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ABSTRACT. Leveraging recent advances in additive combinatorics, we exhibit explicit matrices satisfying the
Restricted Isometry Property with better parameters. Namely, for ε “ 3.26 ¨ 10´7, large k and k2´ε

ď N ď

k2`ε, we construct nˆN RIP matrices of order k with k “ Ωpn1{2`ε{4
q.

1. INTRODUCTION

Suppose 1 ď k ď n ď N and 0 ă δ ă 1. A ‘signal’ x “ pxjqNj“1 is said to be k-sparse if x has at most k
nonzero coordinates. An n ˆN matrix Φ is said to satisfy the Restricted Isometry Property (RIP) of order
k with constant δ if for all k-sparse vectors x we have

(1.1) p1´ δq}x}22 ď }Φx}22 ď p1` δq}x}
2
2.

While most authors work with real signals and matrices, in this paper we work with complex matrices for
convenience. Given a complex matrix Φ satisfying (1.1), the 2n ˆ 2N real matrix Φ1, formed by replacing
each element a` ib of Φ by the 2ˆ 2 matrix p a b

´b a q, also satisfies (1.1) with the same parameters k, δ.
We know from Candès, Romberg and Tao that matrices satisfying RIP have application to sparse signal

recovery (see [7, 8, 9]). Given n,N, δ, we wish to find n ˆ N RIP matrices of order k with constant δ,
and with k as large as possible. If the entries of Φ are independent Bernoulli random variables with values
˘1{

?
n, then with high probability, Φ will have the required properties for k of order close to δn; in different

language, this was first proved by Kashin [13].
It is an open problem to find good explicit constructions of RIP matrices; see Tao’s Weblog [17] for a

discussion of the problem. All existent explicit constructions of RIP matrices are based on number theory.
Prior to the work of Bourgain, Dilworth, Ford, Konyagin and Kutzarova [3], there were many constructions,
e.g. Kashin [12], DeVore [10] and Nelson and Temlyakov [15], producing matrices with δ small and order

(1.2) k « δ

?
n log n

logN
.

The
?
n barrier was broken by the aforementioned authors in [3]:

Theorem A. [3]. There are effective constants ε ą 0, ε1 ą 0 and explicit numbers k0, c ą 0 such that for
any positive integers k ě k0 and k2´ε ď N ď k2`ε, there is an explicit nˆN RIP matrix of order k with
k ě cn1{2`ε{4 and constant δ “ k´ε

1

.

As reported in [4], the construction in [3] produces a value ε « 2 ¨ 10´22. An improved construction
was presented in [4], giving Theorem A with ε “ 3.6 ¨ 10´15. The values of ε depend on two constants
in additive combinatorics, which have since been improved. Incorporating these improvements into the
argument in [4], we will deduce the following.
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Theorem 1. Let ε “ 3.26 ¨10´7. There are ε1 ą 0 and effective numbers k0, c ą 0 such that for any positive
integers k ě k0 and k2´ε ď N ď k2`ε, there is an explicit nˆN RIP matrix of order k with k ě cn1{2`ε{4

and constant δ “ k´ε
1

.

As of this writing, the constructions in [3] and [4] remain the only explicit constructions of RIP matrices
which exceed the

?
n barrier for k.

The proof of Theorem 1 depends on two key results in additive combinatorics. For subsets A,B of an
additive finite group G, we write

A˘B “ ta˘ b : a P A, b P Bu,

EpA,Bq “ #tpa1, a2, b1, b2q : a1 ` b1 “ a2 ` b2; a1, a2 P A; b1, b2 P Bu.

Also set x ¨B “ txb : b P Bu. Here we will mainly work with the group of residues modulo a prime p.

Proposition 1. For some c0, the following holds. AssumeA,B are subsets of residue classes modulo p, with
0 R B and |A| ě |B|. Then

(1.3)
ÿ

bPB

EpA, b ¨Aq “ O
`

pminpp{|A|, |B|q´c0 |A|3|B|
˘

.

This theorem, without an explicit c0, was proved by Bourgain [2]. The first explicit version of Proposition
1, with c0 “ 1{10430, is given in Bourgain and Glibuchuk [6], and this is the value used in the papers [3, 4].
Murphy and Petridis [14, Lemma 13] made a great improvement, showing that Proposition 1 holds with
c0 “ 1{3. It is conceivable that c0 may be taken to be any number less than 1. Taking A “ B we see that c0

cannot be taken larger than 1.
We also need a version of the Balog–Szemerédi–Gowers lemma, originally proved by Balog and Sze-

merédi [1] and later improved by Gowers [11]. The version we use is a later improvement due to Schoen
[16].

Proposition 2. For some positive c1, c2, c3 and c4, the following holds. If EpA,Aq “ |A|3{K, then there
exists A1, B1 Ď A with |A1|, |B1| ě c2

|A|
Kc4 and |A1 ´B1| ď c3K

c1 |A1|1{2|B1|1{2.

The constants c2, c3 are relatively unimportant. The best result to date is due to Schoen [16], who showed
that any c1 ą 7{2 and c4 ą 3{4 is admissible. It is conjectured that c1 “ 1 is admissible. The papers [3, 4]
used Proposition 2 with the weaker values c1 “ 9 and c4 “ 1, this deducible from Bourgain and Garaev [5,
Lemma 2.2].

2. CONSTRUCTION OF THE MATRIX

Our construction is identical to that in [4]. We fix an even integer m ě 100 and let p be a large prime.
For x P Z, let eppxq “ e2πix{p. Let

(2.1) ua,b “
1
?
p
peppax

2 ` bxqq1ďxďp.

We take

(2.2) α “
1

2m
, A “ t1, 2, . . . tpαuu.

To define the set B, we take

β “
1

2.01m
, r “

Z

β log p

log 2

^

, M “ t22.01m´1u,
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and let

(2.3) B “

#

r
ÿ

j“1

xjp2Mq
j´1 : x1, . . . , xr P t0, . . . ,M ´ 1u

+

.

We interpret A ,B as sets of residue classes modulo p. We notice that all elements of B are at most p{2,
and |A ||B| lies between two constant multiples of p1`α´β “ p1`1{p402mq.

Given large k and k2´ε ď N ď k2`ε, let p be a prime in the interval rk2´ε, 2k2´εs (such p exists by
Bertrand’s postulate). Let Φp be a pˆp|A |¨|B|qmatrix formed by the column vectors ua,b for a P A , b P B
(the columns may appear in any order). We also have

(2.4) if ε ď
1

403m
, then N ď p

2`ε
2´ε ď |A ||B|.

Take Φ to be the matrix formed by the first N columns of Φp. Let n “ p. Our task is to show that Φ satisfies
the RIP condition with δ “ p´ε

1

for some constant ε1 ą 0, and of order k.

3. MAIN TOOLS

Lemma 3.1. Assume that c0 ď 1 and that Proposition 1 holds. Fix an even integer m ě 100, and define
α,A ,B by (2.2) and (2.3). Suppose that p is sufficiently large in terms of m. Assume also that for some
constant c5 ą 0 and constant 0 ă γ ď 1

4m , B satisfies

(3.1) @ S Ď B with |S| ě p0.49, EpS, Sq ď c5p
´γ |S|3.

Define the vectors ua,b by (2.1). Then for any disjoint sets Ω1,Ω2 Ă A ˆ B such that |Ω1| ď
?
p,

|Ω2| ď
?
p, the inequality

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

pa1,b1qPΩ1

ÿ

pa2,b2qPΩ2

xua1,b1 ,ua2,b2y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ O
´

p1{2´ε1plog pq2
¯

holds, where

(3.2) ε1 “

c0γ
8 ´

47α´23γ
2m

1` 93{m` c0{2
.

The constant implied by the O-symbol depends only on c0, γ and m.

Lemma 3.1 follows by combining Lemmas 2 and 4 from [4]; the assumption of Proposition 1 is inadver-
tently omitted in the statement of [4, Lemma 4].

Using Lemma 3.1, we shall show the following.

Theorem 2. Assume the hypotheses of Lemma 3.1, let ε “ 2ε1 ´ 2ε2
1 and assume that ε ď 1

403m . There is
ε1 ą 0 such that for sufficiently large k and k2´ε ď N ď k2`ε, there is an explicit n ˆ N RIP matrix of
order k with n “ Opk2´εq and constant δ “ k´ε

1

.

To prove Theorem 2, we first recall another additive combinatorics result from [4].

Lemma 3.2 ([4, Theorem 2, Corollary 2]). Let M be a positive integer. For the set B Ă Fp defined in (2.3)
and for any subsets A,B Ă B, we have |A´B| ě |A|τ |B|τ , where τ is the unique positive solution of

ˆ

1

M

˙2τ

`

ˆ

M ´ 1

M

˙τ

“ 1.
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From [4] we have the easy bounds

(3.3)
log 2

logM

ˆ

1´
1

logM

˙

ď 2τ ´ 1 ď
log 2

logM
.

Corollary 1. Take B as in (2.3) and assume Proposition 2. Then (3.1) holds with

γ “
0.49p2τ ´ 1q

c1 ` c4p2τ ´ 1q
.

Proof. Just like the proof of [4, Lemma 3], except that we incorporate Proposition 2. Suppose that S Ď B
with |S| ě p0.49 and EpS, Sq “ |S|3{K. By Proposition 2, there are sets T1, T2 Ă S such that |T1|, |T2| ě

c2
|S|
Kc4 and |T1 ´ T2| ď c3K

c1 |T1|
1{2|T2|

1{2. By Lemma 3.2,

c3K
c1 |T1|

1{2|T2|
1{2 ě |T1 ´ T2| ě |T1|

τ |T2|
τ ,

and hence

c3K
c1 ě

`

|T1| ¨ |T2|
˘τ´1{2

ě

ˆ

c2p
0.49

Kc4

˙2τ´1

.

It follows that K ě p1{c5qp
´γ for an appropriate constant c5 ą 0. �

Finally, we need a tool from [3] which states that in (1.1) we need only consider vectors x whose com-
ponents are 0 or 1 (so-called flat vectors).

Lemma 3.3 ([3, Lemma 1]). Let k ě 210 and s be a positive integer. Assume that for all i ‰ j we
have xui,ujy ď 1{k. Also, assume that for some δ ě 0 and any disjoint J1, J2 Ă t1, . . . , Nu with
|J1| ď k, |J2| ď k we have

ˇ

ˇ

ˇ

ˇ

ˇ

C

ÿ

jPJ1

uj ,
ÿ

jPJ2

uj

Gˇ

ˇ

ˇ

ˇ

ˇ

ď δk.

Then Φ satisfies the RIP property of order 2sk with constant 44s
?
δ log k.

Now we show how to deduce Theorem 2. By Lemma 3.1 and standard bounds for Gauss sums, Φ satisfies
the conditions of Lemma 3.3 with k “ t

?
pu and δ “ Opp´ε1 log2 pq. Let ε0 ă ε1{2 and take s “ tpε0u. By

Lemma 3.3, Φ satisfies RIP with order ě p1{2`ε0 and constant Opp´ε1{2`ε0plog pq3q. If ε0 is sufficiently
close to ε1{2, Theorem 2 follows with

ε “ 2´
2

1` 2ε0
“

4ε0

1` 2ε0
ą 2ε1 ´ 2ε2

1.

To prove Theorem 1, we take the construction in Section 2. We have (3.1) by Corollary 1. Also take

η “ 10´100, c0 “
1

3
, c1 “ 7{2` η, c4 “ 3{4` η, m “ 7586.

These values were optimized with a computer search. By Corollary 1 and (3.3), we have γ ě 9.182 ¨ 10´6.
It is readily verified that γ ď 1

4m , ε1 ą 1.631 ¨ 10´7 and ε “ 2ε1 ´ 2ε2
1 satisfies 3.26 ¨ 10´7 ď ε ď 1

403m .
Theorem 1 now follows.
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