EXPLICIT RIP MATRICES: AN UPDATE

KEVIN FORD, DENKA KUTZAROVA, AND GEORGE SHAKAN

Abstract

Leveraging recent advances in additive combinatorics, we exhibit explicit matrices satisfying the Restricted Isometry Property with better parameters. Namely, for $\varepsilon=3.26 \cdot 10^{-7}$, large k and $k^{2-\varepsilon} \leqslant N \leqslant$ $k^{2+\varepsilon}$, we construct $n \times N$ RIP matrices of order k with $k=\Omega\left(n^{1 / 2+\varepsilon / 4}\right)$.

1. Introduction

Suppose $1 \leqslant k \leqslant n \leqslant N$ and $0<\delta<1$. A 'signal' $\mathbf{x}=\left(x_{j}\right)_{j=1}^{N}$ is said to be k-sparse if \mathbf{x} has at most k nonzero coordinates. An $n \times N$ matrix Φ is said to satisfy the Restricted Isometry Property (RIP) of order k with constant δ if for all k-sparse vectors \mathbf{x} we have

$$
\begin{equation*}
(1-\delta)\|\mathbf{x}\|_{2}^{2} \leqslant\|\Phi \mathbf{x}\|_{2}^{2} \leqslant(1+\delta)\|\mathbf{x}\|_{2}^{2} \tag{1.1}
\end{equation*}
$$

While most authors work with real signals and matrices, in this paper we work with complex matrices for convenience. Given a complex matrix Φ satisfying (1.1), the $2 n \times 2 N$ real matrix Φ^{\prime}, formed by replacing each element $a+i b$ of Φ by the 2×2 matrix $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$, also satisfies 1.1) with the same parameters k, δ.

We know from Candès, Romberg and Tao that matrices satisfying RIP have application to sparse signal recovery (see $[\mathbf{7}, \mathbf{8}, \mathbf{9}]$). Given n, N, δ, we wish to find $n \times N$ RIP matrices of order k with constant δ, and with k as large as possible. If the entries of Φ are independent Bernoulli random variables with values $\pm 1 / \sqrt{n}$, then with high probability, Φ will have the required properties for k of order close to δn; in different language, this was first proved by Kashin [13].

It is an open problem to find good explicit constructions of RIP matrices; see Tao's Weblog [17] for a discussion of the problem. All existent explicit constructions of RIP matrices are based on number theory. Prior to the work of Bourgain, Dilworth, Ford, Konyagin and Kutzarova [3], there were many constructions, e.g. Kashin [12], DeVore [10] and Nelson and Temlyakov [15], producing matrices with δ small and order

$$
\begin{equation*}
k \approx \delta \frac{\sqrt{n} \log n}{\log N} \tag{1.2}
\end{equation*}
$$

The \sqrt{n} barrier was broken by the aforementioned authors in [3]:
Theorem A. [3]. There are effective constants $\varepsilon>0, \varepsilon^{\prime}>0$ and explicit numbers $k_{0}, c>0$ such that for any positive integers $k \geqslant k_{0}$ and $k^{2-\varepsilon} \leqslant N \leqslant k^{2+\varepsilon}$, there is an explicit $n \times N$ RIP matrix of order k with $k \geqslant c n^{1 / 2+\varepsilon / 4}$ and constant $\delta=k^{-\varepsilon^{\prime}}$.

As reported in [4], the construction in [3] produces a value $\varepsilon \approx 2 \cdot 10^{-22}$. An improved construction was presented in [4], giving Theorem A with $\varepsilon=3.6 \cdot 10^{-15}$. The values of ε depend on two constants in additive combinatorics, which have since been improved. Incorporating these improvements into the argument in [4], we will deduce the following.

Date: October 4, 2022.
Key words and phrases. Compressed sensing, restricted isometry property.

Theorem 1. Let $\varepsilon=3.26 \cdot 10^{-7}$. There are $\varepsilon^{\prime}>0$ and effective numbers $k_{0}, c>0$ such that for any positive integers $k \geqslant k_{0}$ and $k^{2-\varepsilon} \leqslant N \leqslant k^{2+\varepsilon}$, there is an explicit $n \times N$ RIP matrix of order k with $k \geqslant c n^{1 / 2+\varepsilon / 4}$ and constant $\delta=k^{-\varepsilon^{\prime}}$.

As of this writing, the constructions in [3] and [4] remain the only explicit constructions of RIP matrices which exceed the \sqrt{n} barrier for k.

The proof of Theorem 1 depends on two key results in additive combinatorics. For subsets A, B of an additive finite group G, we write

$$
\begin{aligned}
A \pm B & =\{a \pm b: a \in A, b \in B\} \\
E(A, B) & =\#\left\{\left(a_{1}, a_{2}, b_{1}, b_{2}\right): a_{1}+b_{1}=a_{2}+b_{2} ; a_{1}, a_{2} \in A ; b_{1}, b_{2} \in B\right\}
\end{aligned}
$$

Also set $x \cdot B=\{x b: b \in B\}$. Here we will mainly work with the group of residues modulo a prime p.
Proposition 1. For some c_{0}, the following holds. Assume A, B are subsets of residue classes modulo p, with $0 \notin B$ and $|A| \geqslant|B|$. Then

$$
\begin{equation*}
\sum_{b \in B} E(A, b \cdot A)=O\left(\left(\min (p /|A|,|B|)^{-c_{0}}|A|^{3}|B|\right)\right. \tag{1.3}
\end{equation*}
$$

This theorem, without an explicit c_{0}, was proved by Bourgain [2]. The first explicit version of Proposition 1. with $c_{0}=1 / 10430$, is given in Bourgain and Glibuchuk [6], and this is the value used in the papers [3, 4]. Murphy and Petridis [14, Lemma 13] made a great improvement, showing that Proposition 1 holds with $c_{0}=1 / 3$. It is conceivable that c_{0} may be taken to be any number less than 1 . Taking $A=B$ we see that c_{0} cannot be taken larger than 1 .

We also need a version of the Balog-Szemerédi-Gowers lemma, originally proved by Balog and Szemerédi [1] and later improved by Gowers [11]. The version we use is a later improvement due to Schoen [16].

Proposition 2. For some positive c_{1}, c_{2}, c_{3} and c_{4}, the following holds. If $E(A, A)=|A|^{3} / K$, then there exists $A^{\prime}, B^{\prime} \subseteq A$ with $\left|A^{\prime}\right|,\left|B^{\prime}\right| \geqslant c_{2} \frac{|A|}{K^{c_{4}}}$ and $\left|A^{\prime}-B^{\prime}\right| \leqslant c_{3} K^{c_{1}}\left|A^{\prime}\right|^{1 / 2}\left|B^{\prime}\right|^{1 / 2}$.

The constants c_{2}, c_{3} are relatively unimportant. The best result to date is due to Schoen [16], who showed that any $c_{1}>7 / 2$ and $c_{4}>3 / 4$ is admissible. It is conjectured that $c_{1}=1$ is admissible. The papers [3, 4] used Proposition 2 with the weaker values $c_{1}=9$ and $c_{4}=1$, this deducible from Bourgain and Garaev [5], Lemma 2.2].

2. Construction of the matrix

Our construction is identical to that in [4]. We fix an even integer $m \geqslant 100$ and let p be a large prime. For $x \in \mathbb{Z}$, let $e_{p}(x)=e^{2 \pi i x / p}$. Let

$$
\begin{equation*}
\mathbf{u}_{a, b}=\frac{1}{\sqrt{p}}\left(e_{p}\left(a x^{2}+b x\right)\right)_{1 \leqslant x \leqslant p} \tag{2.1}
\end{equation*}
$$

We take

$$
\begin{equation*}
\alpha=\frac{1}{2 m}, \quad \mathscr{A}=\left\{1,2, \ldots\left\lfloor p^{\alpha}\right\rfloor\right\} . \tag{2.2}
\end{equation*}
$$

To define the set \mathscr{B}, we take

$$
\beta=\frac{1}{2.01 m}, \quad r=\left\lfloor\frac{\beta \log p}{\log 2}\right\rfloor, \quad M=\left\lfloor 2^{2.01 m-1}\right\rfloor
$$

and let

$$
\begin{equation*}
\mathscr{B}=\left\{\sum_{j=1}^{r} x_{j}(2 M)^{j-1}: x_{1}, \ldots, x_{r} \in\{0, \ldots, M-1\}\right\} . \tag{2.3}
\end{equation*}
$$

We interpret \mathscr{A}, \mathscr{B} as sets of residue classes modulo p. We notice that all elements of \mathscr{B} are at most $p / 2$, and $|\mathscr{A}||\mathscr{B}|$ lies between two constant multiples of $p^{1+\alpha-\beta}=p^{1+1 /(402 m)}$.

Given large k and $k^{2-\varepsilon} \leqslant N \leqslant k^{2+\varepsilon}$, let p be a prime in the interval $\left[k^{2-\varepsilon}, 2 k^{2-\varepsilon}\right]$ (such p exists by Bertrand's postulate). Let Φ_{p} be a $p \times(|\mathscr{A}| \cdot|\mathscr{B}|)$ matrix formed by the column vectors $\mathbf{u}_{a, b}$ for $a \in \mathscr{A}, b \in \mathscr{B}$ (the columns may appear in any order). We also have

$$
\begin{equation*}
\text { if } \varepsilon \leqslant \frac{1}{403 m} \text {, then } N \leqslant p^{\frac{2+\varepsilon}{2-\varepsilon}} \leqslant|\mathscr{A}||\mathscr{B}| \text {. } \tag{2.4}
\end{equation*}
$$

Take Φ to be the matrix formed by the first N columns of Φ_{p}. Let $n=p$. Our task is to show that Φ satisfies the RIP condition with $\delta=p^{-\varepsilon^{\prime}}$ for some constant $\varepsilon^{\prime}>0$, and of order k.

3. Main tools

Lemma 3.1. Assume that $c_{0} \leqslant 1$ and that Proposition \square holds. Fix an even integer $m \geqslant 100$, and define $\alpha, \mathscr{A}, \mathscr{B}$ by (2.2) and 2.3). Suppose that p is sufficiently large in terms of m. Assume also that for some constant $c_{5}>0$ and constant $0<\gamma \leqslant \frac{1}{4 m}, \mathscr{B}$ satisfies

$$
\begin{equation*}
\forall S \subseteq \mathscr{B} \text { with }|S| \geqslant p^{0.49}, \quad E(S, S) \leqslant c_{5} p^{-\gamma}|S|^{3} . \tag{3.1}
\end{equation*}
$$

Define the vectors $\mathbf{u}_{a, b}$ by (2.1). Then for any disjoint sets $\Omega_{1}, \Omega_{2} \subset \mathscr{A} \times \mathscr{B}$ such that $\left|\Omega_{1}\right| \leqslant \sqrt{p}$, $\left|\Omega_{2}\right| \leqslant \sqrt{p}$, the inequality

$$
\left|\sum_{\left(a_{1}, b_{1}\right) \in \Omega_{1}} \sum_{\left(a_{2}, b_{2}\right) \in \Omega_{2}}\left\langle\mathbf{u}_{a_{1}, b_{1}}, \mathbf{u}_{a_{2}, b_{2}}\right\rangle\right|=O\left(p^{1 / 2-\varepsilon_{1}}(\log p)^{2}\right)
$$

holds, where

$$
\begin{equation*}
\varepsilon_{1}=\frac{\frac{c_{0} \gamma}{8}-\frac{47 \alpha-23 \gamma}{2 m}}{1+93 / m+c_{0} / 2} . \tag{3.2}
\end{equation*}
$$

The constant implied by the O-symbol depends only on c_{0}, γ and m.
Lemma 3.1 follows by combining Lemmas 2 and 4 from [4]; the assumption of Proposition 1 is inadvertently omitted in the statement of [4] Lemma 4].

Using Lemma 3.1, we shall show the following.
Theorem 2. Assume the hypotheses of Lemma 3.1 let $\varepsilon=2 \varepsilon_{1}-2 \varepsilon_{1}^{2}$ and assume that $\varepsilon \leqslant \frac{1}{403 m}$. There is $\varepsilon^{\prime}>0$ such that for sufficiently large k and $k^{2-\varepsilon} \leqslant N \leqslant k^{2+\varepsilon}$, there is an explicit $n \times N$ RIP matrix of order k with $n=O\left(k^{2-\varepsilon}\right)$ and constant $\delta=k^{-\varepsilon^{\prime}}$.

To prove Theorem 2, we first recall another additive combinatorics result from [4].
Lemma 3.2 ([4, Theorem 2, Corollary 2]). Let M be a positive integer. For the set $\mathscr{B} \subset \mathbb{F}_{p}$ defined in (2.3) and for any subsets $A, B \subset \mathscr{B}$, we have $|A-B| \geqslant|A|^{\tau}|B|^{\tau}$, where τ is the unique positive solution of

$$
\left(\frac{1}{M}\right)^{2 \tau}+\left(\frac{M-1}{M}\right)^{\tau}=1
$$

From [4] we have the easy bounds

$$
\begin{equation*}
\frac{\log 2}{\log M}\left(1-\frac{1}{\log M}\right) \leqslant 2 \tau-1 \leqslant \frac{\log 2}{\log M} \tag{3.3}
\end{equation*}
$$

Corollary 1. Take \mathscr{B} as in (2.3) and assume Proposition 2. Then (3.1) holds with

$$
\gamma=\frac{0.49(2 \tau-1)}{c_{1}+c_{4}(2 \tau-1)}
$$

Proof. Just like the proof of [4, Lemma 3], except that we incorporate Proposition 2, Suppose that $S \subseteq \mathscr{B}$ with $|S| \geqslant p^{0.49}$ and $E(S, S)=|S|^{3} / K$. By Proposition 2, there are sets $T_{1}, T_{2} \subset S$ such that $\left|T_{1}\right|,\left|T_{2}\right| \geqslant$ $c_{2} \frac{|S|}{K^{c_{4}}}$ and $\left|T_{1}-T_{2}\right| \leqslant c_{3} K^{c_{1}}\left|T_{1}\right|^{1 / 2}\left|T_{2}\right|^{1 / 2}$. By Lemma 3.2.

$$
c_{3} K^{c_{1}}\left|T_{1}\right|^{1 / 2}\left|T_{2}\right|^{1 / 2} \geqslant\left|T_{1}-T_{2}\right| \geqslant\left|T_{1}\right|^{\tau}\left|T_{2}\right|^{\tau}
$$

and hence

$$
c_{3} K^{c_{1}} \geqslant\left(\left|T_{1}\right| \cdot\left|T_{2}\right|\right)^{\tau-1 / 2} \geqslant\left(\frac{c_{2} p^{0.49}}{K^{c_{4}}}\right)^{2 \tau-1}
$$

It follows that $K \geqslant\left(1 / c_{5}\right) p^{-\gamma}$ for an appropriate constant $c_{5}>0$.
Finally, we need a tool from [3] which states that in (1.1) we need only consider vectors \mathbf{x} whose components are 0 or 1 (so-called flat vectors).
Lemma 3.3 ([3, Lemma 1]). Let $k \geqslant 2^{10}$ and s be a positive integer. Assume that for all $i \neq j$ we have $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle \leqslant 1 / k$. Also, assume that for some $\delta \geqslant 0$ and any disjoint $J_{1}, J_{2} \subset\{1, \ldots, N\}$ with $\left|J_{1}\right| \leqslant k,\left|J_{2}\right| \leqslant k$ we have

$$
\left|\left\langle\sum_{j \in J_{1}} \mathbf{u}_{j}, \sum_{j \in J_{2}} \mathbf{u}_{j}\right\rangle\right| \leqslant \delta k .
$$

Then Φ satisfies the RIP property of order $2 s k$ with constant $44 s \sqrt{\delta} \log k$.
Now we show how to deduce Theorem2, By Lemma3.1 and standard bounds for Gauss sums, Φ satisfies the conditions of Lemma 3.3 with $k=\lfloor\sqrt{p}\rfloor$ and $\delta=O\left(p^{-\varepsilon_{1}} \log ^{2} p\right)$. Let $\varepsilon_{0}<\varepsilon_{1} / 2$ and take $s=\left\lfloor p^{\varepsilon_{0}}\right\rfloor$. By Lemma 3.3. Φ satisfies RIP with order $\geqslant p^{1 / 2+\varepsilon_{0}}$ and constant $O\left(p^{-\varepsilon_{1} / 2+\varepsilon_{0}}(\log p)^{3}\right)$. If ε_{0} is sufficiently close to $\varepsilon_{1} / 2$, Theorem 2 follows with

$$
\varepsilon=2-\frac{2}{1+2 \varepsilon_{0}}=\frac{4 \varepsilon_{0}}{1+2 \varepsilon_{0}}>2 \varepsilon_{1}-2 \varepsilon_{1}^{2}
$$

To prove Theorem 1, we take the construction in Section 2 . We have (3.1) by Corollary 1 . Also take

$$
\eta=10^{-100}, \quad c_{0}=\frac{1}{3}, \quad c_{1}=7 / 2+\eta, \quad c_{4}=3 / 4+\eta, \quad m=7586
$$

These values were optimized with a computer search. By Corollary 1 and (3.3), we have $\gamma \geqslant 9.182 \cdot 10^{-6}$. It is readily verified that $\gamma \leqslant \frac{1}{4 m}, \varepsilon_{1}>1.631 \cdot 10^{-7}$ and $\varepsilon=2 \varepsilon_{1}-2 \varepsilon_{1}^{2}$ satisfies $3.26 \cdot 10^{-7} \leqslant \varepsilon \leqslant \frac{1}{403 m}$. Theorem 1 now follows.

4. AcKnowledgments

The first author was partially supported by NSF Grant DMS-1802139. The second author is supported by a Simons Travel grant. The third author is supported by Ben Green's Simons Investigator Grant 376201.

REFERENCES

[1] A. Balog, E. Szemerédi, A statistical theorem of set addition, Combinatorica 14 (1994), 263-268.
[2] J. Bourgain. Multilinear exponential sums in prime fields under optimal entropy condition on the sources. Geom. Funct. Anal. 18 (2009), 1477-1502.
[3] J. Bourgain, S. J. Dilworth, K. Ford, S. Konyagin, and D. Kutzarova. Explicit constructions of RIP matrices and related problems. Duke Math. J. 159 (2011), 145-185.
[4] J. Bourgain, S. J. Dilworth, K. Ford, S. Konyagin, and D. Kutzarova. Breaking the k^{2} barrier for explicit RIP matrices. Symposium on the Theory of Computing (STOC '11), (2011), 637-644.
[5] J. Bourgain and M. Z. Garaev. On a variant of sum-product estimates and explicit exponential sum bounds in finite fields. Math. Proc. Cambridge Philos. Soc. 146, no. 1 (2009), 1-21.
[6] J. Bourgain and A. A. Glibichuk. Exponential sum estimate over subgroup in an arbitrary finite field. J. d'Analyse Math. 115 (2011), 51-70.
[7] E. J. Candès. The restricted isometry property and its implications for compresses sensing. C. R. Math. Acad. Sci. Paris 346 (2008), 589-592.
[8] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59 (2006), 1208-1223.
[9] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans. Inform. Theory 51 (2005), 4203-4215.
[10] R. DeVore. Deterministic constructions of compressed sensing matrices. J. Complexity 23 (2007), 918-925.
[11] W. T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001), 465-588.
[12] B. S. Kashin. On widths of octahedron. Uspekhi Matem. Nauk 30 (1975), 251-252. Russian.
[13] B. S. Kashin. Widths of certain finite-dimensional sets and classes of smooth functions. Izv. Akad. Nauk SSSR, Ser. Mat. 41 (1977), 334-351. Russian. English transl. in Math. USSR Izv. 11 (1978), 317-333.
[14] B. Murphy and G. Petridis. A second wave of expanders in finite fields. Combinatorial and additive number theory. II, 215-238, Springer Proc. Math. Stat. 220, Springer, Cham, 2017.
[15] J. Nelson and V. N. Temlyakov. On the size of incoherent systems. J. Approx. Th., 163 (2011), no. 9, 1238-1245.
[16] T. Schoen, New bounds in the Balog-Szemeredi-Gowers lemma, Combinatorica 35 (2015), no. 6, 695-701.
[17] T. Tao. Open question: deterministic uup matrices. https:https://terrytao.wordpress.com/2007/07/02/open-question-deterministic-uup-matrices/

Department of Mathematics, 1409 West Green Street, University of Illinois at Urbana-Champaign, URbana, IL 61801, USA

Email address: ford@math. uiuc.edu
Department of Mathematics, 1409 West Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Email address: denka@math. uiuc.edu
Department of Mathematics, University of Oxford, Radcliffe Observatory, Andrew Wiles Building, Woodstock Rd, Oxford OX2 6GG, UK

Email address: george.shakan@gmail.com

