), Vi (s), ...
is bounded. The next lemma makes this heuristic precise.

Lemma 3.4. Suppose that for someand forQ = Hpgy P, M1 ¢ IS a contracting matrix. Then for some
s < 1, Vo(s) is finite.

Proof. By assumptionz(M7 ., o) < 1 7 for somen. Let D = V(1) (D exists by Proposition 1) and let
1

100ne2(P+2)”

Fix j large enough so th&t> n, P;_,, contains all primes i® which are< y, andV;(1) — V;_,(1) < /2.
By Lemma 3.1,V;(s) andV] n(s) are continuous fob < s < 1, as are all entries a¥/, ; o. Note that

E =

R(MT; o) < R(M', o) < ;- Therefore, there is an€ [0.9,1) such that
(@) Vj(s) < D + 1,
(b) V( ) = Vin(s) <e,

(€) R(M; ) <3
Sinces > 0.9, we havek(s) < 2. By Lemma 3.3 and (c), for any > 7, it follows that

3 Vit (5) = Via(s) + 80€M0 1) (Vi1 (5) = Via(9))°

Fork > 0, letxy, = Vi (s) — Vj(s). Thenzy = 0 and, by (a) and (b), fok > 1 we have

Vi(s) < Vj(s) +

21 < (o1 Vi(s) = Via(s) + 8ne 01050 (a1 4 Vi(s) = Vya(s)?

— | =

< S(zpoy +2) 4 8@ PHIFTe) (g 4 6)2 = f(z4_y).

w
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We havef(0) > 0, f”(x) > 0forz > 0and

2 2 32
-z 2n(D+1+e) (9.)2 ~ 2 .
fle) 3€+8n (26)° < 35+ 100£<5

Therefore,f(z) = x has a unique roat € (0,¢) and it follows thatimy_.., zx < Z. Consequently,
Vo(s) < Vj(s) +2 < D+1+e. O

4 Matrix eigenvalues and the proof of Theorem 1

Throughout this section, we assume tQat [[ _, p andM = M o, . Observe that by Proposition 1,

PLY

(4.1) K=1] <1 - 1) > 1.

peEP p

Because all entries d¥/ are nonnegative, the Perron-Frobenius theorem implies that thereigesvalue

of largest modulus which is real and positive. The matritEare similar to the matrices studied in g2],
and we will likewise focus on bounding column sums\éf However, the estimation problem is much more
complicated than the analogous problem in [7].

Lemmad4.1. Foranyb € Ugp, letd = (b —1,Q) andd’ = =2, Then
_ o(d) 1
(4.2) GM) ==~ >
=
(k,Q/d)=1
(4.3)
where
(4.3) Vp <ywithp € P,k £V (mod p).

Proof. By the definition ofUg in (3.4),2|d and for allp|d, p € P. In (3.5), thereforegm +1 = b (mod Q)
implies thatd|m. Writing m = dk, we have(k, Q/d) = 1 andak = b’ (mod @Q/d). Sincea € Ug, a # 1
(mod p) for anyp < y with p ¢ P. Hence, (4.3) holds. Therefore, by (3.5),

1 1 1
Cy(M) = >~ > = > c#{a€Uqg:ak= Y (mod Q/d)}.
a€Uq keTw k€T
ak=b" (mod Q/d) (k,Q/d)=1

(4.3) (4.3)
For everyk € T, satisfying(k,@/d) = 1 and (4.3), there is a unique solutienmod @/d of the con-
gruencenk = b (mod @/d) and moreover this solutions satisfies Ug. Thus, there aré(d) solutions
a € Ug, and this completes the proof. O

Notice that if we ignore condition (4.3), then we obtain from (4.2) the uppent

$(d) L ¢(d) 1\~ 1\~
4.4 Cp(M) < —+ - = 1--) = 1—=) .
(4.4) <= > +=-5 1l ) 11 5
k€T peP PEP,p>yY
(k,Q/d)=1 pldorp>y
The product on the far right side of (4.4) is always greater than 1ehemit tends to 1 ag — oo by
Proposition 1. In order to obtain a bouti{ M) < 1, itis necessary to use (4.3) to eliminate some numbers
k from the sum in (4.4). However, ¥ € T, with (k,Q/d) = 1 andk < y, then only primes dividingl
may dividek. In the worst casd = 2, the only numberg < y that are available to eliminate are powers of
2. If there is a prime ¢ P for which 2 is a primitive root (generator 0% /pZ)*), then we will succeed.
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Lemma4.2. Suppose ¢ P and 2 is a primitive root op. Then, for large enough depending om,
C(M)<1-2"PK,
whereK is defined in(4.1).

Proof. For anyb € Ug, letd = (b — 1,Q) andt/ = bjTl as before. Sincé # 1 (mod p), we have
(¥,p) = 1. Hence, there is an exponeht {0,1,...,p — 2} such thak’ = ¥ (mod p). By Lemma 4.1

and (4.4),
$(d) 11 1\ o, 0(d)
< == - < - = — o2 p A
Cy(M) < = ZkQ(,\Hlp 2P
k€T pEP
(k,Q/d)=1 P>y
The lemma follows upon observing that
inf o(d) =K
d€Too
and that ify is large then
-1
11 (1—1> <14 217PK. O
peEP p
P>y

Remarks. It is conjectured that there are infinitely many primes that have 2 as a primitote but
this is an open problem. Hooley [12] showed that the Riemann Hypothesisef@edekind zeta functions
Ck, (s) for the number fieldd<, = Q(2'/7,€*™/7), wherer runs over the primes, implies that the number of
primesp < x which have 2 as a primitive rootis cx/ log «, wherec = [[,.(1— ﬁ) =0.3739.... This
asymptotic formula is known as Artin’s primitive root conjecture for the badétfue, then by Proposition
1, most of these primes are notfit) and we obtain Theorem 1 upon invoking Lemma 4.2. For more about
Artin’s conjecture, the reader may consult the comprehensive surirele§14].

Unconditionally, Lemmas 3.4 and 4.2 imply Theorem 1 in the case that 2 is a pringtv®fp, (p, €
{3,5,11,13,19,...}), or if there is a primg; = 1 (mod p,) with 2 as a primitive root; for example if
po = 7 then we may take = 29.

There is a way around invoking Artin’s conjecture: by examining column afresiall powers of\/, we
succeed if there is a prime¢ P with (Z/pZ)* generated by a bounded set of small primes. The following
result of Gupta and Murty [9] supplies us with the necessary pgime

Lemma 4.3. For > z/log? z primesp < z, (Z/pZ)* is generated by 2, 3 and 5.

Remarks. Heath-Brown [11] proved the stronger statement thatsfos:/ log? 2 primesp < , either 2,
3 or 5is a primitive root op. Our argument below, in fact, requires only the weaker statement thedfioe
k and primesp,, ..., px, each with 2 as a primitive root, there ase x/ log? 2 primesp < z for which
(Z/pZ)* is generated by, p,, . .., pr. We would then iterate Lemma 4.4 beldimes instead of twice.

Utilizing Lemma 4.3, we will show that’(M?) < 1 for largey. Our main tool is the following, which
roughly says that i, (M*) < 1 for everyb lying in some arithmetic progression, thép(M*+1) < 1 for
all b lying in a larger arithmetic progression.

Lemma 4.4. Letp be a prime inP with 2 as a primitive root, and let € T, satisfyn|Q andp { n. Let
u € N. Suppose that for largg and for allb = 1 (mod pn), Cp(M*) < 1 — 6 whereé > 0. Then, for
large enoughy (depending om, n, 6, py, v) and allb = 1 (mod n), Cp(M“*1) <1 — 4§, where

, 0K

_ﬂ‘
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Proof. Suppose thal € Ug with b = 1 (mod n). If p|(b — 1), we apply (4.4) and the general inequality
Cy(AB) < C(A)Cy(B) to obtain

Cy(M“) < CyM™)C(M) < (1-6) ] <1 - 1)_1 <1-<iov

2
PEP,p>y p

if y is large enough. Now assurpé (b — 1). Asin Lemma 4.1, puf = (b — 1,Q) andb’ = b L. We have

Co(M™) = " Co(M™)M(a,b)

aclUq
=Yoo Y o
(4.5) a€lUq meT

am~+1=b (mod Q)

1 1 u
== 2 7 2 G
BO/D=1 okt (e
( Uy ak=b (mod Q/d)

For eachk, the congruencek = V' (mod @/d) has a unique solutiom mod @/d, hence there are(d)
solutionsa € Ug. By assumption, there is@ € {0,1,...,p — 2} with 2° = ¥ (mod p). In (4.5), we
use the crude bound,(M*) < C(M") < C(M)" for all pairsa, k except when botlt = 2¢ anda = 1
(mod n). In the latter casey = 1 (mod p) as well, hence = 1 (mod pn) andC,(M*) < 1 —§. Also,
sincen|@ andb =1 (mod n), we haven|d. By (4.4) and (4.5),

d 1 1
S .

Cp(MYH) < C(M)* + % > 1-9)

k€T (lGUQ aGUQ

(k,Q/d)=1 a=1 (mod nQ/d) a=1 (mod nQ/d)

o B(d) 1§ (d
< max (1,C(M)*) y Z %—%¢

k€Too
(k,Q/d)=1

1 —(u+1) 5 d
< — - - — — .
<05 wwld)

PEP,p>y

Since¢(d/n) > ¢(d)/n andgp(d)/d > K, upon recalling the definition of we conclude that

—(u+1)
oy < I <1—1) LS |

p—2
PEP,p>y P 2

if y is large enough. O

Proof of Theorem 1If py € {3,5}, Lemma 4.2 (withp = pg) implies thatC (M) < 1 for large enoughy.
Hence, by Lemma 3.4/, (s) is finite for somes < 1.

Now assume that € P and5 € P. Combining Lemmas 2.1 and 4.3, we find that there is a pgimg P
for which 2,3 and 5 generat@/p,Z)*. Following the proof of Lemma 4.2, for anlye Ug with b = 1

mod 30), there are exponents, as, a- € {0,1,...,p; —2} sotha*2335"> = §' (mod p,). As before,
3, 05 1 1
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Y= (bﬁffl@. By (4.3),k = 2“23"#5% is excluded from the sum in (4.2). By (4.4)jfis large enough then

cane T (1) e 1 () e

P
PEP,p>y p PEP,p>y p 307

whereé = K/30p1_1. By Lemma 4.4 withn = 6, p = 5 andu = 1, we find that for large enough,
Cy(M?) < 1 — ¢ foreveryb =1 (mod 6), where
, Ko
0 = 556

A second application of Lemma 4.4, with = 2, p = 3 andu = 2 implies that foreveryb € Uy,
Cy(M3) < 1 - §"if y is large enough, wher®’ = K§'/16. Thus, the dominant eigenvalue df? is at
most1 — §”, hence the dominant eigenvalueldfis < (1 — §”)'/3 < 1. Finally, applying Lemma 3.4, we
find thatV(s) is finite for somes < 1. It follows immediately that?(x) = O(x*). O
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